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Ïðåäëîæåíà ìåòîäèêà ïðîãíîçèðîâàíèÿ ïðî÷íîñòè òêàíîãî ìàòåðèàëà ïðè ðàñòÿæåíèè ñ

èñïîëüçîâàíèåì ìåòîäà êîíå÷íûõ ýëåìåíòîâ äëÿ ìîäåëèðîâàíèÿ ïåðåïëåòåíèé èçíà÷àëüíî

ïðÿìûõ íèòåé. Ïðè îöåíêå ïðî÷íîñòè è ìåõàíè÷åñêèõ õàðàêòåðèñòèê òêàíè ðàñòÿãèâàþùèå

óñèëèÿ ïðèêëàäûâàþòñÿ ñ ïîøàãîâûì ïîâûøåíèåì íàãðóçêè. Â äàííîì ïîäõîäå èñïîëüçóþòñÿ

èííîâàöèîííûå ãðàíè÷íûå óñëîâèÿ è ó÷èòûâàåòñÿ íåñêîëüêî óðîâíåé ñèììåòðèè, ÷òî ïîçâî-

ëÿåò ðåàëèçîâàòü ïðåäëîæåííóþ ìîäåëü ñ ïîìîùüþ ñòàíäàðòíûõ, íåìîäèôèöèðîâàííûõ

êîíå÷íîýëåìåíòíûõ ïàêåòîâ. Ïîñêîëüêó ìîäåëèðóåòñÿ òêàöêèé ïðîöåññ, â êà÷åñòâå èñõîäíûõ

äàííûõ èñïîëüçóþòñÿ òîëüêî ãåîìåòðèÿ è ñâîéñòâà ìàòåðèàëà íèòåé, ÷òî äàåò âîçìîæíîñòü

áûñòðî îöåíèòü õàðàêòåðèñòèêè ãèïîòåòè÷åñêèõ òêàíåé áåç ïðîâåäåíèÿ ýêñïåðèìåíòîâ.

Êëþ÷åâûå ñëîâà: ïåðåïëåòåíèå íèòåé, òêàíü, ìåòîä êîíå÷íûõ ýëåìåíòîâ, ìîäåëè-

ðîâàíèå.

Introduction. Woven fabrics and flexible composites are an important class of

materials with a wide variety of uses. Flexible composites reinforced with woven fabric

have many inherently positive characteristics, the potential for high strength, ease of use,

and ease of lay-up in the forming process.

Clothing, composite reinforcements, flexible composites, cloth structures, ballistic

armors, parachutes, sails and numerous other applications make extensive use of woven

fabrics. There is currently a large demand for lightweight military armor made of woven

fiber flexible material. Here the large strains allow significantly higher energy absorption

and dissipation than a stiff composite, as well as allowing for movement and articulation in

the case of body armor. Prior to the curing process many rigid composites behave as

flexible composite. The uncured matrix material is liquid and does not affect the structural

properties, therefore the flexible woven fabric reinforcement will entirely determine the

uncured structural properties. Understanding the mechanics of a composite material with an

uncured matrix conforming to a tool shape could improve the lay-up process currently used

within industry.

Many biological structures, such as skeletal muscles consisting of striated fiber

bundles suspended in an extracellular matrix, may be thought of as wavy fiber flexible

composites and modeled accordingly.

Modeling the mechanical behavior of this class of material presents a significant

engineering challenge due to the geometric complexity of yarns undulating around each
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other. The yarns have a complex shape and may interact with yarns oriented in other

directions. Mechanical properties may be both nonlinear and completely different under

various loading conditions (uniaxial tension, biaxial tension, shear, bending, etc.).

There are a number of different approaches to modeling the mechanics of woven

materials. Modeling approaches are generally classified into three broad categories.

Macroscale models treat the fabric as a continuum. Mesoscale models look at the effects of

the yarns that are woven around each other, treating the yarns as a continuous material.

