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Simulation of elastic wave diffraction
by a sphere in semibounded region
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The problem of scattering of plane elastic waves by a rigid sphere located near a plane rigid boundary is considered,
which leads to the generation of multiply re-reflected dilatation and shear waves. The formulation of the problem is
given when slippage conditions are specified on a flat boundary (equality of tangential stresses to zero). The problem
is reduced to the definition of scalar functions. General solutions are written down, and approximate solutions are
constructed for the field in the far zone characterized by the fact that the distance from the plane boundary to
the obstacle is much greater than the radius of the sphere. In addition, the Rayleigh approximation is used, when the
wave number is much lesser than the radius of the sphere. The method of images is used to construct multiply re-
[lected waves. Approximate formulas are given for the field in the far zone and in the case of the long-wave Rayleigh
approximation. The calculations of scattered wave fields, presented in the form of scattering diagrams, are carried
out, from which a strongly oscillating wave field can be seen.
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Most materials of microelectronic devices, including the computer ones, can contain foreign
inclusions, which can lead to strong oscillations of the wave field due to the occurrence of re-
flected waves. Rigid inclusions can be found in many different materials, as well as in human
biological tissues. In these cases, a complex wave field of re-reflected waves occurs, which leads
to oscillations. This problem is modeled here as the problem of wave diffraction on a rigid sphe-
rical inclusion near a flat rigid boundary, which generalizes the previously considered problems
(Selezov et al., 2018) [1], (Selezov, 1993) [2].

Consider a spherical coordinate system 7,0,¢ (the radial, zenithal and azimuthal coordi-
nates), which corresponds to a rectangular Cartesian coordinate system x,y, z. The Oy axis is
perpendicular to the flat boundary with the origin at the center of an absolutely rigid spherical
inclusion (scatterer) and is directed from infinity to the flat boundary.
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When plane waves run from infinity (plane waves propagate along the Oy axis), a diffracted
field of repeatedly re-reflected waves appears in the system.
A plane wave of displacements propagates from infinity along the Oy axis

“y(O, y,0,t)= uoei(pymt)' .,

The motion of an elastic medium is described by the equations

V2 Lo 0, |V? Lo, 0 (2)
R — =0, ———F1|a=0,
2 ot? v 2 ot?

and the displacement vector is determined by the formula
i=Vy+Vxa, V-a=0. 3)
The boundary conditions on the sphere and on the flat boundary have the form

| _ =0, u|_ =0, u =0, © =0. (4)

r=a Y ‘yz_h

Conditions (4) mean that, on the surface of the sphere r=a, the displacement vector is
zero. On the plane boundary y = —#, its normal component and tangent stress are zero (slippage).
The desired functions must also meet the Sommerfeld radiation conditions.

When introducing dimensionless values, the characteristic values are taken as: length
[m] — radius of the sphere a, time [s] — 1/ ®, kilogram-mass [kg] — Young modulus.

The equation for the incoming wave determines, in accordance with (2), the potential
corresponding to dilation waves

> 1 9°
@‘C—ga? y(y,t)=0. ()

Equations (2) follow from the equations of elastodynamics

. Lo 0%
GV u+(k+G)V(V-u):p?

with the use of a well-known formula VxVxda=V(V-d)-V?a. As a result, the definition of
the operator Vxa in (3) is reduced to the definition of the operator V?a@ (Morse & Fesh-

a L]
bach) [3]. In the case of axial symmetry a( ) =0, we get
¢
Vii=é |V 2 a ) (sinBay) |+
o "2 #%sing 00 0

(6)
+8.1V2a _a—9+£aﬂ +2 | V2a %
0 ® y?sin’0 2 00 .
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The third term in expression (6) is also zero, since @, =0. The components 4, are the pro-
jections of the vector @ onto the coordinate line @ and are equal to zero in the case of axial
symmetry. By analogy with the construction of the equation for y (5) we can introduce a
scalar function §(7,0) with normalization u,, which depends on two arguments, i.e. we obtain
the scalar wave equation for the scalar function &(7, 0)

V2 Lo £=0
ZoZ |2
From it, after the separation of variables, the Legendre equation and the Bessel equation for
spherical functions follow.

Solutions to the problem of elastic wave diffraction by a sphere (Seismic, 2016) [ 4 ] in an
infinite domain for functions y and & are written as

V=3 Uin(or)+a,hO(pr)] P, (cos6), &= bmh%)(qr)%Pm(cose), )
m=0 m=0

Where f, =—-Q2m+1) u,p i ™ j (pr) and h,(,f)(pr) are spherical Bessel and Hankel
functions. For example, j,,(O)=] (£) %C

m+—
2

From the first two boundary conditions (4) using (7), we obtain the coefficients a,, and b,
a, = [, A, {m(m+1)j, (pa)h,(qa) - pa j, (pa)|h, (qa)+qak;,(qa)]},
b, = [, path, (pa)j;,(pa)=h;,(pa)j,(pa)}, (8)

A,, = pah;, (pa)lh, (qa)+qah;, (qa)]-m(m+1)h,(pa)h, (qa).

