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Ïðèìåíåíèå ìåòîäà Áàéåñà ïðè ïëàíèðîâàíèè ÷àñòè÷íî óñêîðåííûõ

ðåñóðñíûõ èñïûòàíèé ïðè ïîñòîÿííûõ íàãðóçêàõ è öåíçóðèðîâàíèè ïî

âðåìåíè òèïà I äëÿ ðàñïðåäåëåíèÿ Ïàðåòî

Àëè À. Èñìàèë
à,á

à Óíèâåðñèòåò èì. êîðîëÿ Ñàóäà, Ýð-Ðèàä, Ñàóäîâñêàÿ Àðàâèÿ

á Êàèðñêèé óíèâåðñèòåò, Ãèçà, Åãèïåò

Èññëåäóþòñÿ âåðîÿòíîñòü ïàðàìåòðîâ ìîäåëè è ïðèìåíåíèå ìåòîäà Áàéåñà äëÿ ìîäåëè

÷àñòè÷íî óñêîðåííûõ ðåñóðñíûõ èñïûòàíèé ïðè ïîñòîÿííûõ íàãðóçêàõ è öåíçóðèðîâàíèè ïî

âðåìåíè òèïà I äëÿ ðàñïðåäåëåíèÿ Ïàðåòî âòîðîãî ðîäà. Âûïîëíåí ðàñ÷åò ìàêñèìàëüíîé

âåðîÿòíîñòè è èíäèêàòîðîâ Áàéåñà äëÿ ïàðàìåòðîâ ìîäåëè. Ñ èñïîëüçîâàíèåì ìåòîäà

àïïðîêñèìàöèè Ëèíäëè ïîëó÷åíû àïîñòåðèîðíûå ñðåäíèå çíà÷åíèÿ è âàðèàöèè äëÿ êâàäðàòè÷-

íîé ôóíêöèè ïîòåðü (îøèáîê). Ïîêàçàíû ïðåèìóùåñòâà äàííîé àïïðîêñèìàöèè. Âûïîëíåíî

÷èñëåííîå ìîäåëèðîâàíèå ïî ìåòîäó Ìîíòå-Êàðëî äëÿ îáðàçöîâ ðàçëè÷íûõ ðàçìåðîâ è ïàðà-

ìåòðîâ ìîäåëè äëÿ ñðàâíèòåëüíîé îöåíêè ïðåäëîæåííûõ ìåòîäîâ ïðîãíîçèðîâàíèÿ ðåñóðñà.

Êëþ÷åâûå ñëîâà: íàäåæíîñòü, èñïûòàíèå, îöåíêà ìàêñèìàëüíîé âåðîÿòíîñòè, îöåíêà

ïî Áàéåñó, êâàäðàòè÷íàÿ ôóíêöèÿ ïîòåðü.

Introduction. Accelerated testing ensures that specimens are exposed to elevated

environmental conditions for fixed periods of time. Overstress testing consists of running a

product at higher than normal levels of some accelerating stress(es) to shorting product life

or to degrade product performance faster. Overstress constant stress testing is the most

common form of Accelerated testing of specimens. Each specimen is tested under a

constant stress level. Such testing scheme is easy and has numerous advantages Nelson [1].

As indicated by Ismail [2], accelerated life testing and partially accelerated life testing

(PALT) are frequently used in modern reliability engineering to save time and cost. The aim

of a PALT is to obtain more failure data in a restricted time without essentially using severe

conditions to all test items.

Constant-stress PALT with type-I censoring were studied by some authors such as

[3–6]. These studies had been made based on classical methods. This paper considers

Lindley technique for estimating the parameters in constant-stress PALT. According to [7],

such an approximation has numerous valuable applications especially for industrial fields.

Also, in this respect, Achcar [8] said that “the use of approximate Bayesian methods could
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be a good alternative for the usual existing classical asymptotic methods used in accelerated

life testing (ALT).”

There were some works on PALT in the context of Bayesian approach. For example,

see Goel [9], DeGroot and Goel [10], Abdel-Ghani [11], Ismail [12]. The objective of this

article is to use Lindley method to make a Bayesian analysis with a squared error loss

function under time-censoring CSPALT. The Bayes estimators (BEs) of the acceleration

factor and the distribution parameters are derived and compared with the maximum

likelihood estimators (MLEs) counterparts by Monte Carlo simulations.

The rest of this paper is arranged as follows. In Section 1, the model and test method

are described. Approximate BEs of the parameters under consideration are derived in

Section 2. In Section 3 BEs derived in Section 2 are obtained numerically using Lindley’s

approximation and compared with the MLEs. Finally, Section 4 concludes the paper.