Microscale models include the effects of the fibers that when bundled together comprise

most yarns.

Macroscale analytical models such as the model developed by Peng [1] treat the

material as a continuous material with nonlinear orthotropic properties. Macroscale models

do not model yarn undulation in the fabric. These models are simple but because they do

not fully model yarn interactions, they have difficulties in capturing the effects of crimp

interchange and shear angle reorientation. Further these models require time consuming

material testing for each fabric to be examined.

Mesoscale analytical models examine a representative volume element (RVE) or unit

cell. This is a small piece of the material that can represent the whole using periodic

symmetry. These models predict the effects of the yarns and are more likely to closely

describe crimp and shear effects. Mesoscale models developed by Assid [2], Barbero [3, 4],

Luo [5] and Boljen [6] treat yarn undulation as a sinusoidal function. Crimp interchange is

modeled with either Eulerian or Timoshenko based beam bending. These models can be

quite accurate, however the underlying assumptions of sinusoidal shape and beam like

crimp interchange are not thoroughly tested across a wide range of parameters.

Another common approach to analytical modeling used by Kato [7] and King [8] is to

treat each yarn as a series of straight beams pinned together at crossover points. Flattening

is modeled with spring elements between intersecting perpendicular yarns. These models

have the advantage of simplicity, however they are limited by not modeling realistic yarn

undulation shape and mechanics.

FEA modeling techniques are able to more closely match the true physics of fabric

mechanics. These models are generally more cumbersome, requiring extensive set up and

computer run time. With these models, creating a 3D model of the initial shape of an

RVE/unit cell is often the greatest challenge.

Sherburn [9] and Lomov [10, 11] generate 3D models based energy minimization of

an assumed shape function for the yarn path. The 3D models can then be used as a basis for

mesoscale FEA. They do not account for flattening or cross sectional variations which may

cause an incorrect crimp arrangement. Further, the underlying assumption of a shape

function is difficult to test across a wide range of parameters. Although they have verified it

in certain instances, it is unclear how changes in fabric parameters will affect it.

Tavana [12] and Barbero [3] both utilize mesoscale FEA models of unit cells

generated by digitizing photomicrographs of the fabric. Naouar [13] takes a similar

approach using X-ray tomography. This approach gives good results but requires

photomicrography and analysis. This makes it unsuitable for parametric modeling, or

predicting the properties of a fabric before manufacturing.

Hamila [14] used a macroscale FEA model, in which a node exists at each yarn

crossover. This method models the yarn reorientation during fabric shear, but has no

mechanism to account for crimp interactions or multiaxial loading.

Durville [15] created a microscale FEA model in which individual fibers of each yarn

are modeled as beam elements. Contact elements then deform the yarns until the unit cell

reaches its initial shape. This method most closely models the real physics of fabric

formation and deformation, however it requires finite element software with special

algorithms and optimizations for the extremely large amount of contact elements. It is able

to make predictions about the deformed shape of the yarn, and the effects of fiber
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reorientation within the yarn. It is unclear whether this model will be stable for more

complex fabrics or load states.

In this work, we have established a mesoscale FEA model, referred to hereafter as the

straight-yarn model, that can predict the shape and mechanical properties of a plain weave

fabric based on preformed yarn geometry, that is to say without taking measurements from

the woven fabric. Similar to Durville’s [15] approach, the model begins with the yarns in a

straight configuration, and then deforms the yarns into a woven configuration. The model

simulates the effect of the fibrous microstructure by treating the yarn as a transversely

orthotropic material. The model is further simplified by taking advantage of the reflective

symmetry inherent to a RVE/Unit Cell. With this second symmetry simplification, only one

eighth of the RVE needs to be studied. Using these simplifications allows the model to run

very quickly with unmodified off the shelf FEA packages, such as ANSYS workbench.

The straight-yarn model described in this paper has a number of advantages.

