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The approach provides simulation of the gear design with high-precision profile configuration

parameters to accurately predict its load capacity and stress state, which requires incessant efforts,

as gear failure modes depend largely on its profile representation. The finite element analysis (FEA)

is a well-known effective computational method, which many authors used to estimate the gear tooth

strength against the primary failure modes of gears. This method is not only known to be

time-consuming but often expensive, it employs approximate geometry that resulted in a coarse mesh.

The tooth strength and deformation modes were obtained from a three-dimensional gear model based

on the trivariate nonuniform rational B-splines (NURBS) under loading and investigated using the

isogeometric analysis (IGA) for simulation. The results produced with the IGA simulation are

compared with the corresponding values derived from the classical estimation method with the Lewis

equation and FEM analysis using ANSYS. Both results are in good agreement and confirm that the

IGA model is more accurate than the FEM one. This study demonstrated that IGA was practically

applicable, providing an alternative means of using high-precision geometry of 3D models to

estimate the behavior of gear bodies under loading and modify their strength calculations.

Keywords: three-dimensional model, carbon steel, spur gear, gear profile, trivariate NURBS,

finite element method, isogeometric analysis.

Introduction. Gears are used in various types of machinery in many engineering

areas, including automobiles, marines, aeronautics and astronautics, where extreme operating

speeds of rotating members increase the load input on machinery, thereby demanding high

strength gearing component to achieve positive power transmission. In operation, the teeth

deform elastically under the induced radial and tangential components of pressure load via

the contact points on the mating teeth profiles (as shown in Fig. 1) in the direction of the

pressure line.
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Fig. 1. Loaded solid spur gear contact teeth at the pitch point (diamonds) and transfer along the

pressure line (arrows).



Fatigue failure of gear tooth occur, as a result of high stress concentration at the root

of a gear tooth subjected to bending loads. To achieve high-strength gearing with the

highest efficiency power transmission requires a design minimizing this bending stress.

Ristiã [1] investigated the optimal fillet tooth root radius to minimize the root stress

intensity in order to create a valid numerical model for a tooth root geometrical discontinuity

at static loading using finite element method (FEM). As shown in study [2], modification of

root fillet profile using a circular root fillet instead of the standard trochoidal one can

improve the tooth strength in a spur gear. These investigations bordered on accuracy and

geometrical modification of gear profile that can be easily achieved using the volumetric

polynomial functions, such as tensor product NURBS [3], which allows geometries to be

represented exactly with a smooth surface that can be directly used in the IGA [4]. IGA is a

way of invoking the isoparametric concept of representing the field variables with the same

smooth NURBS basis functions for numerical computation. Moreover, IGA allows for an

easy model modification. With NURBS model, one can exclude geometric discontinuities

induced by the conventional geometry discretization (which causes jumps in the contact

surfaces unless finest meshes are used), as well as avoid the time- and memory-consuming

mesh generation operation for the transformation of CAD model into a finite element (FE)

mesh before it can be used in the analysis.

Both theoretical calculation method via the Lewis equation [5], and finite element

method have been widely used in the field of gear strength numerical calculation. The

solution of load distribution in the meshed gear tooth pairs with numerical FEM [6–8]

resulted in many important conclusions on the spur gear stress distrubution.

IGA has been successfully applied in various fields for solving PDEs of domains

formed by smooth basis functions of NURBS. Such fields include structural mechanics and

optimization [9, 10], solid mechanics [11, 12], fluid mechanics [13], fracture mechanics

[14, 15], biomechanics [16], and contact mechanics [17–19]. However, this approach has

not been fully implemented into commercialized sofware packages due to trimless nature of

NURBS for representing complex NURBS domains.

Analysis of gear stress using NURBS-based isogeometric analysis is recently presented

for a two-dimensional case [20], but [21] shows that 2D representation method cannot

embrace the actual stress field in a spur tooth fillet. We generalize this idea to create an

accurate 3D conforming multi-patch gear tooth model based on NURBS and investigate the

stress-strain states and deflection of the gear under the influence of loads at the points of

contact using the isogeometric analysis. This provides more insight into the load distribution

along the tooth face width of gear, as well as stress distribution in the gear tooth root. The

numerical results fobtained by IGA are compared to those derived from the available

empirical and finite element analyses from ANSYS workbench 14.0 and are found to be in

a good agreement.

1. Basic Characteristics of the Analyzed Spur Gear Model.

1.1. Gear Geometrical Data. The gear geometrical parameters used in this study are

shown in Table 1. These parameters are used to develop a pair model of solid spur gears in

contact (as shown in Fig. 1) to illustrate the active gear contact zone, where the maximum

torque is transferred along the line of action between the mating gears.