1. The Model and Test Method. The probability density function (PDF) of the Pareto

distribution of the second kind is given by

f t
t

T ( ; , )
( )

,� �
��

�

�

�
�

� �1
t�0, ��0, ��0. (1)

The survival function takes the form

R t
t

( )
( )

,�
�

�

�

�

� (2)

and the corresponding failure rate function is

h t
t

( ) .�
�

�

�
(3)

In a constant-stress PALT, n� units randomly selected among n test units sampled

are allocated to severe condition and the remaining are allocated to normal condition. Each

test item is tested until the censoring time is reached or the item fails.

The following assumptions are considered.

1. The lifetimes Ti , i n� �1 1, ... , ( )� of items allocated to use condition, are i.i.d.

r.v.’s.

2. The lifetimes X j , j n�1, ... , � of items allocated to accelerated condition, are

i.i.d r.v.’s.

3. Suppose that the lifetime of an item at accelerated condition is denoted by X , then

the lifetime of this item at use condition T is given by the relation T X� 	 .

Since the lifetimes of the test items follow Pareto distribution of the second kind, the

probability density function of an item tested at normal condition is given by (1).
The PDF under severe condition is expressed by

f x
x

X ( ; , )
( )

,� �
	��

� 	

�

�
�

� �1
x�0, ��0, ��0, (4)

where X T� �	 1 .

2. Bayesian Estimation. Here, Bayesian estimates are considered using

non-informative priors via the technique of Lindley and the squared error (SE) loss

function. The non-informative prior (NIP) for each parameter be represented by the limiting

form of the appropriate natural conjugate prior.
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It follows that a NIP for the acceleration factor 	 is given by

� 	 	1
1( ) ,
 � 	�1.

Also, the NIP’s for the scale parameter � and the shape parameter � are, respectively,

as

� � �2
1( ) ,
 � ��0 and � � �3

1( ) ,
 � ��0. (5)

Therefore, the joint NIP of the three parameters can be expressed by

� 	 � � 	��( , , ) ( ) ,
 �1 	�1, ��0, ��0. (6)

Via time-censored data, any unit can be tested at one condition only until a pre-fixed

censoring time � is attained. Therefore, the observed lifetimes t t nu
( ) ( )...1 � � �� and

x x na
( ) ( )...1 � � �� are ordered failure times at normal use and accelerated conditions,

respectively, where nu and na are the corresponding numbers of items failed in each

stage. Let ui and aj , be indicator functions such that  �ui iI T� �( ) and aj �
� �I X j( ),� where i n�1, ... , . Then, the overall likelihood function can be expressed by
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where Lui is the likelihood function for t i at use condition, Laj is the likelihood function

for x j at accelerated condition, � is the proportion of sample units allocated to

accelerated condition, and

 ui ui� �1 and  aj aj� �1 .

Using (6) and (7), the joint posterior distribution can be given by
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To obtain the posterior means and posterior variances of 	, �, and �, an approximation

due to Lindley [13] is used.

Now, let � be a set of parameters { , , ... , },� � �1 2 m where m is the number of

parameters, then the posterior expectation of an arbitrary function u( )� can be

asymptotically estimated by
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which is the Bayes estimator of u( )� under a squared error loss function, where �( )� is

the prior distribution of �, u u� ( ),� L L� ( )� is the likelihood function, � �� �( )�
� log ( ),� � � ij are the elements of the inverse of the asymptotic Fisher’s information

matrix of 	, �, and �, and
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According to Green [14], the above posterior expectation is “very good and operational

approximation for the ratio of multi-dimension integrals.” Also, according to [7], it has

important applied aspect. Some mathematical details are given at the end of this paper.

3. Monte Carlo Simulation studies. In this section, we illustrate the use of Bayesian

approach via Lindley method for approximation of integrals to derive the marginal posterior

moments of interest in the case of constant-stress PALT under type-I censoring. The data

are generated from Pareto distribution with different sample sizes. For each sample size,

5,000 samples are obtained randomly. The posterior means and posterior variances of the

three parameters are obtained numerically. In addition, the ML estimators and Bayes

estimators are compared with respect to the mean squared errors (MSEs) and variability.

To assess and compare the performance of the MLEs and proposed estimators with

the Lindley method, we perform simulation comparisons with data generated via various

scenarios. Four numerical examples are provided with equal and unequal proportions of

allocation for illustration. One of the considered populations is set the combination of

( , , )	 � � at (3, 0.8, 0.5) with equal proportion of allocation �� 0.50 with results reported

in Table 1. A second combination is set at (2, 1.2, 1.5) using also equal proportion of

allocation (�� 0.50) with results shown in Table 2. While the third combination is taken as

(3, 0.8, 0.5) based on unequal proportion of allocation (�� 0.30) with numerical results

reported in Table 3. Concerning the fourth scenario, the combination is (2, 1.2, 1.5) based

on proportion of allocation set at �� 0.70 with numerical results displayed in Table 4.

