UDC 512.745

I. V. Arzhantsev* (Moscow State Univ., Russia),

A. P. Petravchuk (Kyiv Taras Shevchenko Univ., Ukraine)

CLOSED POLYNOMIALS AND SATURATED SUBALGEBRAS OF POLYNOMIAL ALGEBRAS

ЗАМКНЕНІ ПОЛІНОМИ ТА НАСИЧЕНІ ПІДАЛГЕБРИ ПОЛІНОМІАЛЬНИХ АЛГЕБР

The behavior of closed polynomials, i.e., polynomials $f \in \Bbbk[x_1,\ldots,x_n] \setminus \Bbbk$ such that the subalgebra $\Bbbk[f]$ is integrally closed in $\Bbbk[x_1,\ldots,x_n]$, is studied under extensions of the ground field. Using some properties of closed polynomials, we prove that every polynomial $f \in \Bbbk[x_1,\ldots,x_n] \setminus \Bbbk$ after shifting by constants can be factorized in a product of irreducible polynomials of the same degree. Some types of saturated subalgebras $A \subset \Bbbk[x_1,\ldots,x_n]$ are considered, i.e., such that for any $f \in A \setminus \Bbbk$ a generative polynomial of f is contained in A.

Досліджено поведінку замкнених поліномів, тобто таких поліномів $f \in \Bbbk[x_1,\ldots,x_n] \setminus \Bbbk$, що підалгебра $\Bbbk[f]$ є інтегрально замкненою в $\Bbbk[x_1,\ldots,x_n]$, у випадку розширень основного поля. З використанням деяких властивостей замкнених поліномів доведено, що кожен поліном $f \in \Bbbk[x_1,\ldots,x_n] \setminus \Bbbk$ після зсувів на константи може бути розкладений у добуток незвідних поліномів одного й того ж степеня. Розглянуто деякі типи насичених підалгебр $A \subset \Bbbk[x_1,\ldots,x_n]$, тобто таких алгебр, що для будь-якого $f \in A \setminus \Bbbk$ породжуючий поліном для f міститься в A.

1. Introduction. Recall that a polynomial $f \in \mathbb{k}[x_1,\ldots,x_n] \setminus \mathbb{k}$ is called *closed* if the subalgebra $\mathbb{k}[f]$ is integrally closed in $\mathbb{k}[x_1,\ldots,x_n]$. It turns out that a polynomial f is closed if and only if f is *non-composite*, i.e., f cannot be presented in the form f = F(g) for some $g \in \mathbb{k}[x_1,\ldots,x_n]$ and $F(t) \in \mathbb{k}[t]$, $\deg(F) > 1$. Because any polynomial in n variables can be obtained from a closed polynomial by taking a polynomial in one variable from it, the problem of studying closed polynomials is of interest. Besides, closed polynomials in two variables appear in a natural way as generators of rings of constants of non-zero derivations.

Let us go briefly through the content of the paper. In Section 2 we collect numerous characterizations of closed polynomials (Theorem 1). A major part of these characterizations is contained in the union of [1-4], etc, but some results seem to be new. In particular, implication (i) \Rightarrow (iv) in Theorem 1 over any perfect field and Proposition 1 solve a problem stated in [1] (Section 8).

Define a generative polynomial h of a polynomial $f \in \mathbb{k}[x_1, \dots, x_n] \setminus \mathbb{k}$ as a closed polynomial such that f = F(h) for some $F \in \mathbb{k}[t]$. Clearly, a generative polynomial exists for any f. Moreover, a generative polynomial is unique up to affine transformations (Corollary 1).

The above-mentioned results allow us to prove that over an algebraically closed field \mathbbm{k} for any $f \in \mathbbm{k}[x_1,\ldots,x_n] \setminus \mathbbm{k}$ and for all but finite number $\mu \in \mathbbm{k}$ the polynomial $f + \mu$ can be decomposed into a product $f + \mu = \alpha \cdot f_{1\mu} \cdot f_{2\mu} \ldots f_{k\mu}, \ \alpha \in \mathbbm{k}^\times, \ k \geqslant 1,$ of irreducible polynomials $f_{i\mu}$ of the same degree d not depending on μ and such that

^{*} Supported by GK 02.445.11.7407 (Russia).