1.2. Materials of Spur Gear. In the manufacturing of spur gear, wide varieties of

materials are used, including steels, nylon, aluminum, bronze, cast iron, phenolic, bakelite,

and plastics. In this study, a steel gear made from 20% carbon steel with no subsequent

treatment with the properties shown in Table 2 is used.

1.3. Trivariate NURBS. NURBS solids S ( , , )� � � have a topological structural form

with grids of control points P Rijk
w � 4 with associated weights { }wijk ijk

nml
�1 that provide

the basic information on their geometry, such as position, size, and aspect ratios of the

isogeometric mesh. The node vectors in parametric directions �, �, and �, partition the
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parametric domain of the basis functions N i p, ( ),� M j q, ( ),� and Lk r, ( )� into piecewise

rational polynomial functions Rijk
pqr

( , , ).� � �

The result of mapping of the parametric domain �� into the physical domain � is

given as S : �� �� with

S N M L Pw
i p

kj

m

i

n

j q k r ijk( , , ) ( ) ( ) ( ), , ,� � � � � ��
���
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���
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11

, , ,( ) ( ) ( )� � � (1)

in the perspective division of homogenous coordinates:

W N M L wi p j q k r ijk

kj

m

i

n

( , , ) ( ) ( ) ( ) ., , ,� � � � � ��
���

			
1

1

11

(2)

T a b l e 1

Spur Gear Geometrical Data

Description Symbol Formula Values

Number of teeth z – 12

Pressure angle (deg) 
 – 14.5

Diametral pitch Pd – 4

Addendum (mm) ha h pa � 0 3183. 6.35

Base circle diameter (mm) Db D db � cos
 73.8

Circular pitch (mm) p �m 19.95

Circular tooth thickness (mm) ctt p 2 9.97

Dedendum (mm) hf 125. m 7.94

Module (mm) m d z 6.35

Outside diameter (mm) D0 m z( )� 2 88.9

Pitch circle diameter (mm) d zm 76.2

Face width (mm) F – 50.8

Whole depth (mm) h 2 25. m 14.28

Top land width (mm) t0 0 25. m 1.59

T a b l e 2

Properties of Material

Properties Gear Properties Gear

Material Carbon steel Poisson’s ratio 0.3

Elastic modulus (GPa) 210 Density (kg/m3) 7850

Yield strength (MPa) 758
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NURBS solid � R 3 can be realized using

S
W

N M L w Pi p j q k r ijk ijk

k

( , , )
( , , )
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� � �
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( , , ) .� � � (3)

Figure 2 shows an example of a quadratic model of trivariate NURBS constructed from

uniform open node vectors �� { , , , , , },0 0 0 1 1 1 �� { , , , , , },0 0 0 1 1 1 and � � { , , , , , }0 0 0 1 1 1.

Its associated control grid, as shown in Fig. 2b, is constructed from piecewise interpolation

of 27 control points. Figure 2c shows the result of the nodal spans for a hexahedron

element achieved by mapping of a parametric domain into a physical one via Eqs. (1)–(3).

2. Modeling of NURBS Based Spur Gear. The specified primary parameters in the

previous section serve as input to define the topological part of solids NURBS S ( , , )� � �
geometry, in which the gear coordinate data (control points) { } ,Pijk ijk

nml
�1 associated with

weights { } ,wijk ijk
nml

�1 are embedded into four-dimensional homogeneous coordinates in the

projective space R 4. To obtain the spur gear generation, each tooth of the gear of twelve

teeth, in view of their symmetry, comprises of four conformal NURBS patches with three

coupling interfaces defined by the product of node vectors of non-decreasing positive real

numbers in �, �, and � parametric directions given as �� { , , , , , },0 0 0 1 1 1 ��
� { , , , , , },0 0 0 1 1 1 and � � { , , , , , },0 0 0 1 1 1 from which the basis functions

{ ( , , }N ijk
pqr

ijk
mnl� � � �1 of degree p� 2, q� 2, and r� 2 are defined. The association of the

Fig. 2. Parametric domain with basis functions (a); physical domain (b); trivariate NURBS model (c).
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control points with the basis functions defines one patch of the tooth solid NURBS using

Eqs. (1)–(3), this procedure is repeated for other three patches to obtain one-twelve of a

single tooth sector spur gear shown in Fig. 3 with the four patches showing in different

colors.

2.1. Theoretical Determination of Gear Load Capacity and Tooth Bending Stress.

The spur gear strength is expressed in terms of the bending strength that can be estimated

with the Lewis equation [5], which is related to the power and forces to be transmitted via

the line of action between the pinion and gear. As illustrated in Fig. 4, the maximum

transmission force F, which is between the contacting teeth at pressure angle of 
 to pitch

line tangent, can be resolved into a tangential component Ft and a separating component

Fn . We first compute the fundamental equation relating the tangential force Ft at the pitch

circle, power P and torque T to have:

F
P

v
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d n
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t

w w
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Fig. 3 Fig. 4

Fig. 3. Geometrical NURBS model of a single-tooth solid gear.

