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Pacrlpezle.nenne Haﬂpﬂﬂ(e]{l/lﬁ B 63J'IK3X, AATr€3UOHHO COCIMHCHHBIX BHAXJIECTKY

Kc. Xu, FO. Banr

HccenenoBaTenbekuii EHTP HHHOBAIMOHHOTO MPOU3BO/CTBA, DaKyIbTeT MAIIMHOCTPOCHUS B JIEKTPO-
TexHUKH, KyHbMHUHCKHI yHHBepCHTET Hayku M TexHonoruu, Kynemun, Kurait

C nomowplo mpexmepHo2o Memooa KOHEUHbIX 3]1eMeHMOE UCCLe006aN0Ch PACHpedeseHue Hanpsi-
JIceHutl 600/ HEPA3PesHbIX BANOK, A02e3UOHHO COCOUHEHHbIX 6HAXAeCMKY. [l uemblpex munuynvlx
Xapakmepucmux CeA3yIoWux Mamepuaios noyuensvl pacnpeoenetus Hanpaxicenuil 6 coeouHenHoM
ceuenuu. Pezynomamol ucciedosanuil nokazanu, umo 0ns komnonenm nanpscenuit S;;, Sy,, S, u
S5 umeem mecmo CUHYIAPHOCIb HANPAMCEHUTL HA HUMCHEU U 6epxHetl spanuyax banku. Yem eviute
2panuynble 3HAYENUs MEepOOCmU CEAZYIOWUX MAMePUanos, mem MeHbule 3HAUeHUs HANPA’CeHUll
Pa3puiea 6 CKIeusaeMvlx U CesA3yIowux mamepuanax Ha 2panuyax. Ilonyuennvie pesytomamol céude-
mMenbCmeyom 0 MoM, Mo 6 HepaspesHvlx OalKax, COeOUHEHHbIX 6HAXAeCMKY, COCMABNAIOujUe
nopmanvnvlx S;;, S3; u Kacamenvuvix S;3; Hanpsicenull OOMUHUPYIOM CPeOu COCMABISAIOUUX
nozetl HanpsAjicenull, npuuem nanpsicenue S;; A6IAmMcs CaMblM 6bICOKUM, a nanpsicenue Sjzz —
CaMblM ONACHBIM, NOCKONbKY C6A3GHO C HANPAdCeHUeM ompbuleéd. Pesynbmamul wuciennvix uccrue-
006GHUI NOKA3ANU, MO KOIDGUYUeHmbl KOHYEHMPAaYUY HANPAICEHUT] 6aPLUPYIOMCA KAK ONIA pas-
HbIX KOMNOHEHM HANPAJICEHUU, MAaK U ONsl PA3HbIX CEA3YIOWUX MAMepuanos, A6NAACy NpaKmuyecku
00UHAKOBBIMIL O/i5l OBYX KOHUYOG CES3YI0Uje20 CeHeHUs.

Knrouesvle cnosa: Ganka, COCANHEHHAs BHAXJIECTKY, PACIpPE/CICHHE HANPSDKCHMIT, KO-
HEYHOIJICMEHTHBIH aHaIN3, aAre3NOHHOCTh, CHHTYJIIPHOCTD HAIPSDKCHUH.

Introduction. Adhesive bonding is becoming a widespread candidate technique for
joining light-weight structural components. Consequently the static and dynamic behavior
of these joints has been the subject of a considerable amount of experimental and numerical
studies [1-6]. However, most investigations of the stress distribution in single-lap adhesively
bonded beams have focused solely on the adhesive layers. There has been no work found
which considered the stress distribution over the entire single-lap adhesively bonded beams
including the adherends and the adhesive layer. Although the adhesive layer is the critical
part of a single-lap adhesively bonded beam, it is very important to know the stress
distributions not only in the adhesive layer, but also in the adherends and at the adherend—
adhesive interfaces.

In the present work, the stress distribution along the total single-lap adhesively
bonded beam has been investigated using the 3D finite element (FE) method. Specifically,
FE solutions of the stress distributions in the bonded section have been obtained for four
typical characteristics of adhesives.
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1. Configuration and Properties of Adhesively Bonded Beams with Different
Adhesives.