1. It requires no testing or examination of the fabric, but only the material properties

of the pre-woven yarns. Hypothetical fabrics can be easily examined with this approach,

allowing fabric properties to be optimized before manufacture.

2. The model inherently predicts the deformation of the yarns including the change in

cross section caused by the yarns pressing against each other at the crossover points, i.e.,

flattening effects, This is entirely without assumptions about the yarn path or crimp

relationship.

3. Due to simplified boundary conditions this approach can produce realistic results

quickly and easily using standard FEA packages.

1. FEA Modeling.

1.1. Unit Cells and the Symmetric Modeling Region. A unit cell or RVE is the

smallest piece of a fabric that can represent the entire structure with periodic symmetry. As

shown in Fig. 1a, the entire fabric is comprised of these unit cells side by side. For a plain

weave fabric a unit cell contains four crossover points. The unit cell still contains reflective

symmetry and for modeling purposes it is only necessary to model the shaded region in

Fig. 1a. In Fig. 1b one can see the modeling region corresponding to the shaded region in

Fig. 1a. Figure 1c shows the modeling region prior to the forming/weaving load step.

1.2. Material Properties. Fabric yarns commonly consist of bundles of small fibers.

Microscale approaches such as Durville et al. [15] examine individual fibers and can use

the material properties of the fiber material along with an appropriate contact behavior.

Mesoscale models do not include the effects of fiber interaction however Naouar [13]

asserts that based on his X-ray tomography studies, fiber bundles may be treated as a

continuous material with transversly isotropic properties. The modeling technique in this

paper follows the Naouar approach treating fiber bundles as continuous transversely

isotropic material. Monofilament yarns may be modeled with standard material properties.

Finite Element Modeling of Plain Weave Fabric ...
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Fig. 1. Unit cell/RVE for plain weave fabric: (a) unit cell; (b) modeling region; (c) pre-woven

modeling region.



1.3. Cross Section. Micrographs show that fiber bundles most commonly assume a

lenticular cross section at the yarn contact. This is approximated using an elliptical cross

section of the same cross sectional area, and either yarn thickness, width or moment of

inertia. Note that the elliptical cross section is applied to the pre-deformed yarn. As the yarn

deforms from the straight to the initial position of a fabric, the cross section will be

modified by the model.

1.4. Boundary and Initial Conditions. Boundary conditions for this model are

specifically chosen to follow the actual formation/looming of a woven fabric. In order to

model the formation of yarn geometry, we must examine how a loom works.

In all looms, the warp yarns are moved vertically into a shed configuration by some

form of heddle or jacquard. As the heddles reorient, wrapping the warp yarn around the

weft yarn, the warp is drawn from a spool with a tensioning device. In the direction of the

warp yarns, the RVE is free to expand or contract until internal forces find equilibrium with

the applied tension.

As the weft yarn is passed through the warp shed (whether byshuttle, rapier, projectile

or jet) it is unconstrained. When the heddles reorient the warp yarns, they are pressed into

the weft yarns. The RVE is now locked into place through yarn friction. There is likely an

unknown tension force in the weft yarn provided by the taught warp yarn, however after

removal from the loom the fabric must reorient so as to zero all in plane forces, as required

for static equilibrium.

In order to model a RVE as it passes through the loom, we can begin with two

perpendicular straight yarns with length S 0 (shown in Fig. 1c). The ends are free to

translate in the yarn directions as lateral (crimp) displacement is applied via the loading

elements. They will translate until the length of the RVE changes from S 0 to the RVE/unit

cell length L0. In this model, S 0 and the cross-sectional shape of the yarn are the only

required geometric inputs, with L0 being determined by the model. This allows the model

to predict initial fabric shapes with only the yarn geometric parameters known.

