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ÓÄÊ 539.4

Ìîäåëèðîâàíèå ìåõàíèçìà ðîñòà òðåùèí â îáðàçöàõ èç áåòîíà ñ èñõîäíûìè

òðåùèíàìè ïðè íàãðóæåíèè ñäâèãîì

Õ. Õàýðè

Ôàêóëüòåò ãðàæäàíñêîãî ñòðîèòåëüñòâà, Òåõíîëîãè÷åñêèé óíèâåðñèòåò Øàðèô, Òåãåðàí, Èðàí

Èññëåäóåòñÿ ìåõàíèçì ðîñòà òðåùèí â áåòîííûõ îáðàçöàõ ñ èñõîäíûìè òðåùèíàìè ïðè

íàãðóæåíèè ñäâèãîì. Âûïîëíåíû ëàáîðàòîðíûå èñïûòàíèÿ áåòîííûõ îáðàçöîâ ñ äâóìÿ ïðåä-

âàðèòåëüíî íàíåñåííûìè êðàåâûìè òðåùèíàìè. Äëÿ ÷èñëåííîãî ìîäåëèðîâàíèÿ ìåõàíèçìà

ðîñòà òðåùèí â õðóïêèõ òåëàõ ïðè íàãðóæåíèè ÷èñòûì ñäâèãîì èñïîëüçóþòñÿ êîíöåïöèÿ

ðàçðûâíîñòè ïåðåìåùåíèé âûñîêîãî ïîðÿäêà è ñïåöèàëüíûå êîíå÷íûå ýëåìåíòû äëÿ âåðøèíû

òðåùèíû äëÿ ó÷åòà âçàèìîâëèÿíèÿ áåðåãîâ òðåùèí. Ïðåäëîæåí ñïåöèàëüíûé ìåòîä ìîäåëè-

ðîâàíèÿ ýôôåêòà ïåðåêðûòèÿ áåðåãîâ òðåùèíû íà ïðîöåññ ðàçðóøåíèÿ ëèãàìåíòíîé çîíû

ìåæäó äâóìÿ ïàðàëëåëüíûìè òðåùèíàìè. Íà ïåðâîé ñòàäèè íàãðóæåíèÿ íàáëþäàåòñÿ ïîÿâëå-

íèå êðûëîâèäíûõ òðåùèí, äàëüíåéøèé ðîñò êîòîðûõ ïðîèñõîäèò â íàïðàâëåíèè íàãðóæåíèÿ

ñäâèãîì. Íàïðàâëåíèå ðîñòà äâóõ êðàåâûõ òðåùèí â ëèãàìåíòíîé çîíå â îñíîâíîì çàâèñèò îò

óãëà íàêëîíà è äëèíû òðåùèíû, â òî âðåìÿ êàê ïðî÷íîñòü ïðè ñäâèãå – îò òèïà ðàçðóøåíèÿ.

Àíàëèç ìåõàíèçìà ñëèÿíèÿ òðåùèí ïîêàçûâàåò, ÷òî ðàçðóøåíèå îáðàçöîâ èç áåòîíà ñ èñõîä-

íûìè òðåùèíàìè ïðîèñõîäèò ïî ñìåøàííîé ìîäå â ñëó÷àå íåïåðåêðûâàþùèõñÿ òðåùèí è ïî

ìîäå I äëÿ ïåðåêðûâàþùèõñÿ òðåùèí. Ñðàâíåíèå ðàñ÷åòíûõ ðåçóëüòàòîâ ñ ýêñïåðèìåíòàëü-

íûìè ïîäòâåðæäàåò âûñîêóþ òî÷íîñòü è ýôôåêòèâíîñòü ïðåäëîæåííîãî ÷èñëåííîãî ìåòî-

äà ìîäåëèðîâàíèÿ ðîñòà òðåùèí.

Êëþ÷åâûå ñëîâà: ïàðíûå êðàåâûå òðåùèíû, áåòîííûå îáðàçöû, ðîñò òðåùèíû, èñïû-

òàíèÿ íà ÷èñòûé ñäâèã, ïåðåêðûâàþùèåñÿ òðåùèíû.

Introduction. Presence and arrangement of discontinuities and fractures (or joints) in

a rock masses or concrete structures may drastically reduce the strength of such structures.