 $f_{i\mu} - f_{j\mu} \in \mathbb{k}$, i, j = 1, ..., k (Corollary 2). This result may be considered as an analogue of the Fundamental Theorem of Algebra for polynomials in many variables.

Moreover, Stein – Lorenzini – Najib's Inequality (Theorem 2) implies that the number of "exceptional" values of μ is less then $\deg(f)$. The same inequality gives an estimate of the number of irreducible factors in $f + \mu$ for exceptional μ , see Theorem 3.

Section 4 is devoted to saturated subalgebras $A \subset \mathbb{k}[x_1,\ldots,x_n]$, i.e., such that for any $f \in A \setminus \mathbb{k}$ a generative polynomial of f is contained in A. Clearly, any subalgebra that is integrally closed in $\mathbb{k}[x_1,\ldots,x_n]$ is saturated. On the other hand, it is known that for monomial subalgebras these two conditions are equivalent. In Theorem 4 we characterize subalgebras of invariants $A = \mathbb{k}[x_1,\ldots,x_n]^G$, where G is a finite group acting linearly on $\mathbb{k}[x_1,\ldots,x_n]$, with A being saturated. This result provides many examples of saturated homogeneous subalgebras that are not integrally closed in $\mathbb{k}[x_1,\ldots,x_n]$.

2. Characterizations of closed polynomials. Let k be an arbitrary field.

Proposition 1. Let $f \in \mathbb{k}[x_1, ..., x_n] \setminus \mathbb{k}$ and $\mathbb{k} \subset L$ be a separable extension of fields. Then f is closed over \mathbb{k} if and only if f is closed over L.

Proof. If f = F(h) over k, then the same decomposition holds over L.

Now assume that f is closed over \mathbb{k} . Consider an element $g \in L[x_1, \ldots, x_n]$ integral over L[f]. We shall prove that $g \in L[f]$. Since the number of non-zero coefficients of g is finite, we may assume that L is a finitely generated extension of \mathbb{k} . Then there exists a finite separable transcendence basis of L over \mathbb{k} , i.e., a finite set $\{\xi_1, \ldots, \xi_m\}$ of elements in L that are algebraically independent over \mathbb{k} and L is a finite separable algebraic extension of $L_1 = \mathbb{k}(\xi_1, \ldots, \xi_m)$.

Let us show that f is closed over L_1 . The subalgebra $\mathbb{k}[f][\xi_1,\ldots,\xi_m]$ is integrally closed in $\mathbb{k}[x_1,\ldots,x_n][\xi_1,\ldots,\xi_m]$ [5] (Chapter V.1, Proposition 12). Let T be the set of all non-zero elements of $\mathbb{k}[\xi_1,\ldots,\xi_m]$. Then the localization $T^{-1}\mathbb{k}[f][\xi_1,\ldots,\xi_m]$ is integrally closed in $T^{-1}\mathbb{k}[x_1,\ldots,x_n][\xi_1,\ldots,\xi_m]$ [5] (Chapter V.1, Proposition 16). This proves that $L_1[f]$ is integrally closed in $L_1[x_1,\ldots,x_n]$.

Fix a basis $\{\omega_1,\ldots,\omega_k\}$ of L over L_1 . With any element $l\in L$ one may associate an L_1 -linear operator $M(l)\colon L\to L,\,M(l)(\omega)=l\omega$. Let tr(l) be the trace of this operator. It is known that there exists a basis $\{\omega_1^\star,\ldots,\omega_k^\star\}$ of L over L_1 such that $tr(\omega_i\omega_j^\star)=\delta_{ij}$ [5] (Chapter V.1.6). Assume that $g=\sum_i\omega_ia_i$ with $a_i\in L_1[x_1,\ldots,x_n]$. Any ω_j^\star is integral over L_1 and thus over $L_1[f]$. This shows that $g\omega_j^\star$ is integral over $L_1[f]$. Set $K=L_1(x_1,\ldots,x_n)$. The element $g\omega_j^\star$ determines a K-linear map $L\otimes_K K\to L\otimes_K K,$ $b\to g\omega_j^\star b$. Since $g\omega_j^\star$ is integral over $L_1[f]$, the trace of this K-linear operator is also integral over $L_1[f]$ [5] (Chapter V.1.6). Note that $tr(g\omega_j^\star)=\sum_i a_i\,tr(\omega_i\omega_j^\star)$. On the other hand, the elements $\{\omega_1\otimes 1,\ldots,\omega_k\otimes 1\}$ form a basis of $L\otimes_K K$ over K. Hence $tr(\omega_i\omega_j^\star)=\delta_{ij}$ and $tr(g\omega_j^\star)=a_j$ is integral over $L_1[f]$. This shows that $a_j\in L_1[f]$ for any j and thus $g\in L[f]$.