Fig. 4. Direction of forces acting on the mating gear teeth.
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where v is the tangential speed of working pitch circle (ms�1), dw is working pitch

diameter, dw � 76.2 mm, n is rotating speed, n� 1000 rpm,

v
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The Barth velocity factor K v increases the Lewis stress approximately by

K
V

v �
�61

61

.

.
, (10)

where V is the velocity at the pitch diameter (in m/s),

K v �
�

�
61 3989

61
165

. .

.
. .

The combined expression for tooth bending stress � b is then

� b
v t

a

K F

b mY
� , (11)

where ba is face width (mm), m is module (mm), and Y is the Lewis form factor,

� b �


 
�

165 12535

508 635 0355
1806

. .

. . .
. MPa, � �theor b� � 1806. MPa.

2.2. Construction of a Gear Tooth Fillet. The gear root fillet radius (rf ) is the critical

cross section of a gear tooth root as it is exposed to bending and combined action of the

radial and tangential components of pressure load, which has a direct influence on the

stress concentration factor and thus affects the gear service life. The fillet does not have a

constant radius, but is shaped as a curve generated by a hobbing tool or cutter [22] with a

tip radius (rt ) for 14 5. � pressure angle which is standardized as

r
P

t
d

�
0235.

, (12)

where Pd is diametral pitch, Pd � 4, r Pt d� � �0235 0235 4. . 0.05875 in � 1.49 mm.

The radius of a gear tooth fillet produced by the tool of radius rt is denoted by

r
h r

Z P h r
rf

f t

d f t
t�

�

� �
�

( )

( ) ( )
,

2

2
(13)
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rf �
�

� �
� �

( . . )

. .
. .

794 149

12 8 794 149
149 672

2

mm.

3. Finite Element Analysis Using ANSYS.

3.1. Models and Mesh. Due to the symmetry of the gear structure and loading, only

one-twelfth of the spur gear was modeled using Rhinoceros V5 software as shown in Fig.

5. In its IGES format, it was exported to the commercial finite element package ANSYS

workbench 14.0, which was used for a linear static finite element analysis. Three-dimensional

isoperimetric hexahedron solid elements defined by eight nodes were used for generating

the FEA mesh. For improvement of the calculation accuracy, a fine mesh of hexahedron

solid elements is used consisting of 19,737 elements and 86,722 nodes.

3.2. Boundary and Loading Conditions. The boundary conditions implies the

application of displacement constraints and external loads on the 3D FEM mesh. All nodes

in the symmetric sections are constrained against displacement in the direction perpendicular

to the symmetry plane, i.e., along the surfaces that separate the modeled gear segment from

the rest of the gear body. Displacement constraints of fixed support are also placed at the

nodes on gear tooth of the inner bore border. The FEA models were subjected to the

combined load by the tangential force of 1253.5 N and the normal force of 324.16 N at the

pressure angle to pitch line tangent. Figure 6 illustrates the finite element mesh boundary

and loading conditions for the single-tooth model.

3.3. Material Properties. The material parameters applied in the model include the

Young modulus and Poisson’s ratio for the carbon steel as specified in Table 2.

4. Isogeometric Analysis of Spur Gear. The IGA simulation, which is an alternative

to the traditional finite elements, is based the geometric input model composed by four

NURBS patches as shown in Fig. 7 (level 4) with three coupling interfaces. The model is

discretized using the tricubic functions (for patch 1, patch 2, patch 3, and patch 4), each

consisting of 16 16 16� � elements. This results in the total number of 16,384 elements and

19,652 control points.

4.1. Mesh Definition and Model Refinement. The physical domain � � R 3 of the

spur gear tooth is represented by four single-patch NURBS mappings S i( ) for i� 1 to 4,

each of which maps the parameter domain �� into the patch � �( ) ( ) ( � ).i iS� The

superscript i represents the node vectors, degrees, NURBS basis functions, control points

associated with the mapping S i( ) of the individual patch.

