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V]IK 539.4

CkiHYeHHOeJIeMeHTHHII aHATi3 TepMONPYKHOI0 apMOBAHOTO BOJOKHAMH
aHI30TPONMHOI0 MOPOKHUCTOIO WWJIiHAPa HAa OCHOBI Mojedi ABo(pa3HOrO
3ami3HIOBaHHS

A. JI. Xo6inn®, I. A. A66ac™’, ®. Bepro®

* JlocmimHuipbKa Tpyna 3 HETIHIHHOrO aHalisy Ta NPUKIAAHOI MaTeMaTHKW, Biaginenns wmare-
MaTHKH, YHiBepcuTeT koponsi A6nynasiza, Ixunna, CayniBceka Apasis

° Bimninennst matemaruky, Texuiunuii dakysprer, YuiBepcurer Coxar, Coxar, €rumer

® akynpTeT TEXHIYHOrO MPOEKTYBaHHs Ta Marepianis, HopBe3bkuil YHIBEPCHTET HPUPOMHHUX i
TEeXHIYHHUX Hayk, Tponxeiim, Hopseris

Tlobyoosano pieHanua 015 y3a2aibHEeHOT MEPMONPYHCHOCIE APMOBAHO20 BOIOKHAMU AHI30MPONHO2O
NOPOACHUCMO20 YUTIHOPA HA OCHOGI MOOell 080Qazno2o 3anizHioeants. Jlocaiodcycmucs nopodic-
HUcmul YuniHop i3 menioizonb08aHOI0 HEHABAHMANCEHOK 308HIUHbOI NOBEPXHEI0, 6 MOl HacC 5K
HEHABAHMANCEHA BHYMPIWHA NOBEPXHA NIOOAEMbCA MENI080MY YOapy. 3a0auy po3e s3aH0 YUCeNbHO
3 BUKOPUCMAHHAM Memody CKiHUeHHUx enemenmie. Ompumani pesyromamu O nepemiuyens, mem-
nepamypu, paodianrbHux I KOJIOGUX HANPYICeHb NOOaHo epaghiuno. Ilposedeno nopieHanHs Midic
CHPOCHO308AHUMU PE3YILINAMAMY 3d 38 A3AHOI0 Meopiery mepmMonpyxcHocmi, meopieto Jlopoa—
Lynemana ma 3a mMooennio 0860QasHo20 3aNi3HIOBAHH NPU HAABHOCI | 8I0CYMHOCMI APMYBAHHAL.

Knrouosi cnosa: monens aBo(ha3HOTO 3ami3HIOBaHHS, apMyBaHHS BOJIOKHAMHM, TEOPis
Jlopma—IllynemaHa, METOJ] CKIHYCHHHX CJIIEMCHTIB.

Introduction. Materials such as resins reinforced by strong aligned fibers exhibit
highly anisotropic elastic behavior in the sense that their elastic moduli for extension in the
fiber direction are frequently of the order of 50 or more times greater than their elastic
moduli in transverse extension or in shear. Due to their low weight and high strength, the
fiber-reinforced composites are used in a variety of structures. The mechanical behavior of
many fiber-reinforced composite materials is adequately modelled by the theory of linear
elasticity for transversely isotropic materials, with the preferred direction coinciding with
the fiber direction. The theory of strongly anisotropic materials has been widely discussed
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in the literature, Belfield et al. [1] investigated the stress in plates reinforced by fibers lying
in concentric circles. Hashin and Rosen [2] studied the elastic moduli for fiber-reinforced
materials.