The proposition is proved.

Let \mathcal{M} be the set of all subalgebras $\mathbb{k}[f]$, $f \in \mathbb{k}[x_1, \dots, x_n] \setminus \mathbb{k}$, partially ordered by inclusion.

In the next Theorem various characterizations of closed polynomials are collected (see [1-4], etc). A new result here is the implication (i) \Rightarrow (iv).

Theorem 1. The following conditions on a polynomial $f \in \mathbb{k}[x_1, \dots, x_n] \setminus \mathbb{k}$ are equivalent:

- (i) f is non-composite;
- (ii) k[f] is a maximal element of M;
- (iii) f is closed;
- (iv) (\mathbb{k} is a perfect field) $f + \lambda$ is irreducible over $\overline{\mathbb{k}}$ for all but finitely many $\lambda \in \overline{\mathbb{k}}$;
- (v) (\mathbb{k} is a perfect field) there exists $\lambda \in \overline{\mathbb{k}}$ such that $f + \lambda$ is irreducible over $\overline{\mathbb{k}}$;
- (vi) (char k = 0) there exists a (finite) family of derivations $\{D_i\}$ of the algebra $k[x_1, \ldots, x_n]$ such that $k[f] = \cap_i \text{Ker } D_i$.
- **Proof.** (i) \Rightarrow (iv). Let us assume that $\mathbb{k} = \overline{\mathbb{k}}$. Consider a morphism $\phi \colon \mathbb{k}^n \to \mathbb{k}^1$, $\phi(x_1, \dots, x_n) = f(x_1, \dots, x_n)$. We should prove that all fibers of this morphism except for finitely many are irreducible. But it follows from the first Bertini theorem (see, for example, [6, p. 139]).

If a perfect field \mathbb{k} is non-closed, then Proposition 1 shows that $f \in \mathbb{k}[x_1, \dots, x_n]$ is closed over \mathbb{k} implies that f is closed over $\overline{\mathbb{k}}$.

The theorem is proved.

Example 1 [1]. If the field \mathbbm{k} is not perfect, then we can not guarantee that a polynomial f which is closed over \mathbbm{k} , will be closed over $\overline{\mathbb{k}}$ as well. Indeed, let $F = \mathbbm{k}(\eta)$ with $\eta \notin \mathbbm{k}$, $\eta^p \in \mathbbm{k}$. The polynomial $f(x_1, x_2) = x_1^p + \eta^p x_2^p$ is closed over \mathbbm{k} . However, one has a decomposition $f = (x_1 + \eta x_2)^p$ over F. The same example works for (i) $\not\Rightarrow$ (iv) in this case.

Now we are going to show that a generative polynomial is unique up to affine tarnsformations. Here we need two auxiliary lemmas.

Lemma 1. For any $f \in \mathbb{k}[x_1, \ldots, x_n] \setminus \mathbb{k}$, the integral closure A of $\mathbb{k}[f]$ in $\mathbb{k}[x_1, \ldots, x_n]$ has the form $A = \mathbb{k}[h]$ for some closed $h \in \mathbb{k}[x_1, \ldots, x_n]$.