The mesh M i( ) is directly defined by the NURBS mapping process of Eqs. (1)–(3),

which is quasi-uniform for all i� 1, 2, 3, 4. The domain is subdivided into subdomains

Fig. 6. 3D FEM boundary and loading conditions.Fig. 5. 3D gear tooth CAD model.
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� ��e
e by hexahedral elements, such that � � �i j m� � � � for i j m� � . The

elements are determined by the nodal spans: � e
i i j j m m� � �� � �[ , ] [ , ] [ , ],� � � � � �1 1 1

where hi denotes the element size of M i( ) . This yields a family of meshes { }
( )

M h

i
h

i i
, such

that there exists the most coarse mesh M h

i

i0

( )
that does not provide a sufficiently smooth

contour plot, which could be directly used to produce accurate results of the analysis. Four

levels of this mesh refinement are executed (as shown in Fig. 7) to have a higher resolution

mesh. The latter is suitable to obtain accurate results, and the description of the geometry is

fixed at the level of M h

i

i0

( )
. When the mesh is refined, the control points are adjusted in a

such way that the originality of geometrical shape of the model S i( ) remains unchanged.

Thus, the geometry and its parameterization are held fixed in the refinement process [23].

The meshing operation in FEA is thereby replaced with the model refinement by

simple insertion of nodes into IGA, which results in additional degrees of freedom.

4.2. Performing the IGA Analysis. The boundary conditions for the IGA analysis are

similar to those for the FEM analysis (Fig. 6). The loads and material properties for the

numerical simulation using IGA are identical to those defined in Subsections 3.2 and 3.3.

An algorithm in matlab codes is developed, adopting some built-in functions and

structures within the GeoPDEs, IGA, FEM, and Abaqus NURBS libraries [24–26] to

construct the geometry based on the gear model data input, which includes the control

points, node vectors, orders, the boundaries and interfaces of the NURBS patches needed to

perform the analysis. The topological entities in the model were selected, where force and

displacement constraints were set, and performed the analysis using the Abaqus NURBS

plugins [26].

5. Results and Discussion. In accordance with theoretical investigations given in [22]

and FEM [7, 8], the expected maximum concentrated stress occurring at the fillet root at the

base of the gear tooth which is equal to tensile stress that causes crack failure shown in

Fig. 8 illustrates distribution of the Mises stresses in the tooth root. Figure 9 shows the

corresponding tooth deflections calculated for a single-tooth 3D spur gear geometry based

on the NURBS four patches and on the 3D FEM model. The compared values are the

equivalent Mises stresses and the total deformation.

Fig. 7. Four-level refinement of the IGA meshes generated by insertion of nodes.
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Table 3 compares the calculated results of the tooth root stresses and deflections

obtained: the bending stress results of the theoretical calculation via the Lewis equation,

finite element analysis, and isogeometric analysis are in good agreement. The difference

between the theoretical calculation results with those obtain via FEA and IGA are 6.47 and

2.16%, respectively. The IGA approximates the theoretical calculation better than FEA.

Moreover, the IGA makes it possible to use the h-refinement method, in order to

refine a coarse mesh of the gear geometric model, obtain additional degrees of freedom in

the model, and produce the result of the required quality without changing the overall

geometrical shape. This allows one to avoid the time- and cost-consuming mesh generation

process in FEA, insofar as FEA requires additional meshing efforts to discretize the 3D gear

tooth CAD model into fine elements for the FE analysis.

Updating the NURBS model for IGA by simulation results, in order to realize the

best fillet radius to optimize the stress concentration, seems to be a quite easy task, since

the geometry representation and the simulation results cover the same spline domain.

However, many researchers have problems with application of the CAD-model for similar

modification due to the discrepancies between CAD and FEM meshes in the FEA approach.

T a b l e 3

Comparison of the Maximum Mises Stresses and the Total Deformed Shape

Obtained from IGA and FEA

�theor ,

MPa

�FEA ,

MPa

�IGA ,

MPa

Deformation

in FEA (mm)

Deformation

in IGA (mm)

Difference (%)

(� �theor FEA� )

Difference (%)

(� �theor IGA� )

18.06 16.89 18.45 0.0018 0.0020 6.47 2.16

Fig. 8 Fig. 9

Fig. 8. The Mises stress distributions in the tooth gear (MPa): (a) FEA model; (b) IGA model.

Fig. 9. Total deformed shape of the tooth gear (mm): (a) FEA model; (b) IGA model.

b b

a a

34 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 1

O. T. Yusuf, Z. Gang, W. Wei, and S. O. Onuh



Conclusions. The developed application of 3D NURBS-based high-precision model

for isogeometric analysis of the stress-strain state provides not only an excellent insight into

the stress distribution, but also reveals the exact position of the maximum stress value point

in the gear tooth root.

The results obtained by the IGA show a good agreement with the well-known FEA

method, which makes the IGA an alternative numerical method to compute spur gear

stress-strain behavior under various loading conditions.

This study is mainly focused on application of the NURBS basis functions for the 3D

geometric simulation of a spur gear and isogeometric analysis of stresses and deflections in

the gear tooth. Further development of this tudy will include the use of other smooth

parametric functions, such as T-splines [27], for the gear model geometric description and

analysis. Another lucrative direction is the IGA extension to contact stress analysis.
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