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V]IK 539.4

MopesimpoBaHie MeXaHU3Ma POCTa TPelMH B 00pa3uax u3 0eToHa ¢ HCXOAHBIMHU
TpelMHAMH NPH HArpy:KeHUH CIABUIOM

X. Xaspu
DakynbTeT TPaXKIaHCKOTO CTPOUTENBCTBA, Texnonorndeckuit yausepcutet llapud, Terepan, Upan

Uccnedyemes mexanusm pocma mpewjur 6 OEMOHHbIX 00paA3yax ¢ UCXOOHbIMU MPEWuHamMu npu
HazpysceHuu cosueom. Buinonnenvl rabopamophvie ucnvimanus OemoHHbIX 00pa3yos ¢ 08yMs npeo-
8APUMENLHO HAHECEHHbIMU KPAEBLIMU Mpewjunamu. [Jia 4ucieHHo20 MOOenupo8anus MexaHusma
pocma mpewjur 8 Xpynkux menax npu HAacpylceHuu YuCmvlM COBUSOM UCHONb3YIOMCA KOHYenyus
PA3PIBHOCMU NEpeMeyeHUll 8bICOKO20 NOPAOKA U CNEYUATIbHbLE KOHEUHbLE dIeMEHMblL OIS 6EPULUHb
mpewjunsl Ol yuema 63aumMosnusanus bepecos mpewun. Ilpeodnoscen cneyuanvbhviil Memoo Mooenu-
posanus spghekma nepekpvimus bepe206 mpewjursl Ha NPoYecc Paspyuienus IueamenmHoll 30Hbl
Medncdy 08yMs napannenvHeimu mpewuramu. Ha nepeoii cmaouu naepyscenuss Habnodaemes noseine-
HUe KPbLIOBUOHBIX MPeWuHt, OaNbHeUWUll pOCm KOMOPLIX NPOUCXOOUN 8 HANPABIEHUU HASPYHCEHUs
cosueom. Hanpaenenue pocma 08yx kpaesvix mpewun 6 1uamenmHuoll 30He 8 OCHOBHOM 3a6UCUIN O
Vella HAKJIOHA U ONUHBL MPEWJUHbl, 8 MO BPeMs KAK NPOYHOCMb NPU CO8U2e — OM MUNA PA3PYULEHUS.
AHnanus mexanusma crusHUs mpewjur noKasvledem, Ymo paspyuienue o6pasyos uz 6emona ¢ ucxoo-
HOIMU MPeWUHAMU NPOUCXOOUN NO CMEWAHHOU MOOe 6 CIyYae HenepeKpbleaiowuxcs mpewun i no
mooe I ona nepexpwisarowuxcs mpewun. Cpagrenue paciemuvix pe3yibmamos ¢ IKCNepUMeHmanb-
HbIMU NOOMBEPHCOAen 8biCOKVI0 MOYHOCHb U SPPEKMUBHOCMb NPEOTOHCEHHO20 YUCTEHHO20 MEMO-
0a MOOenUpoB8ans pocma mpeujuH.

Knroueswvie cnosa: MAapHbIC KPACBbIC TPCHINHBI, OCTOHHBIC 06pa3m,1, POCT TPCIIMHBI, UCIIbI-
TaHHUS HA YUCTBIN CABUT, IEPEKPBIBAIOIIHNECA TPCUINHBI.

Introduction. Presence and arrangement of discontinuities and fractures (or joints) in
a rock masses or concrete structures may drastically reduce the strength of such structures.
A crack may act as a nucleus of initiation and extension of new discontinuities in a brittle
solid which may propagate and coalesce with other flaws. These phenomena may further
reduce the strength and the stiffness of the rock materials. Recognizing, the geometrical and
mechanical properties of the discontinuities and joints (or fractures) in a solid may improve
the understanding of cracking mechanism and cracks coalescence in the failure process of
big rock structures such as surface and underground mines, tunnels, rock slopes, etc. [1].