The most accessible fabric parameters are the picks/length (n), and the crimp. The

picks/length gives the length of the RVE (n L� 1 0). Crimp gives the length of the yarn in

the RVE before the loom deforms it, i.e., the straight length (crimp S L� �0 0 1). Picks are

easily counted, and as crimp is simply the ratio of the length of yarn used to the length of

fabric produced it will be well known by the manufacturer. This allows for a simple

verification of the model, checking to see if the predicted picks/in are equal to the observed

amount in a real fabric.

Observing a plain weave RVE (Fig. 1) it is apparent that the RVE is a symmetric

structure (a loom will not apply shear deformation). For this reason, with the appropriate

boundary conditions, the fabric RVE may be reduced to a symmetric one eighth model. The

symmetric area modeled can be seen in Fig. 1b. Aside from the standard symmetric

boundary conditions, this model leaves the two yarns dangling in space. It is necessary to

formulate a boundary condition that constrains the Z (normal to the fabric plane) position

of these dangling yarns. In Fig. 2, it can be seen that the amplitudes of the two yarns, Ax

and A y , must follow the approximate relationship without considering the flattening effect

or other changes in yarn cross section. Rx and R y are the yarn radii, or one half the yarn

thickness for non-circular yarns,

A A R Rx y x y� � � . (1)

Equation (1) is good initial estimate for yarn amplitudes and would hold true if we

could assume constant cross section. In reality the yarn amplitudes and diameters are not

constant as load is applied. Further as the two yarns bite into each other they may deviate

from their initial (unwoven) cross sectional shape. for the FEA model we must define a

symmetry parameter that accounts for these variations.
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In order to represent the periodicity of a fabric structure a relationship between the

amplitudes of the yarns must be maintained. This is approximated by Eq. (1), however, as

the yarns may not remain circular at the contact point a generalized parameter must be

defined that will determine whether the quarter model is periodically symmetric.

In Fig. 3, if we begin at a yarn crossover point and travel along the yarn paths to the

diagonally adjacent crossover point, we can see two paths to follow. If we define the Z

direction as normal to the fabric plane, and place the origin at crossover point A we can find

the Z position of crossover point B by following either of the two indicated paths. Ax , A y

are the yarn amplitudes and Dx2 , Dy2 are the yarn thicknesses.

Following the left side path we can see that

Z A D D AB x x y y�� � � �2 22 2 . (2)

Following the right side path we get

Z A D D AB y y x x� � � �2 22 2 . (3)

Combining Eq. (2) and Eq. (3) yields:

Z ZB B�� � 0. (4)

ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 6 149

Finite Element Modeling of Plain Weave Fabric ...

Fig. 2. Approximate relationship between yarn radius and amplitude.

Fig. 3. Eighth model symmetry requirement.



This indicates that crossover points A and B have identical Z coordinates and are

coplanar with the fabric plane. When using a symmetric one eighth model, constraining the

dangling crossover points to have identical Z coordinates is a necessary symmetric

boundary condition.

To maintain the symmetry as the model is reduced to one eighth, an output parameter

called distance from symmetry (DFS) is defined as the distance Z between points A and B.

When DFS is equal to zero, then the one eighth model will represent a periodic fabric.

Figure 4 shows a yarn configuration with a non-zero DFS. This indicates that it

cannot be considered a unit cell of fabric. In order to correct this, lateral displacement must

be applied until DFS is equal to zero.

1.5. Loading Elements. In order to apply forces in the most realistic fashion, the

model includes loading elements. As shown in Fig. 5, the lateral loading elements used to

push the ends into their symmetric position Z consist of small portions of the yarn that was

removed when converting the model into it’s one eighth symmetric form. This allows the

displacement to be applied in the same fashion as yarns pressing against each other.

Applying displacement Z with lateral loading elements models yarn flattening at these

points allows the previously mentioned DFS to be calculated. The model then iteratively

corrects the displacement Z applied to the loading elements until the DFS becomes zero.