A crack may act as a nucleus of initiation and extension of new discontinuities in a brittle

solid which may propagate and coalesce with other flaws. These phenomena may further

reduce the strength and the stiffness of the rock materials. Recognizing, the geometrical and

mechanical properties of the discontinuities and joints (or fractures) in a solid may improve

the understanding of cracking mechanism and cracks coalescence in the failure process of

big rock structures such as surface and underground mines, tunnels, rock slopes, etc. [1].

However, the mechanical characteristics of rock masses and concrete structures may

be affected by the mechanical behaviors of the discontinuities and cracks (or joints)

subjected to various loading conditions. The extension and propagation of cracks mainly

depends on the size, persistence, location, spacing, opening, roughness and loading

conditions [2, 3].
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The wing (tensile) and secondary (shear) cracks may be observed in the crack

propagation process of brittle solids such as rocks, concretes and rock-like specimens.

Wing cracks are usually the first cracks that are produced due to tension while secondary

cracks initiate due to shear. In brittle solids, the initiation of wing cracks is favored relative

to secondary cracks because of the lower toughness of these materials in tension than in

shear [4].

Wing cracks are tensile cracks that mainly initiate at or near the tips of pre-existing

cracks and propagate in a curved path (with increasing load) while the secondary cracks

may grow after the propagation of the wing cracks (they may also initiate from the original

tips of the cracks). Direct shear and compressive (indirect shear) loading conditions may

both produce the secondary cracks in brittle solids. The breaking stages of the pre-cracked

concrete-like specimens under shear loading have attracted the attentions of some

researchers. Also many numerical studies have been carried out in this field [5, 6].

Savilahti et al. [7] carried out direct shear tests on plaster specimens containing

non-overlapping and overlapping joints. Wong et al. [8] conducted direct shear tests on

specimens made from plaster materials and natural rocks containing open non-persistent

joints and investigated the shear strength and breaking process of the pre-cracked brittle

solids. According to their findings, the breakage patterns of these specimens are mainly

occurred due to joint separation. In addition, Gehle and Kutter [9] also studied the breakage

and shear behaviors of intermittent rock joints under direct shear loading conditions. It can

be concluded that the shear resistance of pre-cracked rock specimens may be affected by

the crack inclination. Ghazvinian et al. [10, 11] and Sarfarazi et al. [12] used particle flow

code (PFC2D) to study the effect of non-overlapping and overlapping joints on the breakage

behavior of a rock bridge under direct shear tests. They compared the numerical simulations

and experimental tests and confirmed that the simulated breaking paths within the

specimens are similar to those obtained by experiments.

Some experimental works have been devoted to study the crack initiation, propagation,

interaction and eventual coalescence of the pre-existing cracks inspecimens prepared from

various brittle materials, including natural rocks and concrete-like materials under

compressive loading conditions [13–26].

Several numerical methods have also been used to simulate the crack propagation

process in brittle solids under various loading conditions, e.g., finite element method

(FEM), boundary element method (BEM), discrete element method (DEM), etc. [27–30].

Based on the numerical and analytical methods, some computer codes were proposed to

model the breaking mechanism of brittle materials such as geo-materials, e.g., FROCK

code [19], Rock Failure Process Analysis (RFPA2D) code [31], 2D Particle Flow Code

(PFC2D) [10–12].

Mainly, three classical fracture initiation criteria were used to study the crack

propagation mechanism of brittle materials based on the linear elastic fracture mechanics

(LEFM) concepts: (i) maximum tangential stress criterion (�-criterion) [32], (ii) maximum

energy release rate criterion (G-criterion) [33], and (iii) minimum energy density criterion

(S-criterion) [34]. F-criterion which is a modification of the maximum energy release rate

criterion has been proposed by Shen and Stephansson [35]. It may also be used to study the

fracturing behavior of brittle solids [31–42].