However, the mechanical characteristics of rock masses and concrete structures may
be affected by the mechanical behaviors of the discontinuities and cracks (or joints)
subjected to various loading conditions. The extension and propagation of cracks mainly
depends on the size, persistence, location, spacing, opening, roughness and loading
conditions [2, 3].
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The wing (tensile) and secondary (shear) cracks may be observed in the crack
propagation process of brittle solids such as rocks, concretes and rock-like specimens.
Wing cracks are usually the first cracks that are produced due to tension while secondary
cracks initiate due to shear. In brittle solids, the initiation of wing cracks is favored relative
to secondary cracks because of the lower toughness of these materials in tension than in
shear [4].

Wing cracks are tensile cracks that mainly initiate at or near the tips of pre-existing
cracks and propagate in a curved path (with increasing load) while the secondary cracks
may grow after the propagation of the wing cracks (they may also initiate from the original
tips of the cracks). Direct shear and compressive (indirect shear) loading conditions may
both produce the secondary cracks in brittle solids. The breaking stages of the pre-cracked
concrete-like specimens under shear loading have attracted the attentions of some
researchers. Also many numerical studies have been carried out in this field [5, 6].

Savilahti et al. [7] carried out direct shear tests on plaster specimens containing
non-overlapping and overlapping joints. Wong et al. [8] conducted direct shear tests on
specimens made from plaster materials and natural rocks containing open non-persistent
joints and investigated the shear strength and breaking process of the pre-cracked brittle
solids. According to their findings, the breakage patterns of these specimens are mainly
occurred due to joint separation. In addition, Gehle and Kutter [9] also studied the breakage
and shear behaviors of intermittent rock joints under direct shear loading conditions. It can
be concluded that the shear resistance of pre-cracked rock specimens may be affected by
the crack inclination. Ghazvinian et al. [10, 11] and Sarfarazi et al. [12] used particle flow
code (PFC?®) to study the effect of non-overlapping and overlapping joints on the breakage
behavior of a rock bridge under direct shear tests. They compared the numerical simulations
and experimental tests and confirmed that the simulated breaking paths within the
specimens are similar to those obtained by experiments.

Some experimental works have been devoted to study the crack initiation, propagation,
interaction and eventual coalescence of the pre-existing cracks inspecimens prepared from
various brittle materials, including natural rocks and concrete-like materials under
compressive loading conditions [13-26].

Several numerical methods have also been used to simulate the crack propagation
process in brittle solids under various loading conditions, e.g., finite element method
(FEM), boundary element method (BEM), discrete element method (DEM), etc. [27-30].
Based on the numerical and analytical methods, some computer codes were proposed to
model the breaking mechanism of brittle materials such as geo-materials, e.g.,, FROCK
code [19], Rock Failure Process Analysis (RFPA®®) code [31], 2D Particle Flow Code
(PFC™) [10-12].

Mainly, three classical fracture initiation criteria were used to study the crack
propagation mechanism of brittle materials based on the linear elastic fracture mechanics
(LEFM) concepts: (i) maximum tangential stress criterion (o-criterion) [32], (i1) maximum
energy release rate criterion (G-criterion) [33], and (iii) minimum energy density criterion
(S-criterion) [34]. F-criterion which is a modification of the maximum energy release rate
criterion has been proposed by Shen and Stephansson [35]. It may also be used to study the
fracturing behavior of brittle solids [31-42].

In this study, single and double edge cracked concrete specimens were specially
prepared from a proper mixture of portland pozzolana cement (PPC), sand and water in a
concrete laboratory and tested under shear loading. The crack propagation mechanism of
these pre-cracked concrete specimens is experimentally investigated by carrying out some
indirect shear tests. The same specimens are numerically simulated by a modified higher
order displacement discontinuity method. A computer code is prepared by using a cubic
variation of displacement discontinuities with four equal subelements and treating the crack
tips by using some special crack tip elements near the crack ends.
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The proposed computer code estimates the mode I and mode II stress intensity factors
(based on the LEFM concepts) and the o-criterion (which is implemented in this code) can
predict the possible crack propagation and the crack initiation direction. This numerical
scheme may be regarded as a mesh reducing dual boundary element method [43, 44] for the
crack analysis (in two dimensions) where the cracks are discretized as two overlapping
straight lines (not as two separate lines as considered in the conventional dual boundary
element method).