Proof. Since $\operatorname{tr.deg}_{\Bbbk}Q(A)=1$, we have by the theorem of Gordan (see for example [4, p.15]) $Q(A)=\Bbbk(h)$ for some rational function h. The subfield Q(A) contains non-constant polynomials, so by the theorem of E. Noether (see for example [4, p. 16]) the generator h of the subfield Q(A) can be chosen as a polynomial. Note that $\Bbbk(h)\cap \Bbbk[x_1,\ldots,x_n]=\Bbbk[h]$ because any rational function (but polynomial) of a non-constant polynomial cannot be a polynomial. Therefore $A\subseteq \Bbbk[h]$. Since the element h is integral over A and A is integrally closed in $\Bbbk[x_1,\ldots,x_n]$, we have $h\in A$ and $A=\Bbbk[h]$.

The lemma is proved.

Note that in the case $\operatorname{char} \Bbbk = 0$ this lemma follows immediately from the result of Zaks [7].

Lemma 2. Let \mathbb{k} be a field. Polynomials $f, g \in \mathbb{k}[x_1, \dots, x_n] \setminus \mathbb{k}$ are algebraically dependent (over \mathbb{k}) if and only if there exists a closed polynomial $h \in \mathbb{k}[x_1, \dots, x_n]$ such that $f, g \in \mathbb{k}[h]$.

Proof. Assume that f,g are algebraically dependent. By the Noether Normalization Lemma, there exists an element $r \in \mathbb{k}[f,g]$ such that $\mathbb{k}[r] \subset \mathbb{k}[f,g]$ is an integral extension. By Lemma 1, the integral closure of $\mathbb{k}[r]$ in $\mathbb{k}[x_1,\ldots,x_n]$ has a form $\mathbb{k}[h]$ for some closed polynomial h.

Conversely, if $f, g \in k[h]$ then these polynomials are obviously algebraically dependent.

The lemma is proved.

Corollary 1. Let $f \in \mathbb{k}[x_1, \dots, x_n] \setminus \mathbb{k}$. The integral closure of the subalgebra $\mathbb{k}[f]$ in $\mathbb{k}[x_1,\ldots,x_n]$ coincides with $\mathbb{k}[h]$, where h is a generative polynomial of f. In particular, a generative polynomial of f exists and is unique up to affine transformations.

3. A factorization theorem. Let us assume in this section that the ground field k is algebraically closed. Theorem 1 states that for a closed polynomial $h \in \mathbb{k}[x_1,\ldots,x_n]$ the polynomial $h + \lambda$ may be reducible only for finitely many $\lambda \in \mathbb{k}$. Denote by E(h)the set of $\lambda \in \mathbb{K}$ such that $h + \lambda$ is reducible and by e(h) the cardinality of this set. Stein's inequality claims that

$$e(h) < \deg h$$
.

Now for any $\lambda \in \mathbb{k}$ consider a decomposition

$$h + \lambda = \prod_{i=1}^{n(\lambda,h)} h_{\lambda,i}^{d_{\lambda,i}}$$

with $h_{\lambda,i}$ being irreducible. A more precise version of Stein's inequality is given in the next theorem.

Theorem 2 [Stein – Lorenzini – Najib's inequality]. Let $h \in \mathbb{k}[x_1, \ldots, x_n]$ be a closed polynomial. Then

$$\sum_{\lambda} (n(\lambda, h) - 1) < \min_{\lambda} (\sum_{i} \deg(h_{\lambda, i})).$$

This inequality has rather long history. Stein [8] proved his inequality in characteristic zero for n=2. For any n over $\mathbb{k}=\mathbb{C}$ this inequality was proved in [9]. In 1993, Lorenzini [10] obtained the inequality as in Theorem 2 in any characteristic, but only for n=2 (see also [11] and [12]). Finally, in [13] the proof for an arbitrary n was reduced to the case n=2.

Now take any $f \in \mathbb{k}[x_1, \dots, x_n] \setminus \mathbb{k}$, $\mu \in \mathbb{k}$ and consider a decomposition

$$f + \mu = \alpha \cdot \prod_{i=1}^{n(\mu, f)} f_{\mu, i}^{d_{\mu, i}}$$

with $\alpha \in \mathbb{k}^{\times}$ and $f_{\mu,i}$ being irreducible.