In this study, single and double edge cracked concrete specimens were specially

prepared from a proper mixture of portland pozzolana cement (PPC), sand and water in a

concrete laboratory and tested under shear loading. The crack propagation mechanism of

these pre-cracked concrete specimens is experimentally investigated by carrying out some

indirect shear tests. The same specimens are numerically simulated by a modified higher

order displacement discontinuity method. A computer code is prepared by using a cubic

variation of displacement discontinuities with four equal subelements and treating the crack

tips by using some special crack tip elements near the crack ends.
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The proposed computer code estimates the mode I and mode II stress intensity factors

(based on the LEFM concepts) and the �-criterion (which is implemented in this code) can

predict the possible crack propagation and the crack initiation direction. This numerical

scheme may be regarded as a mesh reducing dual boundary element method [43, 44] for the

crack analysis (in two dimensions) where the cracks are discretized as two overlapping

straight lines (not as two separate lines as considered in the conventional dual boundary

element method).

In this study, the cracks coalescence mechanism for the double edge cracked

specimens indicated that the jointed specimen break in the mixed mode in the case of

non-overlapping joints configuration and in the tensile mode for the overlapping joints

form. The effects of non-overlapping and overlapping cracks configurations on the final

fracturing path in the bridge areas (in between the two edge cracks) are also studied.

Finally, a comparison is accomplished between the results of the present numerical analysis

with those cited in the literature. These comparisons showed that the numerical results are

well fitted with experimental and numerical results and approve the accuracy and efficiency

of the proposed numerical method in the study of the breaking process under direct shear

loading conditions.

1. Shear Fracturing Process. Consider a body of box shape with an arbitrary size of

a crack, subjected to arbitrary shear loading as shown in Fig. 1. When a crack is subjected

to pure shear loading, the normalized mode I stress intensity factor K aI ( ) ( )� � � is

reached to its maximum value at a propagation angle � (�� 75.50�), and at propagation

angles 90 40�� �	 �� its value may be larger than the normalized mode II stress intensity

factor K aII ( ) ( ).� � �
The compressive stress applied on the original crack plan may not be sufficient to

reduce or eliminate the high tension stress near the crack tip (i.e., at �
 �| |40 ) resulting in a

mode I failure.

Since the singularities of the tensile (wing) stresses near the crack ends may reduce

their accuracy, low normal compressive stress were applied to the surface of original crack.

Therefore, a shear fracture model as shown in Fig. 1 is proposed here.

Figure 2 illustrates the loading mode and crack tip stress for shear box test. The forces

in Cartesian coordinates are obtained as [45]:

p px � sin ,� p py � cos .� (1)

These forces produce the shear and compressive stresses (� xy and � y ), respectively.

The � xy and � y on original crack plane can express as [46]:

� �y

p

A
�	 cos , � �xy

p

A
� sin . (2)

Fig. 1. Loading condition for shear box test.
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Based on the LEFM principles, the mode I and mode II stress intensity factors �K I ( )�
and �K II ( )� (expressed in MPa m 1 2/ ) can be written in terms of the normal and shear

stresses [46, 47] obtained for the last special crack tip element as

� �	K
p

A
aI ( ) cos ,� � � � �K

p

A
aII ( ) sin .� � � (3)

The shear �� � and tangent stresses � �r in polar coordinates at the tip of a crack, or a

measure of the crack tip elastic stress field are obtained as

� �
�

�
�

�
�

�

�
��
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1 3
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2 2�
�

�
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The final results for a mixed mode I and II are given here for completeness

K K K KI I II II( ) ( )cos ( ) sin cos� �
�

�
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2

��

�
�
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(6)

2. Specimen Simulations and Testing. Various numerical direct shear tests were

conducted on concrete-like specimens containing double edge cracks. These specimens

with different ligament angles (the ligament angle is the counterclockwise angle between

the ligament length and shear axis and crack lengths are prepared.

Two non-overlapping/overlapping cracks with different locations are shown in Figs. 3

and 4. The crack geometries are defined by two parameters namely � and b showing the

ligament angle and length of the two cracks, respectively. For different ligament angles, the

lengths of edge cracks are different.

Fig. 2. Loading and stress mode at the tip of crack.
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Ligament angle (�): 0, 20, 25, 45, 90, 105, 115, 125, 135, 145, and 155�.
The mechanical properties of the prepared concrete-like shear specimens are:

compressive strength � c � 28 MPa, the Young modulus E�15 GPa, Brazilian tensile

strength � t � 3.81 MPa, and Poisson’s ratio �� 0.21.
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a b c d

Fig. 3. Non-overlapped crack geometries with different ligament angles �: (a) � � 0; (b) � � �20 ;

(c) � � �25 ; (d) � � �45 .

a b c d

e f g

Fig. 4. Overlapped crack geometries with different ligament angles �: (a) � � �90 ; (b) � � �105 ;

(c) � � �115 ; (d) � � �125 ; (e) � � �135 ; (f) � � �145 ; (g) � � �155 .