In this study, the cracks coalescence mechanism for the double edge cracked
specimens indicated that the jointed specimen break in the mixed mode in the case of
non-overlapping joints configuration and in the tensile mode for the overlapping joints
form. The effects of non-overlapping and overlapping cracks configurations on the final
fracturing path in the bridge areas (in between the two edge cracks) are also studied.
Finally, a comparison is accomplished between the results of the present numerical analysis
with those cited in the literature. These comparisons showed that the numerical results are
well fitted with experimental and numerical results and approve the accuracy and efficiency
of the proposed numerical method in the study of the breaking process under direct shear
loading conditions.

1. Shear Fracturing Process. Consider a body of box shape with an arbitrary size of
a crack, subjected to arbitrary shear loading as shown in Fig. 1. When a crack is subjected
to pure shear loading, the normalized mode I stress intensity factor K 1(0)/ (r\/% ) is

reached to its maximum value at a propagation angle 6 (6= 75.50°), and at propagation
angles 90°< 6 <—40° its value may be larger than the normalized mode II stress intensity

factor Ky (9)/ (r\/%).

The compressive stress applied on the original crack plan may not be sufficient to
reduce or eliminate the high tension stress near the crack tip (i.e., at 6 >|40° ) resulting in a
mode I failure.

Since the singularities of the tensile (wing) stresses near the crack ends may reduce
their accuracy, low normal compressive stress were applied to the surface of original crack.
Therefore, a shear fracture model as shown in Fig. 1 is proposed here.

Sy

Fig. 1. Loading condition for shear box test.

Figure 2 illustrates the loading mode and crack tip stress for shear box test. The forces
in Cartesian coordinates are obtained as [45]:

p, = psina, Py = peosa. (1)

These forces produce the shear and compressive stresses (7
The 7,, and o, on original crack plane can express as [46]:

v and o), respectively.

0,=- fcos a, Ty = fsin a. )
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Fig. 2. Loading and stress mode at the tip of crack.

Based on the LEFM principles, the mode I and mode II stress intensity factors K{(6)
and Ky; (@) (expressed in MPa -m" 2) can be written in terms of the normal and shear

stresses [46, 47] obtained for the last special crack tip element as
' _p ' _ P .
KI(G)——Zcosa\/na, Ky (0)—Zs1na\/na. 3)

The shear o and tangent stresses 7,y in polar coordinates at the tip of a crack, or a
measure of the crack tip elastic stress field are obtained as

, _Ki(0) ;0 KII(G)( .0 29)

Oy = cos” —+ 3sin —cos” — |, 4
o \N2mr N 27y @)

Ki(0) . 0 ,0 Ky(6) 9( . 29)

T, = sin —cos” —+————cos—|1—3sin” —|.
T o 2 2 2mr )

The final results for a mixed mode I and II are given here for completeness
0 0 0 0
K(0)=K{()cos> 5+KH (0)(—3sin ECOSZ 2)+KI"I (0)cos? 5

(6)

6 6 0 6
K (0)=K{(0)sin Ecos2 E+KH (9)cosz(1— 3sin? 2).

2. Specimen Simulations and Testing. Various numerical direct shear tests were
conducted on concrete-like specimens containing double edge cracks. These specimens
with different ligament angles (the ligament angle is the counterclockwise angle between
the ligament length and shear axis and crack lengths are prepared.

Two non-overlapping/overlapping cracks with different locations are shown in Figs. 3
and 4. The crack geometries are defined by two parameters namely ¥ and » showing the
ligament angle and length of the two cracks, respectively. For different ligament angles, the
lengths of edge cracks are different.
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d

Fig. 3. Non-overlapped crack geometries with different ligament angles y: (a) y = 0; (b) ¥ =205

(c) ¥ =25°% (d) p =45°.

Fig. 4. Overlapped crack geometries with different ligament angles y: (a) ¥ =90°% (b) y =1055
(¢) p =115% (d) ¥ =125% (e) y =135% (f) y =145% (g) y =155°.

a b

(S

Ligament angle (y): 0, 20, 25, 45, 90, 105, 115, 125, 135, 145, and 155°.

The mechanical properties of the prepared concrete-like shear specimens are:
compressive strength o, =28 MPa, the Young modulus £ = 15 GPa, Brazilian tensile
strength 0, = 3.81 MPa, and Poisson’s ratio v = 0.21.

134 ISSN 0556-171X. Ipooaemor npounocmu, 2015, Ne 4



Simulating the Crack Propagation Mechanism ...