Let us state the main result of this section.

Theorem 3. Let $f \in \mathbb{k}[x_1,\ldots,x_n] \setminus \mathbb{k}$. There exists a finite subset E(f) = $= \{\mu_1, \ldots, \mu_{e(f)} \mid \mu_i \in \mathbb{k}\}$ with $e(f) < \deg f$ such that:

- (1) for any $\mu \notin E(f)$ one has $f + \mu = \alpha \cdot f_{\mu,1} \cdot f_{\mu,2} \dots f_{\mu,k}$, where all $f_{\mu,i}$ are irreducible and $f_{\mu,i} - f_{\mu,j} \in \mathbb{k}$;
- (2) $f_{\mu,i} f_{\nu,j} \in \mathbb{k}^{\times}$ for any $\mu, \nu \notin E(f)$ with $\nu \neq \mu$; in particular, the degree $d = \deg(f_{\mu,i})$ does not depend on i and μ ;
 - (3) $\deg(f_{\mu,i}) \leq d$ for any $\mu \in \mathbb{k}$;

(4)
$$\sum_{\mu} \left(n(\mu, f) - \frac{\deg(f)}{d} \right) < \min_{\mu} \left(\sum_{i=1}^{n(\mu, f)} \deg(f_{\mu, i}) \right)$$
. **Proof.** Let h be the generative polynomial of f and $f = F(h)$. Then

$$F(h) + \mu = \alpha \cdot (h + \lambda_{\mu,1}) \dots (h + \lambda_{\mu,k})$$

for some $\lambda_{\mu,1},\ldots,\lambda_{\mu,k}\in \mathbb{k}$. Hence for any μ with $\lambda_{\mu,1},\ldots,\lambda_{\mu,k}\notin E(h)$ we have a decomposition of $f + \mu$ as in (1). Note that $\lambda_{\mu,i} \neq \lambda_{\nu,j}$ for $\mu \neq \nu$. This proves (2) with $d = \deg(h)$ and gives the inequalities

$$e(f) < e(h) < \deg(h) < \deg(f)$$
.

Any $f_{\mu,i}$ is a divisor of some $h + \lambda$. This implies (3). Finally, (4) may be obtained as:

$$\sum_{\mu} \left(n(\mu, f) - \frac{\deg(f)}{d} \right) \le \sum_{\lambda} (n(\lambda, h) - 1) < 0$$

$$< \min_{\lambda} \left(\sum_{i} \deg(h_{\lambda,i}) \right) \le \min_{\mu} \left(\sum_{j} \deg(f_{\mu,j}) \right).$$

The theorem is proved.

Remark 1. It follows from the proof of Theorem 3 that

$$E(f) = \{-F(-\lambda) \mid \lambda \in E(h)\};$$

if f is not closed, then $e(f) < \frac{1}{2}\deg(f)$.

Corollary 2. Let $f \in \mathbb{k}[x_1, \dots, x_n] \setminus \mathbb{k}$. Then for all but finite number $\mu \in \mathbb{k}$, the polynomial $f + \mu$ can be decomposed into the product

$$f + \mu = \alpha \cdot f_{1\mu} \cdot f_{2\mu} \dots f_{k\mu}, \quad \alpha \in \mathbb{k}^{\times}, \quad k \geqslant 1,$$

of irreducible polynomials $f_{i\mu}$ of the same degree d not depending on the number μ and such that $f_{i\mu} - f_{j\mu} \in \mathbb{k}$, i, j = 1, ..., k. The number of exceptional μ' s for which such a decomposition does not exist is at most $\deg f - 1$.