3. Numerical Simulation. A displacement based version of the indirect boundary

element method known as displacement discontinuity method (DDM) originally proposed

by Crouch [48] for the solution of elastostatic problems in solid mechanics is used in this

study [39, 49–51].

3.1. Displacement Discontinuity Method Using Cubic DD Elements. In this research,

a higher accuracy of the displacement discontinuities along the boundary of the problem is

obtained by using cubic displacement discontinuity (DD) elements is used. A cubic DD

element, Dk ( )� is divided into four equal subelements that each subelement contains a

central node for which the nodal DD van be calculate two fundamental variables of each

element (the opening displacement discontinuity Dy and sliding displacement discontinuity

Dx ) [52],

D Dk i k
i

i

( ) ( ) ,� ��
�

��
1

4

k x y� , , (7)

where Dk
1 (i.e., Dx

1 and Dy
1 ), Dk

2 (i.e., Dx
2 and Dy

2), Dk
3 (i.e., Dx

3 and Dy
3), and Dk

4

(i.e., Dx
4 and Dy

4), are the cubic nodal displacement discontinuities and,

�

�

1 1
3

1
2

1
2 3

1
3

2 1
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3 3 48
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3
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( ) ( ) ( ),� � � � ��	 � 	 	a a a a

(8)

are the cubic collocation shape functions using a a a a1 2 3 4� � � . As shown in Fig. 5, a

cubic DD element is divided into three equal subelements (each subelement contains a

central node for which the nodal displacement discontinuities are evaluated numerically).

The potential functions f x y( , ) and g x y( , ) for the cubic case can be find from

f x y D F I I I

g x y

x
i

i

i

( , )
( )

( , , ),

( , )
(

�
	

	

�
	

�

�1

4 1

1

4 1

0 1 2

1

4

� �

� 	
�

�
� )

( , , ),D F I I Iy
i

i

i

0 1 2

1

4
(9)
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Fig. 5. Cubic shape function showing the variation of higher order displacement discontinuities along

an ordinary boundary element.



in which the common function Fi is defined as

F I I I I N x y di i( , , , ) ( ) ln[( ) ] ,
/

0 1 2 3
2 2 1 2

� 	 �� � � � i�1 4, ... , , (10)

where the integrals I 0, I1, I 2, and I 3 are expressed as follows:

I x y x y d

I x y x

a

a

0
2 2 1 2

1
2

( , ) ln[( ) ] ,

( , ) ln[( )

/� 	 �

� 	 �
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� � y d

I x y x y d

I x

a

a

a

a

2 1 2

2
2 2 2 1 2

3

] ,
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(
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�
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�

�� 	 �

, ) ln[( ) ] ./y x y d

a

a

� 	 �
	
� � � �3 2 2 1 2

(11)

The singularities of the stresses and displacements near the crack ends may reduce

their accuracies, special crack tip elements can be effectively used to increase the accuracy

of the DDs near the crack tips [36]. As shown in Fig. 6, the DD variations for three nodes

can be formulated using a special crack tip element containing three nodes (or having three

special crack tip subelements),

D D a D a D ak C k C k C k( ) [ ( )] ( ) [ ( )] ( ) [ ( )] ( )� � � �� � �� � �1
1

2
2

3
3 , k x y� , , (12)
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Fig. 6. Special crack tip element with three equal subelements.



where each crack tip element has a length a a a a1 2 3 4� � � . Considering a crack tip

element with the three equal subelements ( a a a1 2 3� � ), the shape functions �C1 ( )� ,

�C 2 ( ),� and �C 3 ( )� can be obtained as

�

�
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a a a
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1 2
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3 2
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(13)
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( ) ln[( ) ] ,/�
	

	
	 �

	
�1

4 1

2 2 1 2

� �
� � � k x y� , . (14)

Inserting the common displacement discontinuity function Dk ( )� [Eq. (12)] in Eq. (14)

gives

F x y x y dC C

a

a
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( ) ln[( ) ] /�
	

	
	 �
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Inserting the shape functions �C1 ( )� , �C 2 ( ),� and �C 3 ( )� in Eq. (15) after some

manipulations and rearrangements the following three special integrals are deduced:
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Based on the LEFM principles, the mode I and mode II stress intensity factors K I and