3. Numerical Simulation. A displacement based version of the indirect boundary
element method known as displacement discontinuity method (DDM) originally proposed
by Crouch [48] for the solution of elastostatic problems in solid mechanics is used in this
study [39, 49-51].

3.1. Displacement Discontinuity Method Using Cubic DD Elements. In this research,
a higher accuracy of the displacement discontinuities along the boundary of the problem is
obtained by using cubic displacement discontinuity (DD) elements is used. A cubic DD
element, D, (¢) is divided into four equal subelements that each subelement contains a
central node for which the nodal DD van be calculate two fundamental variables of each
element (the opening displacement discontinuity D, and sliding displacement discontinuity
D,)[52],

Dy(e)= 211, (e)D},  k=x, y, )
i=l
where D}f (ie., D)lc and D},), D,% (ie., Df and Di), D,? (i.e., DS and D;), and D,f

(i.e., D;‘ and D;‘), are the cubic nodal displacement discontinuities and,

I, (¢)=— (3a; — afe—3aye> +&° )/ (4847,
I, (e)= (% —9aie—a1e” — &%)/ (16a}),
;(e)= (9 +9a’e—aje? —&3)/(16a7),
I, (e)=—(3a} +ate—3a,e* — &)/ (48a}),

®)

are the cubic collocation shape functions using a; = a, = a3 = a4. As shown in Fig. 5, a
cubic DD element is divided into three equal subelements (each subelement contains a
central node for which the nodal displacement discontinuities are evaluated numerically).

¥
a
Each DD element is divided
into four equal subelements —
[ o D | Dy
2b, g
Element : } | f—=
1 2 3 4
\, I_____,..-—-""' | 2a, I 2as I 2a; I lay I
Le
I~ 2a “l

Fig. 5. Cubic shape function showing the variation of higher order displacement discontinuities along
an ordinary boundary element.

The potential functions f(x, y) and g(x, y) for the cubic case can be find from

fl )= ZD Fi(y, Iy, 1),
©)
g(ac,y>—4ﬂ(1 ZD Fy(lo. 1y, 1),
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in which the common function F; is defined as

/
Fi(lg, Iy, Iy, 13)= [ Ny (e)Inl(x—)? + 7] de, =1, ...

where the integrals /,, /;, [,, and /5 are expressed as follows:

Lo(x, y)= [ In[(x—e)* + y? 1" e,

—a

Li(x, )= [el[(x—e)* + 71" de,

—a

L, y)= [ e In[(x—e)* +y*1"2 de,

—a

I3(x, y)= [ &3 In[(x—e)? + y*1"? de.

—a

747

(10)

an

The singularities of the stresses and displacements near the crack ends may reduce
their accuracies, special crack tip elements can be effectively used to increase the accuracy
of the DDs near the crack tips [36]. As shown in Fig. 6, the DD variations for three nodes

Fig. 6. Special crack tip element with three equal subelements.

can be formulated using a special crack tip element containing three nodes (or having three

special crack tip subelements),

Dy (¢)=[T¢y ()IDg (@)+[Tey ()IDF (a)+[Tes(e)IDR (@), k=x, p,

(12)
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where each crack tip element has a length a; = a, = a5 = a4. Considering a crack tip
element with the three equal subelements (a; = a, = a3), the shape functions I'c; (¢),
I'cy(e), and T'c3(¢) can be obtained as

1581/2 3/2 5/2

€ €
Lei(e)= - + ,
Cl 8all/z als/z 8a15/2
_seli2 332 52
I'ph(e)= + - , 13
c 85111/2 2\/§a13/2 4\/§a15/2 (13)
3612 32 5/2
Tes(e)= 2 - 2t - 52 °
8\/5611 2\/§a1 8\/5611
-1 7 2, 2412
Fete 0= gy S De@blte—e)’ )" 2de. k=x5 (4)
—da

Inserting the common displacement discontinuity function D, (¢) [Eq. (12)] in Eq. (14)
gives

-1 a
Fe(x, )= M(I_V){{f Tep(e)In[(x—e)” + yz]“de}D}{ +

+ lfrc2 (e)In[(x—¢)> +y2]1/2ds}D,§ +

—a

—a

+{fl“m(e)ln[(x—s)z+y2]1/2de}D,§}, k=x, . (15)

Inserting the shape functions I'cq(€), I'cp(€), and I'c3(¢) in Eq. (15) after some
manipulations and rearrangements the following three special integrals are deduced:

a
Iey (e, )= [ &2 In[(x—)” + 71" de,

—a

Iy (x, y)= [ €Y In[(x—e)? + y*1"2 de, (16)

—a

a
Ies(x, y)= f€5/2 In[(x—¢)% + »?1"? de.