1.1. Configuration and Material Properties. The single-lap adhesively bonded beam
studied in the present work is shown in Fig. 1. The two adherends used were aluminium
alloy plates of the following dimensions: 200 mm long, 25 mm wide, and 4 mm thick. The
boundary conditions are also shown in Fig. 1. A distributed load of 1000 N is applied at the
right end face of the upper adherend in the x-direction. The free end of the upper adherend
is restrained in the z-direction, that is, there is zero displacement in the z-direction.

In order to make the description of the different parts of the beam clear, the beam is
subdivided as shown in Fig. 1: point 4 corresponds to the clamped end of the lower
adherend (x = 0); point B — to the left free end of the bonded section and the upper adherend
(x=0.175 m); point C — to the right free end of the bonded section and the lower adherend
(x= 0.2 m); point D — to free or simply supported end of the upper adherend (x = 0.375 m).
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Fig. 1. A single-lap adhesively bonded beam.

The range of adhesive properties covers the mechanical properties of various types of
structural adhesives including rubbers, elastomers, epoxies and ceramic glues as illustrated
in Fig. 2. In this figure, the Young modulus and Poisson’s ratio are plotted against the
hardness of materials. The three different regions of viscoelastic behaviour and some types
of adhesives that fall into these categories are shown in Fig. 2.
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Fig. 2. Typical master curve of viscoelatic behavior of viscoelastic materials with a conceptual scale
of relative degree of hardness superimposed. (RR = rubbery region (rubbers, elastomers, e.g., Evostik
and Bostik adhesives), TR = transition region (epoxies, e.g., Araldite 2-part epoxy), GR = glassy
region (e.g., ceramic glues).)
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In order to simplify description of the different combinations of Poisson’s ratios and
the Young modulus employed, the following designations are used:

RR-beam: v ,; = 0.49999, E,, = 0.001 GPa, a bonded beam with adhesive properties
in the rubbery region;

TR-beam: v, = 0.40, E,; = 1 GPa, a bonded beam with adhesive properties in the
rubber-to-glass transition region;

GR-beam: v _,; = 0.30, E,; = 10 GPa, a bonded beam with adhesive properties in
the glassy region;

H-beam: v ,; = 0.33, E,; = 70 GPa, a homogeneous beam with no joint.

The Young modulus value E,;, = 70 GPa is not realistic for any polymeric structural
adhesive or epoxy. It represents aluminium alloy “adhesive” which is, in fact, an aluminium
alloy welding. This value was used in the analysis, in order to obtain a reference value for
the maximum stresses of a single-lap adhesively bonded beam.

1.2. Definition of Axes and Basic Equations. As shown in Fig. 3, the components of
stress in a body are defined by considering the forces acting on an infinitesimal cubical
volume element whose edges are parallel with the coordinate axes 1, 2, 3 which are
equivalent to the coordinates x, y, z shown in Fig. 4. As the cube is in equilibrium, the
components of stress are therefore defined by six independent quantities: the normal
stresses Sq;, So,and S3; and the shear stresses S5, Sq3,and S,3.

S33

Fig. 3. Components of stresses.

The section between the lines

is shown enlarged below

Fig. 4. Original FE mesh of the single-lap adhesively bonded beam.
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1.3. The FE Mesh. The FE mesh was created using the ABAQUS FE pre- and
post-processing program operating in X-window environment. Because of the 3D nature of
the stress state in the single-lap bonded beam and because of the anticipated stress
concentration in the adhesive layer of the beam, small finite elements were used within the
adhesive layer and around the adhesive-adherend interfaces and larger elements were used
in the outer regions of the adherends. The adhesive layer was divided into 64 equal parts
along its length (x-direction) and 20 equal parts along its width (y-direction) in order to
obtain an accurate indication of the variation of stresses in the lengthwise and breadthwise
directions. Along the thickness (z-direction), the adhesive layer was divided into 5 equal
layers of elements.

The input into the FE program was the geometrical description of 16,160 elements
and their material properties. The locations of nodal points were set by the ABAQUS input
file as a function of the length and width of the lap-joint beam, that is, in accordance with
the geometric parameters of the model. Also the material parameters of the adhesive and
adherends were input via the ABAQUS input file. The original FE mesh is shown in Fig. 4
which also shows the directions of the coordinat axes x, y, z. This model was expected to
be an adequate one as it had a sufficient accuracy and a moderate number of elements [7].