Also, concerning the comparison between Bayesian estimators and the likelihood

ones, the results have the same trend when unequal proportions of allocation are used. But,

with larger proportion of allocation to the accelerated condition, it is noticed that Lindley

method is much better than the likelihood-based method.

4. Some Main Remarks and Further Studies. In this paper both ML and Bayes

estimations of the CSPALT model parameters have been presented using time-censored

samples from Pareto distribution. The Bayes estimators have been considered under the

assumptions of squared error loss functions and non-informative priors. Lindley’s technique

has been used to obtain the Bayesian estimates numerically. It has been found that the

technique works very well even for small sample sizes. Also, it has been noted that

Lindley’s technique frequently produces posterior variances smaller than the variances of

the maximum likelihood estimators. So, it gives efficient estimates. As a future work, a

Bayesian analysis via another approximation such as Laplace approximation method or

Markov chain Monte Carlo (MCMC) algorithm will be discussed.
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T a b l e 1

Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs

( ,	 � 3 � � 0 8. , � � 0 5. , � � 0 50. , and � �10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance

25 	 ML

Bayes

3.6014

3.4712

0.0692

0.0586

0.0372

0.0295

� ML

Bayes

1.2431

0.9374

0.0396

0.0298

0.0166

0.0082

� ML

Bayes

0.8211

0.7855

0.0286

0.0214

0.0074

0.0041

50 	 ML

Bayes

3.3862

3.2281

0.0509

0.0389

0.0242

0.0148

� ML

Bayes

0.9747

0.8911

0.0274

0.0185

0.0096

0.0051

� ML

Bayes

0.6733

0.6209

0.0211

0.0150

0.0033

0.0015

75 	 ML

Bayes

3.2911

3.0766

0.0361

0.0302

0.0124

0.0043

� ML

Bayes

0.8823

0.8477

0.0201

0.0155

0.0038

0.0023

� ML

Bayes

0.5725

0.5410

0.0048

0.0019

0.0011

0.0006

100 	 ML

Bayes

3.1208

3.0241

0.0069

0.0038

0.0025

0.0023

� ML

Bayes

0.8351

0.8126

0.0054

0.0030

0.0022

0.0008

� ML

Bayes

0.5219

0.5046

0.0015

0.0013

0.0005

0.0003

T a b l e 2

Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs

( ,	 � 2 � �1 2. , � �1 5. , � � 0 50. , and � �10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance

25 	 ML

Bayes

2.5233

2.4072

0.0436

0.0369

0.0212

0.0168

� ML

Bayes

1.4371

1.3642

0.0249

0.0188

0.0095

0.0047

� ML

Bayes

1.7648

1.6427

0.0180

0.0135

0.0042

0.0023

50 	 ML

Bayes

2.3977

2.3104

0.0321

0.0245

0.0138

0.0084

� ML

Bayes

1.2894

1.2380

0.0173

0.0117

0.0055

0.0029

� ML

Bayes

1.5876

1.5392

0.0133

0.0095

0.0019

0.0009

75 	 ML

Bayes

2.1247

2.0486

0.0227

0.0192

0.0071

0.0025

� ML

Bayes

1.2432

1.2211

0.0127

0.0098

0.0022

0.0013

� ML

Bayes

1.5333

1.5104

0.0032

0.0012

0.0006

0.0002

100 	 ML

Bayes

2.0394

2.0113

0.0043

0.0024

0.0014

0.0011

� ML

Bayes

1.2117

1.2021

0.0034

0.0019

0.0013

0.0005

� ML

Bayes

1.5102

1.5002

0.0009

0.0008

0.0003

0.0001
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T a b l e 3

Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs

( ,	 � 3 � � 0 8. , � � 0 5. , � � 0 30. , and � �10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance

25 	 ML

Bayes

3.9125

3.5824

0.0985

0.0779

0.0502

0.0398

� ML

Bayes

1.4729

1.2366

0.0675

0.0533

0.0224

0.0111

� ML

Bayes

1.0781

1.0262

0.0492

0.0346

0.0102

0.0055

50 	 ML

Bayes

3.4521

3.3217

0.0665

0.0492

0.0327

0.0203

� ML

Bayes

1.2107

1.1638

0.0477

0.0314

0.0131

0.0069

� ML

Bayes

0.9658

0.9104

0.0311

0.0294

0.0045

0.0026

75 	 ML

Bayes

3.2982

3.2290

0.0431

0.0378

0.0167

0.0058

� ML

Bayes

1.0726

1.0179

0.0287

0.0212

0.0051

0.0031

� ML

Bayes

0.8721

0.7913

0.0113

0.0102

0.0015

0.0008

100 	 ML

Bayes

3.1876

3.1155

0.0094

0.0057

0.0034

0.0031

� ML

Bayes

0.9857

0.9274

0.0088

0.0067

0.0030

0.0011

� ML

Bayes

0.7119

0.6781

0.0052

0.0034

0.0007

0.0004

T a b l e 4

Results of MLEs and Approximate BEs with Corresponding Estimated Variances and MSEs