—a

Based on the LEFM principles, the mode I and mode 1I stress intensity factors K and
Ky (expressed in MPa -m" 2) can be written in terms of the normal and shear displacement
discontinuities [47] obtained for the last special crack tip element as

1/2 172
__ M (| M (2
K= 4(1=v) (al ) Dyta)  and K= 4(1=v) (al ) Dy(ay), - an

where u is the shear modulus and v is Poisson’s ratio of the brittle material.
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3.2. Numerical Simulation of the Edge Cracked Specimens. A modified higher order
displacement discontinuity method based on the versatile boundary element method is used
for the numerical simulation of the double edge cracked specimens proposed in this
research to study the cracks coalescence and final breakage path of a bridge area under
shear box loading conditions. The LEFM approach based on the concept of mode I and
mode II stress intensity factors proposed by Irwin [53] is implemented in the boundary
element code and the maximum tangential stress criterion given by Erdogan and Sih [32] is
used in a stepwise procedure to estimate the propagation path of the propagating wing
cracks.

Since the experimental analysis of crack propagation is somewhat time-consuming,
expensive, difficult and complex, some more numerical simulations of crack propagation
process are also accomplished by boundary element method in this study.

The numerical simulation is done for several cases with different ligament angles and
ligament lengths as schematically shown in Figs. 3 and 4.

Figures 7-9 present the results of numerical simulation considering different ligament
angles (i.e., at angles ¥ =0, 20, 25, 45, 105, 115, 125, 135, 145, and 155°). Comparing
Figs. 7-9, it can be concluded that the final breakage path of the pre-cracked specimens
may be affected by ligament angles and the lengths of edge crack.

—/ﬂ\—”\‘w—
NS
— SN
a b c

Fig. 7. The breakage paths of non-overlapped cracks for y =0 with different lengths &: (a) b=
=26.2 mm; (b) b =487 mm; (c) b =675 mm.

3.3. Effect of Crack Overlapping on the Fracturing Behavior of Bridge Areas. The
cracks coalescence and breakage paths of double edge cracked specimens with non-
overlapping and overlapping cracks are described in this section.

3.3.1. Breakage Paths of Specimens Containing Non-Overlapped Cracks. In the current
simulations, the wing cracks are instantanecously initiated quasi-statically (Figs. 7-9). The
development and coalescence of wing cracks in the bridge area (the area in between the two
cracks in the specimens containing double edge cracks) may be the main cause of the
breakage paths in rock-like disc specimens.

Figures 7 and 8 illustrate the breakage paths of non-overlapping cracks for cases
y=0,20, 25, 45, and 90°. Three specimens with different crack lengths for ¥ =0 are
modeled as shown in Fig. 7.
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a b C

Fig. 8. Breakage paths of non-overlapped cracks for ¢ =20° (a) y =25° (b), and ¥ =45° (c).

e f g
Fig. 9. The breakage paths of overlapped cracks: (a) i =90% (b) v =105% (c) y =115% (d)yp =
=125°% (e) y =135°% (f) y =145% (g) v =155

For 1 = 0, when the crack lengths are b= 26.2 and 48.7 mm (Fig. 7a, b), the wing
cracks initiated at the tips of the both cracks and then the cracks coalesced with each other
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at the propagating crack tips in the bridge area, but for the case shown in Fig. 7c (for ¢y = 0)
with the cracks length b= 67.5 mm, the cracks may first start to initiate at the tips of
cracks and then the specimen may fail in the direction of the original cracks plane.

It should be noted that for the case shown in Fig. 8a (for 1y = 20°) first the wing
cracks initiated at the tips of cracks and then the cracks coalesced with each other at the
propagating crack tips in the bridge area.