Example 2. Take $f(x_1,x_2)=x_1^2x_2^4-2x_1^2x_2^3+x_1^2x_2^2+2x_1x_2^3-2x_1x_2^2+x_2^2+1$. Here $h=x_1x_2(x_2-1)+x_2$ and $F(t)=t^2+1$. It is easy to check that $E(h)=\{0,-1\}$, thus $E(f)=\{-1,-2\}$. We have decompositions:

$$\mu = -1: f - 1 = x_2^2 (x_1 x_2 - x_1 + 1)^2;$$

$$\mu = -2: f - 2 = (x_2 - 1)(x_1 x_2 + 1)(x_1 x_2 (x_2 - 1) + x_2 + 1);$$

$$\mu \neq -1, -2: f + \mu = (x_1 x_2 (x_2 - 1) + x_2 + \lambda)(x_1 x_2 (x_2 - 1) + x_2 - \lambda), \lambda^2 = -1 - \mu.$$

In this case $\deg(f)=6,\, d=3,\, \sum_{\mu}(n(\mu,f)-2)=1$ and

$$\min_{\mu} \left(\sum_{i} \deg(f_{\mu,i}) \right) = \min\{3, 6, 6\} = 3.$$

4. Saturated subalgebras and invariants of finite groups. Let k be a field.

Definition 1. A subalgebra $A \subseteq \mathbb{k}[x_1, \dots, x_n]$ is said to be saturated if for any $f \in A \setminus \mathbb{k}$ the generative polynomial of f is contained in A.

Clearly, the intersection of a family of saturated subalgebras in $k[x_1, \ldots, x_n]$ is again a saturated subalgebra. So we may define *the saturation* S(A) of a subalgebra A as the minimal saturated subalgebra containing A.

If A is integrally closed in $\mathbb{k}[x_1,\ldots,x_n]$, then A is saturated. By Theorem 1, if $A=\mathbb{k}[f]$, then the converse is true. Moreover, the converse is true if A is a monomial subalgebra. In order to prove it, consider a submonoid P(A) in $\mathbb{Z}^n_{\geq 0}$ consisting of multidegrees of all monomials in A. Then monomials corresponding to elements of the "saturated" semigroup $P'(A)=(\mathbb{Q}_{\geq 0}P(A))\cap\mathbb{Z}^n_{\geq 0}$ are generative elements of A. On the other hand, it is a basic fact of toric geometry that the monomial subalgebra corresponding to P'(A) is integrally closed in $\mathbb{k}[x_1,\ldots,x_n]$, see for example [14] (Section 2.1).

Now we come from monomial to homogeneous saturated subalgebras. The degree of monomials $\deg(\alpha x_1^{i_1} \dots x_n^{i_n}) = i_1 + \dots + i_n$ defines a $\mathbb{Z}_{\geq 0}$ -grading on the polynomial

algebra $k[x_1, \ldots, x_n]$. Recall that a subalgebra $A \subset k[x_1, \ldots, x_n]$ is called *homogeneous* if for any element $a \in A$ all its homogeneous components belong to A.

Consider a subgroup $G \subset GL_n(\mathbb{k})$. The linear action $G \colon \mathbb{k}[x_1, \dots, x_n] \to \mathbb{k}[x_1, \dots, x_n]$ determines the homogeneous subalgebra $\mathbb{k}[x_1, \dots, x_n]^G$ of G-invariant polynomials.

Theorem 4. Let $G \subseteq GL_n(\mathbb{k})$ be a finite subgroup. The subalgebra $A = \mathbb{k}[x_1,\ldots,x_n]^G$ is saturated in $\mathbb{k}[x_1,\ldots,x_n]$ if and only if G admits no non-trivial homomorphisms $G \to \mathbb{k}^{\times}$.

Proof. Assume that there is a non-trivial homomorphism $\phi \colon G \to \mathbb{k}^{\times}$. Let G_{ϕ} be the kernel of ϕ and $G^{\phi} = G/G_{\phi}$. Then G^{ϕ} is a finite cyclic group of some order k and it may be identified with a subgroup of \mathbb{k}^{\times} .

Lemma 3. Let H be a cyclic subgroup of order k in \mathbb{k}^{\times} . Then any finite dimensional (over \mathbb{k}) H-module W is a direct sum of one-dimensional submodules.

Proof. The polynomial $X^k - 1$ annihilates the linear operator P in GL(W) corresponding to a generator of H. By assumption, $X^k - 1$ is a product of k non-proportional linear factors in k[X]. This shows that the operator P is diagonalizable.