The first of such modeling is the extended thermoelasticity theory of Lord and
Shulman [3], who introduced the concept of thermal relaxation time into the classical
Fourier law of heat conduction. Subsequently, modifying the stress versus strain
relationship as well as the entropy relationship with relaxation time, Green and Lindsay [4]
proposed the temperature rate-dependent thermoelasticity (GL) theory. The theory was
extended for anisotropic body by Dhaliwal and Sherief [5]. Tzou [6, 7] proposed the
dual-phase-lag (DPL) model, which describes the interactions between phonons and
electrons on the microscopic level as retarding sources causing a delayed response on the
macroscopic scale. The DPL model proposed by Tzou [8] is such a modification of the
classical thermoelastic model in which the Fourier law is replaced by an approximation to a
modified Fourier law with two different time translations: a phase-lag of the heat flux ¢
and a phase-lag of temperature gradient #4. Abouelregal [9] studied a problem of a
semi-infinite medium subjected to exponential heating using a dual-phase-lag thermoelastic
model. Verma [10] studied the shear waves in self-reinforced bodies. Singh [11] discussed
the wave propagation in thermally conducting linear fiber-reinforced composite materials
with one relaxation time. Othman and Abbas [12] studied the effect of rotation on plane
waves at the free surface of a fiber-reinforced thermoelastic halfspace. Abbas [13]
investigated the effect of magnetic field on thermoelastic interaction in a fiber-reinforced
anisotropic hollow cylinder. Chattopadhyay and Choudhury [14] investigated the
propagation, reflection and transmission of magnetoelastic shear waves in a self-reinforced
media. Chattopadhyay and Choudhury [15] studied the propagation of magnetoelastic shear
waves in an infinite self-reinforced plate. Tian et al. [16], Abbas et. al [17-23], applied the
finite element method in different generalized thermoelastic problems.

In the present paper, we have considered a problem of dual-phase-lag model on
generalized thermoelasticity of a fiber-reinforced anisotropic hollow cylinder. The problem
has been solved numerically using a finite element method (FEM). Numerical results for
the temperature distribution, displacement, radial stress and hoop stress are represented
graphically. The results indicate that the different between the coupled theory (CT), Lord
and Shulman (LS) theory, and DPL model are very pronounced.

Basic Equations and Formulation of the Problem. For a fiber-reinforced linearly
thermoelastic anisotropic medium, the constitutive equations preferred to whose direction is
that of a unit vector a [11]:

Ty = /lekkéij +2ure; +a(akamekm5,-j taza ey )t 2u, —ur Naarey +a;agey )+
+ﬁakamekmaiaj_ﬂ[/(T_TO)éU’ is j7 ks m= 19 29 3, (1)
1 .

e =5(ul~’j+uj’,-), i, j=1,2,3 2)

The equation of heat conduction under DPL model [9]

d d . . ..
I+1¢g " (KT )=|1+1, " (pe. T+ToByu; ;) i, j=12,3 (3)
The equation of motion

Tij‘,j +Fl = pul , l’, j= 1, 2, 3 (4)
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Three cases arise:
(i) classical dynamical coupled theory

t0=tq=0;

(i) LS theory

(ii1) DPL model
0<ty<t,,

where u; are the displacement vector components, p is the mass density, e;; is the strain
tensor, 7 is the temperature change of a material particle, 7; is the stress tensor, B j is
the thermal elastic coupling tensor, ¢, is the specific heat at constant strain, 7;, is the
reference uniform temperature of the body, 7, is a phase-lag of heat flux, ¢, is a
phase-lag of temperature gradient, K; is the thermal conductivity, «, B, (u; —uy) are
reinforced anisotropic elastic parameters, and A and u, are elastic parameters and the
component of the vector a are (a;, a,, az), where a12 +a§ +a§ =1

Let us consider a fiber-reinforced hollow cylinder with an external radius b and
internal radius a. By using the cylindrical system of coordinates (7, 6, z) with the z-axis
lying along the axis of the cylinder. Due to symmetry, the displacement vector has the
components

u, =u(r, t), ug(r, t)=0, u,(r,t)=0. 5)

For circumferential reinforcement, the equation of motion in the absence of body
forces is given by
T, 1 9%u

— 4 (T, —Tgg)= P 6
or F( rr 99) pat2 (6)

The energy equation without heat sources has the form

(1+t a) K 82T+1< LTy _1o,, o* ( r+7,8,, X +1,8 ”)
9 oL o _(2 2 e ou .
0 5 )|M11 5,2 2,5 PYRRLIPW PCe P11 FloPa @)
with
Ju u
rrr:(i+2/uT )5+(l+a);_ﬂll(T_TO)? (8)
Ju u
Tog =(/1+05)5+(/1+20!+4ﬂL —2ur +ﬁ);—ﬁ22(T—To): 9
where

Bu=2A+ur)ay+(A+a)ay, Bpn=2A+a)r +(A+2o+4u; —2ur + Py,

and a;; and «a,, are coefficients of linear thermal expansion. It is convenient to change
the preceding equations into the dimensionless forms. To do this, the dimensionless
parameters are introduced as