For cases shown in Fig. 8b, ¢ (for 1 = 25 and 45°), the wing cracks initiated at the tip
of the cracks and propagated in a curved path until they coalesced with the tip of the other
crack, and also, no coalescence have occurred at the tips of the propagating cracks.

3.3.2. Breakage Paths of Specimens Containing Overlapped Cracks. Figure 9a—g
illustrate the fracturing paths of overlapped cracks for cases = 90, 105, 115, 125, 135,
145, and 155°

For case shown in Fig. 9a (for y = 90°) the wing cracks initiated and continued their
growth in a direction (approximately) vertical to the direction of maximum shear force and
coalesced with each other at the propagating crack tips in the bridge area. In this breakage
mode, the specimen may fail with a single breakage surface.

For case shown in Fig. 9b, c, and f (for =105, 115, and 145°), the wing cracks
initiate at the cracks and propagated to that of the other crack wall.

It should be noted that for the case shown in Fig. 9d, e, and g (for y =125, 135, and
155°), the cracks initiated at the tip of upper/lower crack first and then the specimen might
fail due to crack propagation process starting from the tip of upper/lower and also, no
coalescence might occur at the tips of cracks.

4. Discussion. The crack propagation process in concrete samples has been studied by
several researches using the edge cracked problem under shear loading.

Recently Sarfarazi et al. [12] have been experimentally and numerically investigated.
The effect of crack overlap on the final breakage behavior of a bridge area in the shear box
test for different specimens, the lengths of edge joints are different; for the same specimen,
the lengths of those two joints are the same. The crack lengths b are 52.5, 66.8, 75, or
78.8 mm which are associated with ligament angles 1 = 0,25, 90, and 115° for double edge
cracked concrete-like samples (Fig. 10). They have used PEC*® code (a discrete element
approach based on finite difference method) to conduct a number of numerical simulations
to reproduce their experimental works on double edge cracked samples. Table 1 shows the
mechanical properties of concrete-like specimens.

a b C d

Fig. 10. Non-overlapped (a, b) and overlapped (c, d) crack geometries with different ligament angles
Y: () y =0; (b) p =25% (c)  =90°% (d) y =115

Figures 11 and 12 illustrate the Sarfarazi et al. [12] experimental works and PFC*"
simulations of the crack propagating paths in concrete-like specimens with variable
ligament angles v = 0, 25, 90, and 115°, respectively [12].
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Table 1
Mechanical Properties of a Concrete-Like Specimen [12]

Description Parameter | Value Unit
Crack length b - mm
Average uniaxial compressive strength o, 6.6 MPa
Density y 1,200 kg/m®
Average Brazilian tensile strength o, 1 MPa
Average Young’s modulus in compression E 5 GPa
Cohesion - 22 MPa
Internal angle of friction - 20.4 deg

a b C d

Fig. 11. The crack propagation paths in concrete-like specimens with different ligament angles 1y = 0
(a), 25 (b), 90 (c), and 115° (d) [12].

C d

Fig. 12. PFC simulation of the propagating paths in concrete-like specimens with variable ligament
angles ¥ =0 (a), 25 (b), 90 (c), and 115° (d) [12].

The crack propagation process of concrete like specimens has also been numerically
studied by using the higher order boundary element method proposed in this study. The
numerical results obtained by the boundary element simulation of the propagating paths in
the edge cracked specimens are shown in Fig. 13. The numerically simulated crack
propagation paths shown in Fig. 13 were in good agreement with the experimental results
given by Sarfarazi et al. [12] in Fig. 11. Comparing the results graphically shown in Figs. 12
and 13 with the experimental works in Fig. 11 clearly demonstrate the accuracy, validity
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a b C d

Fig. 13. Boundary element simulation of the crack propagation process in double edge cracked
specimens with variable ligament angles i =0 (a), 25 (b), 90 (c), and 115° (d).

and superiority of the boundary element results compared to those obtained by PFC?® code
(given in Fig. 12). The boundary element code is much faster and it is quite easy to work
with it because the boundary element method essentially reduces one dimension of the
problem and alternatively reduces the mesh size sharply and makes the discretization of the
problem simpler and quicker.

Conclusions. The mechanism of crack propagation in brittle solids under shearing
mode has been studied by comprehensive experimental and numerical studies in the recent
years. This mechanism is a complicated process and further research may be devoted to
investigate the crack propagation, cracks coalescence and final breakage paths of a bridge
area under direct shear loading condition (the condition of shear box test).