Lemma 4. Let $H \subset G$ be a proper subgroup. Then $\mathbb{k}[x_1,\ldots,x_n]^H \neq \mathbb{k}[x_1,\ldots,x_n]^G$.

Proof. Let K be a field and G a finite group of its automorphisms. By Artin's Theorem [15] (Section 2.1, Theorem 1.8), $K^G \subset K$ is a Galois extension and $[K \colon K^G] = |G|$. This implies $\mathbb{k}(x_1, \dots, x_n)^H \neq \mathbb{k}(x_1, \dots, x_n)^G$. The implication

$$\frac{f}{h} \in \mathbb{k}(x_1, \dots, x_n)^G \implies \frac{f \prod_{g \in G, g \neq e} g \cdot f}{h \prod_{g \in G, g \neq e} g \cdot f} \in \mathbb{k}(x_1, \dots, x_n)^G$$

shows that $\mathbb{k}(x_1,\ldots,x_n)^G$ (resp. $\mathbb{k}(x_1,\ldots,x_n)^H$) is the quotient field of $\mathbb{k}[x_1,\ldots,x_n]^G$ (resp. $\mathbb{k}[x_1,\ldots,x_n]^H$), thus $\mathbb{k}[x_1,\ldots,x_n]^H\neq \mathbb{k}[x_1,\ldots,x_n]^G$.

The lemma is proved.

Now we may take a finite-dimensional G-submodule $W \subset \mathbb{k}[x_1,\ldots,x_n]^{G_\phi}$ which is not contained in $\mathbb{k}[x_1,\ldots,x_n]^G$. Then W is a G^ϕ -module. By Lemma 3, one may find a G^ϕ -eigenvector $h \in W, \ h \notin \mathbb{k}[x_1,\ldots,x_n]^G$. Then $h^k \in \mathbb{k}[x_1,\ldots,x_n]^G$ and $\mathbb{k}[x_1,\ldots,x_n]^G$ is not saturated.

Conversely, assume that any homomorphism $\chi\colon G\to \Bbbk$ is trivial. If h is a generative element of a polynomial $f\in \Bbbk[x_1,\ldots,x_n]^G$, then for any $g\in G$ the element $g\cdot h$ is also a generative element of f. By Corollary 1, the generative element is unique up to affine transformation. Without loss of generality we can assume that the constant term of h is zero. Then the element $g\cdot h$ has obviously zero constant term and by Corollary 1 this element is proportional to h for any $g\in G$. Thus G acts on the line $\langle h\rangle$ via some character. But any character of G is trivial, so $h\in \Bbbk[x_1,\ldots,x_n]^G$, and $\Bbbk[x_1,\ldots,x_n]^G$ is saturated.

The theorem is proved.

Remark 2. Since all coefficients of the polynomial

$$F_f(T) = \prod_{g \in G} (T - g \cdot f)$$

are in $\mathbb{k}[x_1,\ldots,x_n]^G$, any element $f\in\mathbb{k}[x_1,\ldots,x_n]$ is integral over $\mathbb{k}[x_1,\ldots,x_n]^G$. Thus Theorem 4 provides many saturated homogeneous subalgebras that are not integrally closed in $\mathbb{k}[x_1,\ldots,x_n]$.

Corollary 3. Assume that \mathbb{k} is algebraically closed and char $\mathbb{k} = 0$.