K II (expressed in MPa m 1 2/ ) can be written in terms of the normal and shear displacement

discontinuities [47] obtained for the last special crack tip element as

K
a

D ayI � 	
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�
��
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4 1

2
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1
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/

(17)

where ) is the shear modulus and � is Poisson’s ratio of the brittle material.
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3.2. Numerical Simulation of the Edge Cracked Specimens. A modified higher order

displacement discontinuity method based on the versatile boundary element method is used

for the numerical simulation of the double edge cracked specimens proposed in this

research to study the cracks coalescence and final breakage path of a bridge area under

shear box loading conditions. The LEFM approach based on the concept of mode I and

mode II stress intensity factors proposed by Irwin [53] is implemented in the boundary

element code and the maximum tangential stress criterion given by Erdogan and Sih [32] is

used in a stepwise procedure to estimate the propagation path of the propagating wing

cracks.

Since the experimental analysis of crack propagation is somewhat time-consuming,

expensive, difficult and complex, some more numerical simulations of crack propagation

process are also accomplished by boundary element method in this study.

The numerical simulation is done for several cases with different ligament angles and

ligament lengths as schematically shown in Figs. 3 and 4.

Figures 7–9 present the results of numerical simulation considering different ligament

angles (i.e., at angles �� 0, 20, 25, 45, 105, 115, 125, 135, 145, and 155�). Comparing

Figs. 7–9, it can be concluded that the final breakage path of the pre-cracked specimens

may be affected by ligament angles and the lengths of edge crack.

3.3. Effect of Crack Overlapping on the Fracturing Behavior of Bridge Areas. The

cracks coalescence and breakage paths of double edge cracked specimens with non-

overlapping and overlapping cracks are described in this section.

3.3.1. Breakage Paths of Specimens Containing Non-Overlapped Cracks. In the current

simulations, the wing cracks are instantaneously initiated quasi-statically (Figs. 7–9). The

development and coalescence of wing cracks in the bridge area (the area in between the two

cracks in the specimens containing double edge cracks) may be the main cause of the

breakage paths in rock-like disc specimens.

Figures 7 and 8 illustrate the breakage paths of non-overlapping cracks for cases

�� 0, 20, 25, 45, and 90�. Three specimens with different crack lengths for �� 0 are

modeled as shown in Fig. 7.
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a b c

Fig. 7. The breakage paths of non-overlapped cracks for � � 0 with different lengths b: (a) b�
� 26 2. mm; (b) b� 48 7. mm; (c) b� 67 5. mm.



For �� 0, when the crack lengths are b� 26.2 and 48.7 mm (Fig. 7a, b), the wing

cracks initiated at the tips of the both cracks and then the cracks coalesced with each other
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a b c

Fig. 8. Breakage paths of non-overlapped cracks for � � �20 (a) � � �25 (b), and � � �45 (c).

a b c d

e f g

Fig. 9. The breakage paths of overlapped cracks: (a) � �*+�; (b) � � +,1 �; (c) � � �115 ; (d) � �
� �125 ; (e) � � �135 ; (f) � � �145 ; (g) � � �155 .



at the propagating crack tips in the bridge area, but for the case shown in Fig. 7c (for �� 0)

with the cracks length b� 67.5 mm, the cracks may first start to initiate at the tips of

cracks and then the specimen may fail in the direction of the original cracks plane.

It should be noted that for the case shown in Fig. 8a (for �� �20 ) first the wing

cracks initiated at the tips of cracks and then the cracks coalesced with each other at the

propagating crack tips in the bridge area.

For cases shown in Fig. 8b, c (for �� 25 and 45�), the wing cracks initiated at the tip

of the cracks and propagated in a curved path until they coalesced with the tip of the other

crack, and also, no coalescence have occurred at the tips of the propagating cracks.

3.3.2. Breakage Paths of Specimens Containing Overlapped Cracks. Figure 9a–g

illustrate the fracturing paths of overlapped cracks for cases �� 90, 105, 115, 125, 135,

145, and 155�.
For case shown in Fig. 9a (for �� �90 ) the wing cracks initiated and continued their

growth in a direction (approximately) vertical to the direction of maximum shear force and

coalesced with each other at the propagating crack tips in the bridge area. In this breakage

mode, the specimen may fail with a single breakage surface.