A modified higher order displacement discontinuity method, (which is a category of
the broad boundary element method) was especially developed to simulate the mechanism
of crack propagation and cracks coalescence in the specimens and in the bridge areas of the
edge cracks. The linear elastic fracture mechanics theory based on mode I and mode II
stress intensity factors is used in the numerical simulation.

Effects of ligament angle and crack lengths in the bridge area on the fracturing
process of edge cracked specimens containing non-overlapping and overlapping cracks
have been modeled. It has been shown that the breaking of edge cracked specimens occur
mainly by the propagation of wing cracks emanating from the tips of the two pre-existing
cracks.

The numerical models well illustrate the production of the wing cracks and the cracks
propagation paths produced by the coalescence phenomenon of the non-overlapping and
overlapping cracks in the bridge area. In this study, it has been shown that there is a good
agreement between the corresponding numerical and experimental results which enables
one to clearly understand the fracturing mechanism of concrete like specimens containing
edge cracks.

It has also been shown that the specimens containing overlapping cracks with high
ligament angles may fail at a single fracturing surface. This failure pattern is highly
dependent on joint overlapping. In non-overlapping cracks with lower ligament angles, the
cracks are initiated from both two cracks tips and the elliptical breaking surface may occur
in the models.
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Pe3zwome

JlocmiKy€eThCss MEXaHi3M POCTY TPIIIKH y OCTOHHUX 3pa3Kax i3 MOYaTKOBUMH TPILHAMU
IIpU HABAaHTAXXCHHI 3CYyBOM. BHKOHaHO abopaTOpHi BHIPOOYBaHHS OETOHHHUX 3pa3KiB i3
JIBOMa TONEPEIHbO HAHECCHHUMH KpalOBHMH TpillMHAMH. J[JI YHMCENBHOTO MOJICIIOBAHHS
MEXaHi3My POCTY TPILIMH Y KPUXKUX TiJlax NPH HaBaHTAKCHHI YHCTHM 3CYBOM BHKOPHC-
TOBYIOTHCSI KOHIICTIIISI PO3PHBHOCTI MEPEMIIIeHb BHCOKOTO MOPSAKY 1 CIeriaibHi CKiHICH-
Hi CJEMEHTH I BEpPIIMHU TPIIMHU A ypaxyBaHHS B3a€EMOBIUIMBY OeperiB TpiliuH.
3anponoHoOBaHO CHENiaTbHAN METOJ MOACTIOBAHHS €(heKTy MEpeKPHUTTs OEperiB TPIIHHA
Ha TIpolleC pyHHYBaHHS JITaMEHTHOI 30HM MDK JBOMa TMapajelbHUMH TpimmHamMu. Ha
mepmIiil cTaaii HaBaHTAXXCHHS BHUHUKAIOTH KPWJIOBHIHI TPIIIMHM, SKi B IOAAIBIIOMY POC-
TYThb Y HampsMKYy HaBaHTaXCHHS 3cyBoM. HampsMok pocTy IOBOX KpaHOBHX TPILIMH Y
JIIFAaMEHTHIM 30HI B OCHOBHOMY 3aJIS)KUTh BiJI KyTa HAXWITY 1 JIOBKHHH TPIITHHH, B TOW Yac
SIK MII[HICTB ITPU 3CYBI — BiJl TUIy pyWHYBaHHs. AHaJII3 MEXaHi3My 3JIUTTS TPILHH MOKa3ye,
110 PyHHYBaHHS 3pa3KiB 13 OCTOHY 3 MOYATKOBHUMHE TPIIIMHAME BiAOYBa€THCS MO 3MilIaHi
MOJIi Y BUIIJKy HEIePeKPUBHUX TPilKH 1 o Moxi | s nepexpuBHux TpiwuH. [TopiBHsH-
HSl PO3PaxyHKOBUX JAHUX 3 €KCHEPHUMEHTAIBHUMH TiJITBEPIUKYE BUCOKY TOYHICTH 1 e(ek-
THUBHICTH 3aIIPOIIOHOBAHOTO YHCEIILHOTO METO/y MOJIEJIOBAHHS POCTY TPILIMH.
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