[ ’ ror ' 1
(t ate ,t )=C12X(t7t6 atq )5 (V,M )=CIX(}”,M), (Trr’TGG)=Z(Trr 5199 )> (103)
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,_T=T, A pee
T'= , = |—, =—%  A=A+2a+du; —2u;+p
7 a=y, X I Uy —2ur+p (10b)

From Egs. (10) into Egs. (6)—(9) one may obtain (after dropping the superscript ' for
convenience)

(1+t9 a)(<92T+611<3T)=(6+t - (T+Szau+83 u)’ amn
at )\ 9,2 ror ot 9 g2 or r
“@Z*lZ}UZ‘&i?*&‘SU€=Z?’ (12)

r,,=sl%+sz%—s3r, (13)
Tog =S %+%—S4T, (14)

where

1
(Slz S29 S3> S4)=Z(l+21u7"7 /1+a’ T()ﬂll’ T()ﬂ22):

K
(€1, €3, 33)=(22 ,Lll ,ﬁ22)~
Ky pe. pe,

From preceding description, the initial and boundary conditions may be expressed as

du(r, 0 aT(r, 0
utr, =D 20 7, 0= D (15)
aT(b, 1)
Trr(aa t)=09 Trr(bs t)=05 T(Cl, t)=]w1H(t)s Tzoa (16)

where a and b are inner and outer radii of the hollow cylinder, respectively, and H(t) is
the Heaviside unit step function.

Finite Element Method. The FEM is a powerful technique originally developed for
the numerical solution of complex problems in structural mechanics, and it remains the
method of choice for complex systems. In this section, the governing equations of
generalized thermoelasticity with dual-phase-lag are summarized, using the corresponding
finite element equations. In the FEM, the three isoperimetric, quadrilateral element is used for
displacement and temperature. Thus, the displacement component u and temperature 7'
are related to the corresponding nodal values by

u= >N (), T= D NT0), a7
i=1 i=1
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where m denotes the number of nodes per element, and N the shape functions. In the
framework of standard Galerkin procedure, the weighting functions and the shape functions
coincide:

6u=§N,-6ui, 6T=iN,-5T,-, (18)
i=l1 i=l1
W'= YN (o), T'= YNT(0), (19)
i=1 i=l
ou' = ﬁN}éui, oT' = iN,féTi. (20)
i=1 i=1

Thus, Egs. (11) and (12) corresponding to the finite element equations can be written

LY 8 S e
1 o P g ; _
S\ WM ML |re) a0 Cn](re 0 Kn||re Fy

where me is the total number of elements. Appendix presented the coefficients of Eq. (21).
The matrix form of Eq. (21) can be written as

as

, 1)

Md+Cd+Kd=F*, (22)

where d=[u T ]T ,F® M, C,and K represent external force vectors, the mass,
damping, and stiffness matrices, respectively. Finally, the Newmark time integration
method or other methods have to be used to determine the time derivatives of the unknown
variables (see [24]).

Numerical Example. To study the effect of reinforcement on wave propagation, we
use the following physical constants for generalized fiber-reinforced thermoelastic materials
[11]: p= 2660 kg/m>, 4 =565-10'" N/m?, p; = 2.46-10'"° N/m?, u; = 566-10' N/m?,
a=-128-10' N/m?, f=22090-10"" N/'m?, a;; =0017-10"% deg™!, T, =1, ay =
=0015-10"*deg ™", ¢, = 0.787-10° J/(kg-deg), Ty =293K, 1, =02, t,=0.1, K|, =
=00921-10% J/(m-s-deg), K, = 0096310 J/(m-s-deg), and 7= 0.5.

These physical quantities are represented and plotted in Figs. 1-8 with respect to
radial distance for 7} =1 and ¢= 0.5. Furthermore, all the variables and parameters are
taken in non-dimensional forms. In Figs. 1, 3, 5, and 7 refer to thermoelastic solid without
reinforcement (NRE), while in Figs. 2, 4, 6, and 8 — with reinforcement (WRE).

From Figs. 1-8 is seen that, there is no significant difference in the value of
temperature for WRE and NRE as in Figs. 3 and 4. Figures 1 and 2 show the variation of
displacement for NRE and WRE. It is noticed that the displacement is continuous and the
displacement gradually decreases with r and is zero at »= b. This is also in agreement with
the theoretical result where beyond the thermal wave front displacement vanishes.
Figures 5 and 6 represent the variation of stress with respect to distance, which we
observed that, the stress, always starts from the zero value and terminates at the zero value
to obey the boundary conditions. Figures 7 and 8 gives the variation of hoop stress versus r.