( ,	 � 2 � �1 2. , � �1 5. , � � 0 70. , and � �10) Using Different Time-Censored Sample Sizes

n Parameter Method Estimate MSE Variance

25 	 ML

Bayes

2.4113

2.3271

0.0379

0.0321

0.0187

0.0148

� ML

Bayes

1.3570

1.3111

0.0217

0.0164

0.0084

0.0041

� ML

Bayes

1.7142

1.6281

0.0157

0.0117

0.0037

0.0021

50 	 ML

Bayes

2.2915

2.2681

0.0279

0.0213

0.0121

0.0074

� ML

Bayes

1.2270

1.1860

0.0151

0.0102

0.0048

0.0026

� ML

Bayes

1.5852

1.5472

0.0116

0.0083

0.0017

0.0008

75 	 ML

Bayes

2.0844

2.0352

0.0197

0.0167

0.0062

0.0022

� ML

Bayes

1.2130

1.1941

0.0112

0.0085

0.0019

0.0012

� ML

Bayes

1.5318

1.5009

0.0028

0.0014

0.0005

0.0002

100 	 ML

Bayes

2.0102

2.0087

0.0037

0.0021

0.0012

0.0010

� ML

Bayes

1.2024

1.2007

0.0032

0.0017

0.0011

0.0004

� ML

Bayes

1.5001

1.5000

0.0007

0.0005

0.0002

0.0001



APPENDIX (Derivation of Posterior Means and Posterior Variances):

Here, there are three parameters in the model. That is, m� 3. Let the subscripts 1, 2,

and 3 refer to 	, �, and �, respectively. It is not easy to obtain the posterior moments

analytically. Therefore, using Lindley expansion, the posterior mean (i.e., Bayesian

estimator under squared-error loss function) and the posterior variance of 	 are given,

respectively, in the form
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Applying the same technique, the posterior mean and posterior variance of the scale

parameter � take the following form:
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Similarly, for the shape parameter �, the posterior mean and the posterior variance are

given by

� � �
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where

E Lij ij

i j

1 1
3��� ( )

,

, E Lij ij

i j

2 2
3��� ( )

,

, E Lij ij

i j

3 3
3��� ( )

,

,

for i j, , , ,�1 2 3 � ij are the elements of the inverse of the asymptotic Fisher-information

matrix of the ML estimators of 	, �, and � in the case of type-I censored data and

i j, , , ,�1 2 3 is the third derivatives of the Lijk
( )3

natural logarithm of the likelihood function

in type-I censoring.

To compute the posterior means and the posterior variances of 	, �, and � derived

before, both second and third derivatives of the natural logarithm of the likelihood function

in (7) must be got.
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The second derivatives can be given by the following equations:
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For the third derivatives, they are given as follows:
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Ð å ç þ ì å

Äîñë³äæóþòüñÿ éìîâ³ðí³ñòü ïàðàìåòð³â ìîäåë³ ³ âèêîðèñòàííÿ ìåòîäó Áàéåñà äëÿ

ìîäåë³ ÷àñòêîâî ïðèñêîðåíèõ ðåñóðñíèõ âèïðîáóâàíü ïðè ïîñò³éíèõ íàâàíòàæåííÿõ ³

öåíçóðóâàíí³ â ÷àñ³ òèïó I äëÿ ðîçïîä³ëó Ïàðåòî äðóãîãî ðîäó. Âèêîíàíî ðîçðàõóíîê

ìàêñèìàëüíî¿ éìîâ³ðíîñò³ é ³íäèêàòîð³â Áàéåñà äëÿ ïàðàìåòð³â ìîäåë³. Çà äîïîìîãîþ

ìåòîäó àïðîêñèìàö³¿ Ë³íäë³ îòðèìàíî àïîñòåð³îðí³ ñåðåäí³ çíà÷åííÿ ³ âàð³àö³¿ äëÿ

êâàäðàòè÷íî¿ ôóíêö³¿ âòðàò (ïîìèëîê). Ïîêàçàíî ïåðåâàãè äàíî¿ àïðîêñèìàö³¿. Âèêî-

íàíî ÷èñåëüíå ìîäåëþâàííÿ çà ìåòîäîì Ìîíòå-Êàðëî äëÿ çðàçê³â ð³çíîãî ðîçì³ðó ³

ïàðàìåòð³â ìîäåë³ äëÿ ïîð³âíÿëüíî¿ îö³íêè çàïðîïîíîâàíèõ ìåòîä³â ïðîãíîçóâàííÿ

ðåñóðñó.
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