- (1) The subalgebra $k[x_1, ..., x_n]^G$ is saturated in $k[x_1, ..., x_n]$ if and only if G coincides with its commutant.
 - (2) The saturation of $\mathbb{K}[x_1, \dots, x_n]^G$ is $\mathbb{K}[x_1, \dots, x_n]$ if and only if G is solvable.
- **Example 3.** In general, the saturation S(A) is not generated by generative elements of elements of A. Indeed, take any field $\mathbb k$ that contains a primitive root of unit of degree six. Let $G=S_3$ be the permutation group acting naturally on $\mathbb k[x_1,x_2,x_3]$ and $A_3\subset S_3$ be the alternating subgroup. The proof of Theorem 4 shows that any generative element of an S_3 -invariant is an S_3 -semiinvariant and thus belongs to $\mathbb k[x_1,x_2,x_3]^{A_3}$. On the other hand, $S(\mathbb k[x_1,x_2,x_3]^{S_3})=\mathbb k[x_1,x_2,x_3]$.
- **Example 4.** It follows from Theorem 4 that the property of a subalgebra to be saturated is not preserved under field extensions. Let us give an explicit example of this effect.
- Let $\mathbb{k}=\mathbb{R}$ and G be the cyclic group of order three acting on \mathbb{R}^2 by rotations. We begin with calculation of generators of the algebra of invariants $\mathbb{R}[x,y]^G$. Consider the complex polynomial algebra $\mathbb{C}[x,y]=\mathbb{R}[x,y]\oplus i\mathbb{R}[x,y]$ with the natural G-action. Then $\mathbb{C}[x,y]^G=\mathbb{R}[x,y]^G\oplus i\mathbb{R}[x,y]^G$. Put $z=x+\mathrm{i}y,\,\overline{z}=x-\mathrm{i}y$. Clearly, $\mathbb{C}[x,y]=\mathbb{C}[z,\overline{z}],$ and G acts on z,\overline{z} as $z\to\epsilon z,\,\overline{z}\to\overline{\epsilon z},$ where $\epsilon^3=1$. This implies $\mathbb{C}[z,\overline{z}]^G=\mathbb{C}[f_1,f_2,f_3]$ with $f_1=z^3,\,f_2=\overline{z}^3$ and $f_3=z\overline{z}.$ Finally, $\mathbb{R}[x,y]^G=\mathbb{R}[\mathrm{Re}(f_i),\mathrm{Im}(f_i);\,i=1,2,3]=\mathbb{R}[x^3-3xy^2,\,y^3-3x^2y,\,x^2+y^2].$
- By Theorem 4, the subalgebra $\mathbb{R}[x,y]^G$ is saturated in $\mathbb{R}[x,y]$. On the other hand, the subalgebra $\mathbb{C}[x^3-3xy^2,y^3-3x^2y,x^2+y^2]$ contains $x^3-3xy^2+\mathrm{i}(y^3-3x^2y)==(x-\mathrm{i}y)^3$.
- Ayad M. Sur les polynômes f(X,Y) tels que K[f] est intégralement fermé dans K[X,Y] // Acta arithm. - 2002. - 105, № 1. - P. 9-28.
- 2. Nowicki A. On the jacobian equation J(f,g)=0 for polynomials in k[x,y] // Nagoya Math. J. 1988. 109. P. 151–157.
- 3. Nowicki A., Nagata M. Rings of constants for k-derivations in $k[x_1, \ldots, x_n]$ // J. Math. Kyoto Univ. 1988. 28. P. 111–118.
- 4. Schinzel A. Polynomials with special regard to reducibility. Cambridge Univ. Press, 2000.
- 5. Bourbaki N. Elements of mathematics, commutative algebra. Berlin: Springer, 1989.
- 6. Shafarevich I. R. Basic algebraic geometry I. Berlin: Springer, 1994.
- 7. Zaks A. Dedekind subrings of $k[x_1, \ldots, x_n]$ are rings of polynomials // Isr. J. Math. 1971. 9. P. 285–289
- Stein Y. The total reducibility order of a polynomial in two variables // Ibid. 1989. 68. P. 109–122.
- 9. Cygan E. Factorization of polynomials // Bull. Polish. Acad. Sci. Math. 1992. 40. P. 45 52.
- 10. Lorenzini D. Reducibility of polynomials in two variables // J. Algebra. 1993. 156. P. 65 75.
- Kaliman S. Two remarks on polynomials in two variables // Pacif. J. Math. 1992. 154. P. 285 – 295.
- Vistoli A. The number of reducible hypersurfaces in a pencil // Invent. math. 1993. 112. P. 247 – 262.
- Najib S. Une généralisation de l'inégalité de Stein-Lorenzini // J. Algebra. 2005. 292. -P. 566-573.
- 14. Fulton W. Introduction to toric varieties // Ann. Math. Stud. 1993. 131.
- 15. Lang S. Algebra. Revised Third Edition. Springer, 2002. 211.

Received 14.05.07