1.6. End Conditions/Tensile Loading. In the initial (unloaded) woven condition, there

must be no resultant forces in the fabric plane, however the ends of the RVE must be free to

deform in the yarn directions. To facilitate this, the end conditions are controlled through
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Fig. 4. Distance from symmetry (DFS).

a b c

Fig. 5. Boundary conditions, applied loads and loading elements: (a) frictionless support; (b) Z

displacement (crimp) is applied to the lateral loading elements; (c) tensile force can be applied to

rigid bodies with all other DOF constrained (zero tensile force represents the initial shape and is used

in the first load step).



rigid body contact as per Durville [15]. Shown in Fig. 5, rigid bodies are created

perpendicular to the yarn at the RVE ends. The rigid bodies are constrained in all degrees of

freedom, except translation in the yarn direction. The yarns are then attached to the rigid

body through a ‘no separation’ type contact element. In subsequent load steps, tensile

forces may be applied to the rigid body. In this way, the end surfaces maintain the

symmetry requirements while allowing the addition of an external tensile force.

1.7. Contact Type, Meshing, and Analysis Settings. Due to the improved boundary

conditions, the model is easily able to run with standard auto-meshing. ANSYS 15

auto-mesh with quad/tri elements and a sweep method was used for this study. Element size

was allowed small variations in order to optimize mesh quality, however it was commonly

between 40 and 60 �m for the fabrics examined.

Frictionless contact was used between yarns, as inter-yarn friction must be zero

without an applied shear force. No separation contact was used between the rigid surfaces

and the yarns.

Large deformation was used with substeps allowed to range between 10 and 100.

2. Results and Validation. Table 1 shows the properties of the fabrics used to test and

validate the straight-yarn model. These fabrics are as reported by Freestone [16] and

Barbero [3] in Table 1. Dx1 and Dy1 are the yarn widths, Dx2 and Dy2 are the yarn

thicknesses, S x �0 and S y �0 are the arc lengths of the woven yarn without external loading.

2.1. Straight-Yarn Model Residual Inter-Yarn Force (Crimp Force) Validation. As

the yarns are deformed from straight to woven configurations, there will be a residual

contact force (force perpendicular to the fabric plane, at the crossover points) remaining in

the weave. In reality, this forming force may remain as an internal force, or it may

experience a stress relaxation effect. In order to examine this, a monofilament saran weave

was generated with the model. The saran was deformed into its initial configuration, and

then the crimp (yarn amplitude, d) was varied. This is compared to a second model in

which the same saran weave was deformed into the woven configuration, then the

geometry is exported as a parasolid to a new model, thus zeroing all internal forces, before
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T a b l e 1

Properties of Test Fabrics

Material Freestone Barbero/CERL

Saran Carbon AS4-D

Warp Dx1 (mm) 0.259 0.203

Dx2 (mm) 0.259 0.630

Weft D y1 (mm) 0.259 0.179

D y2 (mm) 0.259 0.770

Warp Sx �0 (mm) 1.709 1.865

Weft S y �0 (mm) 1.603 1.907

Warp Ex (GPa) 1.00 170.80

Ey (GPa) 1.00 24.23

Weft Ex (GPa) 1.00 170.80

Ey (GPa) 1.00 24.23

� 0.350 0.324



adjusting the crimp. As shown in Fig. 6, each model produces identical results after the

crimp force (P) has been normalized. This indicates that residual crimp forces will have no

effect on the shape or behavior of the fabric.

2.2. Freestone Stress–Strain Curves. The straight-yarn model was used to recreate

experiments performed by Freestone et al. [16]. Results indicate a close correlation between

Freestone’s experiments and the straight-yarn model. Freestone’s experiments involved a

monofilament saran yarn, and tension was applied in several multiaxial load states. Figure 7

shows the stress strain curve for pure biaxial tension as well as a mixed state where the y

stress is twice the x stress. N x and N y refer to applied fabric stress, that is force per

length of fabric.