2. Effect of the Mechanical Properties of the Adhesives on Distributions of
Stresses. Since failure of single lap-joints initiates where high stresses occur, the maximum
stresses are of interest. In this section, the distributions of different components of stresses
along the critical line, in which the maximum stresses occur, will be studied. These
investigations are carried out for 3 types of adhesives, whose properties lie within the
rubbery region (RR), the rubber-to-glass transition region (TR) and the glass region (GR).
Thus the investigations are based on three single-lap bonded beams, namely, RR-beam,
TR-beam, and GR-beam. For purposes of comparison, the stresses induced in the
homogeneous beam without a lap-joint, that is the H-beam, is also investigated.

2.1. RR-Beam. The original mesh and displaced mesh of the RR-beam are shown in
Fig. 5. It is clear that bending is induced in both the lower and upper adherends and the
adhesive layer is considerably stretched. Figure 6 shows the distributions of 6 components
of stresses along the critical line along the total RR-beam. In this figure, the stress
distributions in the lower adherend is indicated by dashed line, the stress distributions in the
adhesive layer is indicated by solid line, and the stress distributions in the upper adherend is
indicated by a dash-dotted line. It can be seen from that in the upper adherend, excepting
the queer end stress concentration caused by the loading conditions, the trends of the stress
distributions of the upper adherend are opposite to those of the lower adherend. However,
the values of the stresses induced in the upper adherend are little bigger than those of the
lower adherend as the type of support is different.

Fig. 5. Original mesh and displaced mesh of RR-beam.

2.1.1. Variation of the Normal Stress S|,. From the numerical results of the FE
analyses, it was observed that the maximum value of the normal stress S;; occurs at the
central line (y= 0.125 m). This means that the central line is the critical line in this case. It
is seen from Fig. 6 that in the lower adherend, the value of S|, increases rapidly from 4 to
B and there is a stress concentration at B. The value decreases rapidly from B and attains
the minimum value near x= 0.195 m, then increases sharply at C. For the upper adherend,
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Fig. 6. Distributions of 6 components of stresses along the total RR-beam. (Designations here and in
Figs. 8-10: adhesive layer = solid lines, lower adherend = dashed lines, and upper adherend =
dash-dotted lines.)

the normal stress S, starts at B at a magnitude which is well below the corresponding
stress magnitude at location B of the lower adherend. This difference in stress magnitude is
due to the load transfer provided by the adhesive, from point B, the stress in the upper
adherend decreases to the minimum value at x=0.179 m and then increases to the
maximum value at C. Thereafter, the stress decreases until it reaches the nominal value of
10 MPa at D, the tip of the beam. This nominal value is due to the tensile load of 1000 N
acting on the cross-section (25X 4 mm) of the beam which is well removed from the bonded
section.

In the adhesive layer, it is clear that there are stress concentrations at both the left and
right free ends of the adhesive layer. However, the central region of the adhesive layer is
mostly stress-free. It should be noted that for the scale of the stress variations shown in
Fig. 6, the stress distribution in the adhesive layer at the lower adherend-adhesive interface
and the upper adherend-adhesive interface are the same. Actually, there are very slight
differences. For this loading and boundary conditions employed, the stresses in the upper
interface are slightly greater than those of the lower interface. In addition, the stresses
induced in the adherends at the interfaces are generally greater than those induced in the

ISSN 0556-171X. IIpodaemol npounocmu, 2014, Ne 6 127



X He and Y. Wang

adhesive at corresponding locations. Thus, each of the nodes located on the lower or upper
interface has two different values of the same stress component. One stress component
value is associated with the adherend while the other value is associated with the adhesive.
These differences form a strongly pronounced stress discontinuity in the bonded section
as evident from Fig. 6. This stress discontinuity may be the cause of delamination failure.
This point will be discussed further in the next section.