For case shown in Fig. 9b, c, and f (for ��105, 115, and 145�), the wing cracks

initiate at the cracks and propagated to that of the other crack wall.

It should be noted that for the case shown in Fig. 9d, e, and g (for ��125, 135, and

155�), the cracks initiated at the tip of upper/lower crack first and then the specimen might

fail due to crack propagation process starting from the tip of upper/lower and also, no

coalescence might occur at the tips of cracks.

4. Discussion. The crack propagation process in concrete samples has been studied by

several researches using the edge cracked problem under shear loading.

Recently Sarfarazi et al. [12] have been experimentally and numerically investigated.

The effect of crack overlap on the final breakage behavior of a bridge area in the shear box

test for different specimens, the lengths of edge joints are different; for the same specimen,

the lengths of those two joints are the same. The crack lengths b are 52.5, 66.8, 75, or

78.8 mm which are associated with ligament angles �� 0, 25, 90, and 115� for double edge

cracked concrete-like samples (Fig. 10). They have used PFC2D code (a discrete element

approach based on finite difference method) to conduct a number of numerical simulations

to reproduce their experimental works on double edge cracked samples. Table 1 shows the

mechanical properties of concrete-like specimens.

Figures 11 and 12 illustrate the Sarfarazi et al. [12] experimental works and PFC2D

simulations of the crack propagating paths in concrete-like specimens with variable

ligament angles �� 0, 25, 90, and 115�, respectively [12].
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a b c d

Fig. 10. Non-overlapped (a, b) and overlapped (c, d) crack geometries with different ligament angles

�: (a) � � 0; (b) � � �25 ; (c) � � �90 ; (d) � � �115 .



The crack propagation process of concrete like specimens has also been numerically

studied by using the higher order boundary element method proposed in this study. The

numerical results obtained by the boundary element simulation of the propagating paths in

the edge cracked specimens are shown in Fig. 13. The numerically simulated crack

propagation paths shown in Fig. 13 were in good agreement with the experimental results

given by Sarfarazi et al. [12] in Fig. 11. Comparing the results graphically shown in Figs. 12

and 13 with the experimental works in Fig. 11 clearly demonstrate the accuracy, validity
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T a b l e 1

Mechanical Properties of a Concrete-Like Specimen [12]

Description Parameter Value Unit

Crack length b – mm

Average uniaxial compressive strength �c 6.6 MPa

Density - 1,200 kg/m3

Average Brazilian tensile strength �t 1 MPa

Average Young’s modulus in compression E 5 GPa

Cohesion – 2.2 MPa

Internal angle of friction – 20.4 deg

a b c d

Fig. 11. The crack propagation paths in concrete-like specimens with different ligament angles � � 0

(a), 25 (b), 90 (c), and 115� (d) [12].

a b c d

Fig. 12. PFC2D simulation of the propagating paths in concrete-like specimens with variable ligament

angles � � 0 (a), 25 (b), 90 (c), and 115� (d) [12].



and superiority of the boundary element results compared to those obtained by PFC2D code

(given in Fig. 12). The boundary element code is much faster and it is quite easy to work

with it because the boundary element method essentially reduces one dimension of the

problem and alternatively reduces the mesh size sharply and makes the discretization of the

problem simpler and quicker.

Conclusions. The mechanism of crack propagation in brittle solids under shearing

mode has been studied by comprehensive experimental and numerical studies in the recent

years. This mechanism is a complicated process and further research may be devoted to

investigate the crack propagation, cracks coalescence and final breakage paths of a bridge

area under direct shear loading condition (the condition of shear box test).

A modified higher order displacement discontinuity method, (which is a category of

the broad boundary element method) was especially developed to simulate the mechanism

of crack propagation and cracks coalescence in the specimens and in the bridge areas of the

edge cracks. The linear elastic fracture mechanics theory based on mode I and mode II

stress intensity factors is used in the numerical simulation.

Effects of ligament angle and crack lengths in the bridge area on the fracturing

process of edge cracked specimens containing non-overlapping and overlapping cracks

have been modeled. It has been shown that the breaking of edge cracked specimens occur

mainly by the propagation of wing cracks emanating from the tips of the two pre-existing

cracks.