2.3. Experimental Patterns (from Barbero [3]). The straight-yarn model was used to

generate the initial shape of a fabric tested by CERL and reported by Barbero et al. [4].

CERL measured, with photomicrography, the initial shape of yarns in an AS4/vinylester

plain weave fabric. The fibrous construction of the yarns was simulated using transversly

isotropic material properties as per Barbero [3] and Naouar [13]. The cross section of the

CERL yarn can be seen to be lenticular and is approximated with an ellipse. Figure 8 shows

that the straight-yarn model FEA approach gives a shape nearly identical to the micrograph

from CERL.
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Fig. 6. Initial inter-yarn contact force.

Fig. 7. Freestone stress–strain curves compared to straight-yarn model (FEA).



2.4. Yarn Flattening. In Fig. 9, the effect of flattening can be seen in a hypothetical

saran fabric. An inherent advantage to the straight yarn model is that it models the fabric

forming/weaving process and therefore includes the effect of yarn flattening where the two

yarns bite into each other.

Conclusions. A technique using standard unmodified FEA software to determine the

initial shape and tensile behavior of plain weave fabric has been developed and verified.

This method models mesoscale unit cells of plain weave to a high degree of accuracy. By

taking advantage of symmetries within the unit cell/RVE the straight yarn model can be run

on standard off the shelf FEA packages without special optimization algorithms. Using only

information about the fibers, yarns and weaving method, the FEA based straight-yarn

modeling technique can quickly and easily determine the shape and tensile behavior of

fabrics as well as predict yarn flattening without a requirement for fabric testing and

characterization. The technique can be used to verify or calibrate theoretical fabric models

and to design fabrics with properties tuned to specific applications, e.g., the prediction of

long-term deformations in woven materials using the relations of linear and nonlinear

viscoelasticity, as in [17].

Ð å ç þ ì å

Çàïðîïîíîâàíî ìåòîäèêó ïðîãíîçóâàííÿ ì³öíîñò³ òêàíîãî ìàòåð³àëó ïðè ðîçòÿãóâàíí³

ç âèêîðèñòàííÿì ìåòîäó ñê³í÷åííèõ åëåìåíò³â äëÿ ìîäåëþâàííÿ ïåðåïëåòåíü ïî÷àò-

êîâî ïðÿìèõ íèòîê. Ïðè îö³íö³ ì³öíîñò³ ³ ìåõàí³÷íèõ õàðàêòåðèñòèê òêàíèíè ðîç-

òÿæí³ çóñèëëÿ ïðèêëàäàþòüñÿ ç ïîêðîêîâèì ï³äâèùåííÿì íàâàíòàæåííÿ. Ó äàíîìó

ï³äõîä³ âèêîðèñòîâóþòüñÿ ³ííîâàö³éí³ ãðàíè÷í³ óìîâè ³ âðàõîâóºòüñÿ ê³ëüêà ð³âí³â
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Fig. 8. Straight-yarn model weft yarn superimposed on Barbero/CERL [3] yarn.

Fig. 9. Yarn flattening.



ñèìåòð³¿, ùî äîçâîëÿº ðåàë³çóâàòè çàïðîïîíîâàíó ìîäåëü çà äîïîìîãîþ ñòàíäàðòíèõ,

íåìîäèô³êîâàíèõ ñê³í÷åííîåëåìåíòíèõ ïàêåò³â. Îñê³ëüêè ìîäåëþºòüñÿ òêàöüêèé

ïðîöåñ, ÿê âèõ³äí³ äàí³ âèêîðèñòîâóþòüñÿ ëèøå ãåîìåòð³ÿ òà âëàñòèâîñò³ ìàòåð³àëó

íèòîê, ùî äîçâîëÿº øâèäêî îö³íèòè õàðàêòåðèñòèêè ã³ïîòåòè÷íèõ òêàíèí áåç ïðî-

âåäåííÿ åêñïåðèìåíò³â.
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