2.1.2. Variation of the Normal Stress S ,,. For the normal stress S ,,, it is clear that
the critical line is also the central line (y= 0.125 m). Figure 6 shows that the value of §,,
in the lower adherend between 4 and B is close to zero. But near B, the value of S5,
increases rapidly and attains the maximum value at B. Thereafter S,, decreases to zero but
then it increases again to a high value at C. Between B and C the value of §,, is
practically zero, but at B and C, §,, attains high values. There are stress concentrations at
B and C. Similarly, for the upper adherend, §,, has high values at B and C. But between B
and C, and between C and D, §,, is close to zero in magnitude. It is also clear that there
are stress concentrations at both the left and right free ends of the adhesive layer. In
addition, there is still a stress discontinuity in the bonded section, in this case, but it is less
pronounced than that of the normal stress ;. Furthermore, the absolute value of S,, is
much smaller than that of §;.

2.1.3. Variation of the Normal Stress S33. As with S, and §,,, the central line is
the critical line for the normal stress S33. In contrast to the distributions of S;; and §,,,
in the lower adherend, Fig. 6 shows that the value of S35 is very close to zero from 4 to B
but rises abruptly to the maximum value at B. Between B and C, S33 oscillates in value
between 0 and —2 MPa. At C, S3; again attains the maximum value. Similarly, the values
of §3; in the upper adherend starts from a very high value of 6 MPa at B, oscillate
between 0 and —2 MPa from B to C, attain the maximum value of about 6 MPa at C and
then drop abruptly to zero. Between C and D, S;; attains zero value. Again, there are
stresses concentrations at both the free ends of the adhesive layer. Figure 6 also shows that,
in the case of 33, there is no significant stress discontinuity in the bonded section.

2.1.4. Variation of the Shear Stress S;,. In this case, the critical lines (y= 0.00125
and 0.02375 m) are very close to the front and rear edges. Figure 6 shows the rear critical
line (y=0.02375 m). As shown in Fig. 6, from 4 to B, §;, first keeps close to zero, then
decreases near point B, and attains a low value at B. Within the bonded section, there is a
slight stress discontinuity. As shown in Fig. 6, there is a high stress concentration at D,
which is regarded as a result of the loading conditions.

2.1.5. Variation of the Shear Stress S 5. From the numerical results, the critical line of
this case is the central line. As shown in Fig. 6, in the lower adherend, the value of S5
keeps close to zero from A to B and exhibits the stress concentration at B. There are stress
concentrations at both free ends of the adhesive layer. In contrast to other cases, the value
of S5 is higher than zero.

2.1.6. Variation of the Shear Stress S ,5. In this case, there are two critical lines at the
front and rear edges, while Fig. 6 shows the front one. From 4 to B, the value of S,; keeps
close to zero and exhibits a slight stress concentration at B. Within the bonded section, the
variation of S5 is complicated, but its value is very small. Similar to the case of S,, there
is a strongly pronounced stress concentration at D.

2.2. TR-Beam. Figure 7 shows the original mesh and displaced mesh of the TR-beam.
Similar to the the case of RR-beam, bending is induced in both the lower and upper
adherends. In contrast to the case of RR-beam, there is not obvious stretch at the adhesive
layer in this case.

The distributions of 6 components of stresses along the critical lines in the total
TR-beam are shown in Fig. 8. It is clear that the variations of S, S, S33,and S5 are
similar to those of the RR-beam, but the stress values are higher than those of the RR-beam.
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Fig. 8. Distributions of 6 components of stresses along the total TR-beam.

The stress discontinuities obviously exist only in the cases of S;; and S,,. In the cases of
S1, and S,3, the variations of stresses are different from those of the RR-beam, and the
values of stress concentration factors are higher.

2.3. GR-Beam. The original mesh and displaced mesh of the GR-beam are similar to
the TR-beam. The distributions of 6 components of stresses along the critical lines in total
GR-beam are shown in Fig. 9. It can be seen that the variations of 6 components of stresses
are similar to those of the TR-beam, but the stress values are higher than in the TR-beam.
The stress discontinuity obviously exists only in the case of §;.

2.4. H-Beam. The original mesh and displaced mesh of the H-beam are similar to the
TR-beam. Figure 10 shows the distributions of 6 components of stresses along the critical
lines in total H-beam. It is clear that the variations of 6 components of stresses are similar
to those of the GR-beam, but their values of the stresses are higher than in the GR-beam.
As it might have been expected, there is not obvious stress discontinuity, in this case, sinces
the H-beam is a homogeneous beam with no joints.
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Fig. 9. Distributions of 6 components of stresses along the total GR-beam.