ISSN 0556-171X. Ipoboremu miynocmi, 2018, Ne 3 41



A. D. Hobiny, 1. A. Abbas, and F. Berto

1.5,

1

05 q
0
05 T
3
1 4
-15 b
2 —
—CT-NRE
25 - - -1S-NRE
------- DPL - NRE
3 1 1 1 1
1 15 2 25 3 35 4
r

Fig. 1. Displacement distribution for different theories without reinforcement.
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Fig. 2. Displacement distribution for different theories with reinforcement.

1 T

—CT-NRE
08 ---L8-NRE |
"""" DPL - NRE

081 b

06 O q
04 N q

0.2 R i

o1 N .

0 | | ~—— T T .
1 15 2 25 3 35 4

Fig. 3. Temperature distribution for different theories without reinforcement.
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Fig. 6. Radial stress distribution for different theories with reinforcement.
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Fig. 7. Hoop stress distribution for different theories without reinforcement.
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Fig. 8. Hoop stress distribution for different theories with reinforcement.

%
3 STETeesl
= SresdsEress
e e e S e i
e e e T
eSS e S e se SIS e B S oS
e
e
o o ¥ o
e e
T e e e e
T e e e e s
S o S -
e S e e
e s et i
e et ST SO i
S
e :
e,
s S ot e
s
R
o

r

Fig. 9. Displacement distribution with reinforcement.
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Fig. 11. Radial stress distribution with reinforcement.

Also, for each theory the hoop stress have a maximum magnitude at the boundary. Figures 9,

10, 11, and 12 display the distribution of the displacement, temperature, radial and hoop

stresses for a wide range of r (I<r<4) and for a wide range of dimensionless time ¢

(0=¢=05). The reinforcement has a great effect on the distribution of displacement and

stresses. Finally, it is obvious that the phase-lag parameters ¢, and 7, have very

pronounced effect on the temperature and displacement, radial and hoop stresses.
Appendix. The coefficients in Eq. (21) are given by

Mfy = [IN] [N1dr, M$ = [ [N]Tzq(SZ[N’Hsj[N])dr, M$, = [ t,INT [N1dr,

5=/ [N]T(ez[N’]+’3j[N])dr,
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Fig. 12. Hoop stress distribution with reinforcement.

r

cs = [t ([N’]T V']- L vy [N])+tq[N]T [N]|dr,

Sl_SZ [Nr]+

r r

N
K= J|IvT (SI[N’]+j[N])—[N]T(
_S4 [N]T[N] d’", FIEZ[N]Tf;,

K5 = [|INT V= “LINT (V) |ar FS = (VT gl

where T represent the component of the traction, and ¢ represents heat flux.
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Pe3wome

ITocTpoeHs! ypaBHEHHsT AJIsi 00OOIIEHHON TEPMOYNPYrOCTH apMHPOBAHHOTO BOJIOKHAMHU
AaHM30TPOIHOTO MOJIOTO LIINHpPA Ha OCHOBE MOJENH NBYyX(aszHoro 3amnaszasiBanus. Vccie-
JyeTcs IOJIbIM LWIMHIP C TEILUIOM30JUPOBAHHON HEHArpy>KCHHOH BHEIIHEH I1OBEPXHOC-
TBIO, B TO BPEMsl KaK HEHAIpy>KCHHasl BHYTPEHHSASA IIOBEPXHOCTh IIOJBEPIHYTa TECILIOBOMY
yaapy. 3ajaua pelieHa YUCIEHHO ¢ UCIIOIb30BaHNEM METOAAa KOHEUHBIX 31eMeHTOB. [Tomy-
YEHHBIE PEe3yJIbTaThl AJISl MEPEMEILEHHs, TEMIIEPATYPbl, PaIUaIbHBIX U OKPY)KHBIX Harps-
JKEeHUH TpeacTaBieHbl Tpaduuecku. [IpoBeeHO CpaBHEHHE MEXIy MPOTHO3HPYEMBIMHU
pe3yabTaTaMy IO CBSI3aHHOM TeOpUU TepMoynpyroctd, teopuu Jlopma—IllyieMana u mo

MOACIN I[ByX(l)aBHOFO 3ala3blBaHus IPpU HAJIWYUU U OTCYTCTBUU apMUPOBAHUS.
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