’
We find approximate solutions for the field in the far zone —>>1 by representing the Hankel
functions by their asymptotic expansions at large » /a,

- - & t .9
u, =y a,i"—e""P,(cos8), ug =~y b,i" —e"" —P,(cosb). 9)
m=0 r m=0 r 00

In the Rayleigh approximation, the quantities pa and ga satisty the inequalities pa, ga < 1.
In this case, it can be established from (8) and (9) that the dominant coefficients are

27! 27! P
a=i 3a [1+2(3” , b=i 3a [1+2(3” (Z). (10).
p p p

To construct solutions in a semiinfinite region, we use the image method (Jackson, 1962) [5].
A solution satisfying the second two boundary conditions (4) in each k-th approximation is rep-
resented in the form
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i(r,0,7,0 )= [i,(r,0)+ii,(r,0)], (11)
k=t
where the summary components of displacements for the scattered field of multiplicity & have
the form

(i +1iy), = U,y =, — 14y, cOS(O+0 )+ 14y, sin(0+6) "
(12)

Ugp, = thgy, + gy, cOS(8+0 ) =10, sin(0+6).

Difference in distances from real and imaginary obstacles to a certain point 7,0 and the
time difference of arrivals of P-and S -waves in the first approximation are taken into account
by the formulas

exp(—io;) =(cosn; —isinm;)exp(—ipr), oy =qr, o4 = pr*, oy =qr*,
(13)
—pr| L1, my=n, = 0, ny=n, =pr| In-1
No=pr| 5= m=m, =pr(n-1, ny=m, =pr ;n— :
Formulas (13) follow from the geometric relations obtained above for the main and mirror

obstacles.
By formulas (10) (13), after a series of transformations for a singly scattered field, we find

U, = _Cose+(%COSG—1)(%_COSGJ(COS11P —isinm), )n—3 +
r r
q 2 2h
.. -3 .2
+[;) (coSﬂq—lSIHﬂq)Tﬂ sin” 6, (14)

2

2
Ue15|:—(i) (coan—isinnq)—(%cose—l)(coan—isinnq)n_?’(iJ -
P r p

—(Z—h—cose)(cosnp—isinnp)%n_?’:lsine. (15)
r r

On the right-hand sides (14), (15), the factor zexp (ipr) is omitted, the left-hand sides are
r

normalized by a factor 3[1+2(q/ p)*]"!, and displacements are attributed to u,. The field of
the incident wave and the corresponding field of the wave reflected from the boundary have the
form: u, = u; —u; =exp(ipy)—expli(py —2ph)].

An approximate solution to the scattering problem in the second approximation is repre-

sented in the form
u, =U +U,y; ug=Ug +Uyg,.
The addition theorem for spherical wave functions is given in (Friedman & Russek, 1954) [6].
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Fig. 2. Change in the values of the scattered field Reu, u Imu,

As an example, let us find displacements u, and u, with the next data: Poisson's ratio
v=0.25; pa=0.8; r /a=200. With the selected parameters, the error of the applied formulas
does not exceed 10%. Calculations are performed in points with a step of © /36. The calculation
results are shown in Fig. 1, where the oscillations of the re-reflected waves are clearly visible.

Below are the calculations and the scattering diagrams, which show a strongly oscillating
wave field.

The calculation results are obtained for the following parameters pa=0.10, . 3.317,
h/a=200,7/a=200,pr=20, h/r=1, v=0.45. p
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YUCEJbHE MOJIEJIIOBAHHS IMOPAKIIIT ITPYKHUX XBUJIb
HA COEPI Y HAIIIBOBMEXKEHI OBJIACTI

PosriistHyTo MpobsieMy po3cifoBaHHST IIIOCKUX MPYKHUX XBUJIb TBEPOIO ChePOIo, PO3TANIOBAHOIO MOGJIH3Y TI0C-
KOI JKOPCTKOT Me3Ki, 110 TIPU3BOAUTD 0 MOPOKEHHS (araTropasoBo BiAOMTHX ANUIATAIIITHUX Ta 3CYBHUX XBUJIb.
ITocTanoBka 3aayi TA€THCS, KOJW YMOBHM KOB3aHHS 3a/Ial0ThCS Ha PiBHIN MeXi (PiBHICTb HYJIIO JOTUYHUX Ha-
npyskenb ). [IpobiremMa 3BOAUTHC 10 BUSHAYEHHS CKaXApHUX (DYHKIL. 3anucani 3aranbHi po3s’si3ku i mobymosa-
Hi IpUOIN3HI PillleHHS 115 TI0JIs B AaJIbHIN 30H], Ki XapaKTepU3yIOThC THM, 110 BiZICTaHb Bil MEXKI IJIOIIMHU 10
neperiko/u HabaraTo Oisbiia 3a paziyc KyJi. Kpim toro, Habuskenus Pejiess BAKOPUCTOBYETCSI, KO XBUJIbO-
Be urcsI0 HabaraTo MeHIe 3a paaiyc KyJi. MeTox 306paskeHb BUKOPUCTOBYETHCS TSI TOOYI0OBY MHOKHHHO
BizGuTux xBusib. Hasegeni npubausui Gpopmysiu moJist B JajibHiil 30HI Ta y BUIIAAKY TOBrOXBUJIBOBOIO HaOJIM-
skerHst Pestes. [IpoBenieHi po3paxyHKM PO3CITHUX XBUJIbOBUX TI0JIIB, MPECTABJIEHI y BUTJIAIL /liarpaM po3ciio-
BaHHs, 3 IKUX BU/HO CUJILHO KOJIUBAJIbHE XBUJILOBE IOJIE.

Kntouoei cnosa: dudppaxuis xeuni, npyxcui xeuni, cepa, nanisobmexcena o6aacmv, memood 300paxcenisl, Kouu-
sanvie noie, A08ACUNA XEUI.

ISSN 1025-6415. Jlonos. Hay,. axad. nayx Yxp. 2020. Ne 10 27