Among 6 components of stress, S;; attains the most high values, but §3; and §3
are really dangerous components, insofar as the peel is weak link of the bonded joints. The
above observations imply that under the tensile loading conditions the stress field in the
total single-lap adhesively bonded beams is dominated by Si;, S33,and ;5.

3. Comparision of Dominating Stresses. It was shown in the previous section that
for all four single-lap adhesively bonded beams the stress concentration occur at the ends of
bonded section. For some of the stress components, there are stress discontinuities in the
bonded section. Thus, a careful examination of the stress distributions in the bonded section
is necessary. As mentioned in the previous section, the stress field in the total single-lap
adhesively bonded beams is dominated by S;;, S33,and S;3. The stress distributions of
these dominating stress components will be discussed further.

3.1. Comparision of Normal Stresses S|,. Figure 11 shows the S; distributions of

4 typical beams in the bonded section (x= 0.175 m to x= 0.2 m). Again, solid lines denote
the stress distributions of the adhesive layer, dash lines denote the stress distributions of the
lower adherend and dash/dotted lines denote the stress distributions of the upper adherend.
It is seen from Fig. 11 that the stress discontinuities exist in the case of S; , with exception
of the H-beam, which is a homogeneous beam with no joints. The higher the hardness of
adhesives, the smaller the discontinuities between the stresses induced in the adherends and
adhesive at the interfaces.

Table 1 shows the values of the normal stresses S;; at key locations of the joint and
the respective stress concentration factors, which are calculated as the ratio of the numerical
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Table 1
Normal Stress S;; of Bonded Beams at Selected Points in the Adhesive Joint
Normal stress S;; (MPa)
RR-beam TR-beam GR-beam H-beam
Location B C B C B C B C
Adherend 45.46 54.22 67.82 84.63 103.17 129.11 158.11 197.98
Adhesive 12.70 14.40 14.81 18.93 26.33 33.15 73.99 92.71
SCF 3.58 3.76 4.58 4.47 3.93 3.89 2.14 2.14
Note. Here and in Tables 2 and 3: SCF = stress concentration factor.
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Fig. 10. Distributions of 6 components of stresses along the total H-beam.

values of stresses S in the adherend and adhesive at the same location. It is clear that, in
the case of S;;, the stresses in adherends are much higher than in adhesives. This
observation implies that the adherends sometimes are the first to fail, though they are
usually stronger than the adhesives.

3.2. Comparision of Normal Stress S ;5. The stress distributions of S3; of 4 typical

beams in the bonded section are shown in Fig. 12. It can be seen that there is not stress
discontinuity in this case. In contrast to the case of S, these stresses attain both positive
and negative values, the absolute values of the negative ones being smaller than those of
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Fig. 11. Distributions of §;; of 4 typical beams at the bonded section.
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Table 2
Normal Stress S;; of Bonded Beams at Selected Points in Adhesive Joint
Normal stress S33 (MPa)
RR-beam TR-beam GR-beam H-beam
Location B C B C B C B C
Adherend 6.20 6.90 15.45 19.74 33.90 42.04 55.25 69.27
Adhesive 12.70 13.90 21.17 27.10 43.49 55.35 62.08 78.83
SCF 0.49 0.50 0.73 0.73 0.76 0.76 0.89 0.88
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Fig. 13. Distributions of S;; of 4 typical beams at the bonded section.

the positive ones. The calculated values of S5 at key locations of the joint and the stress
concentration factors are given in Table 2. Surprisingly, all stress concentration factors are
smaller than 1. In other words, in the case of S 53, the stresses in adhesives are higher than
in adherends. This means that adhesives will certainly be the first to fail.

3.3. Comparision of Shear Stresses S 5. Figure 13 depicts the §;; distributions of 4

typical beams in the bonded section. Similar to the case of S33, the calculated stresses
attain both high positive values, and low negative ones. Within the bonded section, the
calculated stresses values tend from positive values to zero.

Table 3 shows the numerical values of S5 stresses at key locations of the joint and
the respective stress concentration factors. It is seen that, in the case of RR-beam, stresses
in adherends are much higher than in adhesives. In the case of GR-beam, however, these
values are nearly the same. It can be seen from Tables 1-3 that the stress concentration
factors in the both ends of the bonded section are nearly the same.