The numerical models well illustrate the production of the wing cracks and the cracks

propagation paths produced by the coalescence phenomenon of the non-overlapping and

overlapping cracks in the bridge area. In this study, it has been shown that there is a good

agreement between the corresponding numerical and experimental results which enables

one to clearly understand the fracturing mechanism of concrete like specimens containing

edge cracks.

It has also been shown that the specimens containing overlapping cracks with high

ligament angles may fail at a single fracturing surface. This failure pattern is highly

dependent on joint overlapping. In non-overlapping cracks with lower ligament angles, the

cracks are initiated from both two cracks tips and the elliptical breaking surface may occur

in the models.
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a b c d

Fig. 13. Boundary element simulation of the crack propagation process in double edge cracked

specimens with variable ligament angles � � 0 (a), 25 (b), 90 (c), and 115� (d).



Ð å ç þ ì å

Äîñë³äæóºòüñÿ ìåõàí³çì ðîñòó òð³ùèí ó áåòîííèõ çðàçêàõ ³ç ïî÷àòêîâèìè òð³ùèíàìè

ïðè íàâàíòàæåíí³ çñóâîì. Âèêîíàíî ëàáîðàòîðí³ âèïðîáóâàííÿ áåòîííèõ çðàçê³â ³ç

äâîìà ïîïåðåäíüî íàíåñåíèìè êðàéîâèìè òð³ùèíàìè. Äëÿ ÷èñåëüíîãî ìîäåëþâàííÿ

ìåõàí³çìó ðîñòó òð³ùèí ó êðèõêèõ ò³ëàõ ïðè íàâàíòàæåíí³ ÷èñòèì çñóâîì âèêîðèñ-

òîâóþòüñÿ êîíöåïö³ÿ ðîçðèâíîñò³ ïåðåì³ùåíü âèñîêîãî ïîðÿäêó ³ ñïåö³àëüí³ ñê³í÷åí-

í³ åëåìåíòè äëÿ âåðøèíè òð³ùèíè äëÿ óðàõóâàííÿ âçàºìîâïëèâó áåðåã³â òð³ùèí.

Çàïðîïîíîâàíî ñïåö³àëüíèé ìåòîä ìîäåëþâàííÿ åôåêòó ïåðåêðèòòÿ áåðåã³â òð³ùèíè

íà ïðîöåñ ðóéíóâàííÿ ë³ãàìåíòíî¿ çîíè ì³æ äâîìà ïàðàëåëüíèìè òð³ùèíàìè. Íà

ïåðø³é ñòàä³¿ íàâàíòàæåííÿ âèíèêàþòü êðèëîâèäí³ òð³ùèíè, ÿê³ â ïîäàëüøîìó ðîñ-

òóòü ó íàïðÿìêó íàâàíòàæåííÿ çñóâîì. Íàïðÿìîê ðîñòó äâîõ êðàéîâèõ òð³ùèí ó

ë³ãàìåíòí³é çîí³ â îñíîâíîìó çàëåæèòü â³ä êóòà íàõèëó ³ äîâæèíè òð³ùèíè, â òîé ÷àñ

ÿê ì³öí³ñòü ïðè çñóâ³ – â³ä òèïó ðóéíóâàííÿ. Àíàë³ç ìåõàí³çìó çëèòòÿ òð³ùèí ïîêàçóº,

ùî ðóéíóâàííÿ çðàçê³â ³ç áåòîíó ç ïî÷àòêîâèìè òð³ùèíàìè â³äáóâàºòüñÿ ïî çì³øàí³é

ìîä³ ó âèïàäêó íåïåðåêðèâíèõ òð³ùèí ³ ïî ìîä³ I äëÿ ïåðåêðèâíèõ òð³ùèí. Ïîð³âíÿí-

íÿ ðîçðàõóíêîâèõ äàíèõ ç åêñïåðèìåíòàëüíèìè ï³äòâåðäæóº âèñîêó òî÷í³ñòü ³ åôåê-

òèâí³ñòü çàïðîïîíîâàíîãî ÷èñåëüíîãî ìåòîäó ìîäåëþâàííÿ ðîñòó òð³ùèí.
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