ISSN 0556-171X. IIpodaemol npounocmu, 2014, Ne 6 133



X He and Y. Wang

Table 3
Shear Stress S;; of Bonded Beams at Selected Points in Adhesive Joint

Normal stress S;; (MPa)

RR-beam TR-beam GR-beam H-beam
Location B C B C B C B C
Adherend 7.87 7.35 10.71 13.64 22.23 28.15 47.73 60.15
Adhesive 1.95 2.07 9.44 11.84 22.74 28.49 44.87 56.11
SCF 4.04 3.55 1.13 1.15 0.98 0.99 1.06 1.07

Conclusions. The stress distributions of complete single-lap adhesively bonded beams
have been investigated using the 3D FE method. Specifically, FE solutions of the stress
distributions in the bonded section have been obtained for three typical characteristics of
adhesives. The results are summarized as follows:

1. The stress distributions of a single-lap adhesively bonded beam are strongly
affected by the characteristics of adhesive.

2. Stress discontinuities exist in the stress distributions within the adhesive and
adherend at the interface, especially for the stress components Si;, S5, Si; and Si3.
The larger the hardness of adhesives, the smaller the discontinuities between the stresses
induced in the adherends and adhesive at the interfaces.

3. The stress field in the total single-lap adhesively bonded beam is dominated by the
normal stress components S;; and S 33, and the shear stress component § 5. Although the
stress component S;; is the largest component by magnitude, but the component S35 is
potentially more significant because it is related to the peel stress, which is ultimately
responsible for the failure of adhesively bonded joints.

4. The stress concentration factors are different for various stress components, as well
as varioust adhesives. However, the stress concentration factors in both ends of the bonded
section are nearly the same.
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Pe3ome

3a JIOMOMOT0I0 TPUBUMIPHOTO METOAY CKIHUEHHHX €JIEMEHTIB JOCITIKEHO PO3MOJia Ha-
NIPY’KEHb Y3J0BX HEPO3pI3HUX Oallok, anre3iiiHo 3’e€HaHMX BHaMyck. /Ui 4OTHPHOX
THTIOBHUX XapPaKTEPUCTUK CIIOyYHUX MaTepialiB OTPHIMAHO PO3MOILIT HANPY)KEHB y 3’ €THY-
BaJIbHOMY Tiepepi3i. Pe3ynbraTh mociikeHb MOKa3aid, IO JJIsi KOMIIOHEHT Harpys>KeHb
S11> Sy, S1p Ta Sy3 Mae Miclle CHHTYJSPHICTH HANpy)KEHb Ha HIDKHIN Ta BepXHii
rpaHuIgx Oanku. YuM BHIE rpaHUYHI 3HAYECHHS TBEPIOCTI CHONYYHHX MarepialliB, THM
MEHILIC 3HAUYCHHS HAIIPY>KCHb PO3PUBY B CKIICIOBAaHUX 1 CHOJYYHUX MaTepiayiaXx Ha TpaHH-
sx. OTpuMaHi pe3yibTaTH CBi4aTh, NI0 B HEPO3PI3HUX Oankax, 3’€JHaHUX BHAITYCK,
CKJIAJIOBI HOPMalbHUX Sy, S33 1 ZOTHYHUX S|3 HAIpPYKEHb € NOMIHYIOUHMHU CEpell
CKJIQIOBUX IOJIIB HAIpyXeHb, NPU [bOMY HAIPYXEHHA S|, € HalBuUmMM, a S33 —
HalfHeOe3NMeyHIMM, OCKUIBKH 3B’s3aHE 3 HANPYXXEHHSIM BipHuBYy. Pe3ynbpraTn uncenbHUX
JOCIIKSHb TPOUTIOCTPYBAIIH, 10 KOe(Ii€HTH KOHIIEHTPAIIl HAIIPYKEHb BapPIIOIOTHCS SIK
JUISL PI3HUX KOMITOHEHT HANpYXEHb, TaK 1 JUIsl PI3HUX CHOJyYHHX MarepialiB, MPOTE BOHU
MPAKTUYHO OTHAKOBI JUIS IBOX KIHINB 3’€QHYBAIBHOTO IMEpepisy.
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