UDC 517.42
H. Wei (Guangxi Teacher's College, Zhongshan, China), Y. Wang (Zhongshan Univ., China)

c^{*}-SUPPLEMENTED SUBGROUPS
 AND p-NILPOTENCY OF FINITE GROUPS*
 c^{*}-ДОПОВНЕНІ ПІДГРУПИ
 ТА p-НІЛЬПОТЕНТНІСТЬ СКІНЧЕННИХ ГРУП

A subgroup H of a finite group G is said to be c^{\star}-supplemented in G if there exists a subgroup K such that $G=H K$ and $H \cap K$ is permutable in G. It is proved that a finite group G which is S_{4}-free is p nilpotent if $N_{G}(P)$ is p-nilpotent and, for all $x \in G \backslash N_{G}(P)$, every minimal subgroup of $P \cap P^{x} \cap G^{\mathcal{N}_{p}}$ is c^{\star}-supplemented in P and, if $p=2$, one of the following conditions holds: (a) Every cyclic subgroup of $P \cap P^{x} \cap G^{\mathcal{N}_{p}}$ of order 4 is c^{\star}-supplemented in P; (b) $\left[\Omega_{2}\left(P \cap P^{x} \cap G^{\mathcal{N}_{p}}\right), P\right] \leq Z\left(P \cap G^{\mathcal{N}_{p}}\right)$; (c) P is quaternion-free, where P a Sylow p-subgroup of G and $G^{\mathcal{N}_{p}}$ the p-nilpotent residual of G. That will extend and improve some known results.

Підгрупа H скінченної групи G називається c^{\star}-доповненою в G, якщо існує підгрупа K така, що $G=H K$ та $H \cap K є$ перестановочною в G. Доведено, що скінченна група G, яка є S_{4}-вільною, є p-нільпотентною, якщо $N_{G}(P)$-нільпотентна і для всіх $x \in G \backslash N_{G}(P)$ кожна мінімальна підгрупа із $P \cap P^{x} \cap G^{\mathcal{N}_{p}} \in c^{\star}$-доповненою в P та, якщо $p=2$, виконується одна з наступних умов: а) кожна циклічна підгрупа порядку 4 із $P \cap P^{x} \cap G^{\mathcal{N}_{p}} \in c^{\star}$-доповненою в P; b) $\left[\Omega_{2}\left(P \cap P^{x} \cap G^{\mathcal{N}_{p}}\right), P\right] \leq Z(P \cap$ $\cap G^{\mathcal{N}_{p}}$; с) P є безкватерніонною, де P - силовська p-підгрупа групи G та $G^{\mathcal{N}_{p}}$ - p-нільпотентний залишок групи G. Тим самим поширено та покращено деякі відомі результати.

1. Introduction. All groups considered will be finite. For a formation \mathcal{F} and a group G, there exists a smallest normal subgroup of G, called the \mathcal{F}-residual of G and denoted by $G^{\mathcal{F}}$, such that $G / G^{\mathcal{F}} \in \mathcal{F}$ (refer [1]). Throughout this paper, \mathcal{N} and \mathcal{N}_{p} will denote the classes of nilpotent groups and p-nilpotent groups, respectively. A 2 -group is called quaternion-free if it has no section isomorphic to the quaternion group of order 8 .

General speaking, a group with a p-nilpotent normalizer of the Sylow p-subgroup need not be a p-nilpotent group. However, if one adds some embedded properties on the Sylow p-subgroup, he may obtain his desired result. For example, Wielandt proved that a group G is p-nilpotent if it has a regular Sylow p-subgroup whose G-normalizer is p-nilpotent [2]. Ballester-Bolinches and Esteban-Romero showed that a group G is p-nilpotent if it has a modular Sylow p-subgroup whose G-normalizer is p-nilpotent [3]. Moreover, Guo and Shum obtained a similar result by use of the permutability of some minimal subgroups of Sylow p-subgroups [4].

In the present paper, we will push further the studies. First, we introduce the c^{\star} supplementation of subgroups which is a unify and generalization of the permutability and the c-supplementation [5, 6] of subgroups. Then, we give several sufficient conditions for a group to be p-nilpotent by using the c^{\star}-supplementation of some minimal p-subgroups. In detail, we obtain the following main theorem:

Theorem 1.1. Let G be a group such that G is $S_{4}-$ free and let P be a Sylow psubgroup of G. Then G is p-nilpotent if $N_{G}(P)$ is p-nilpotent and, for all $x \in G \backslash N_{G}(P)$, one of the following conditions holds:
(a) Every cyclic subgroup of $P \cap P^{x} \cap G^{\mathcal{N}_{p}}$ of order p or $4($ if $p=2)$ is c^{\star} supplemented in P;

[^0](b) Every minimal subgroup of $P \cap P^{x} \cap G^{\mathcal{N}_{p}}$ is c^{\star}-supplemented in P and, if $p=2$, $\left[\Omega_{2}\left(P \cap P^{x} \cap G^{\mathcal{N}_{p}}\right), P\right] \leq Z\left(P \cap G^{\mathcal{N}_{p}}\right) ;$
(c) Every minimal subgroup of $P \cap P^{x} \cap G^{\mathcal{N}_{p}}$ is c^{\star}-supplemented in P and P is quaternion-free.

Following the proof of Theorem 1.1, we can prove the Theorem 1.2. It can be considered as an extension of the above-mentioned result of Ballester-Bolinches and EstebanRomero.

Theorem 1.2. Let P be a Sylow p-subgroup of a group G. Then G is p-nilpotent if $N_{G}(P)$ is p-nilpotent and, for all $x \in G \backslash N_{G}(P)$, one of the followings holds:
(a) Every cyclic subgroup of $P \cap P^{x} \cap G^{\mathcal{N}_{p}}$ of order p or 4 (if $p=2$) is permutable in P;
(b) Every minimal subgroup of $P \cap P^{x} \cap G^{\mathcal{N}_{p}}$ is permutable in P and, if $p=2$, $\left[\Omega_{2}\left(P \cap P^{x} \cap G^{\mathcal{N}_{p}}\right), P\right] \leq Z\left(P \cap G^{\mathcal{N}_{p}}\right) ;$
(c) Every minimal subgroup of $P \cap P^{x} \cap G^{\mathcal{N}_{p}}$ is permutable in P and, if $p=2, P$ is quaternion-free.

As an application of Theorem 1.1, we get the following theorem:
Theorem 1.3. Let G be a group such that G is S_{4}-free and let P be a Sylow psubgroup of G, where p is a prime divisor of $|G|$ with $(|G|, p-1)=1$. Then G is p-nilpotent if one of the following conditions holds:
(a) Every cyclic subgroup of $P \cap G^{\mathcal{N}_{p}}$ of order p or 4 (if $p=2$) is c^{\star}-supplemented in $N_{G}(P)$;
(b) Every minimal subgroup of $P \cap G^{\mathcal{N}_{p}}$ is c^{\star}-supplemented in $N_{G}(P)$ and, if $p=2$, P is quaternion-free.

Our results improve and extend the following theorems of Guo and Shum [7, 8].
Theorem 1.4 ([7], Main theorem). Let G be a group such that G is S_{4}-free and let P be a Sylow p-subgroup of G, where p is the smallest prime divisor of $|G|$. If every minimal subgroup of $P \cap G^{\mathcal{N}}$ is c-supplemented in $N_{G}(P)$ and, when $p=2, P$ is quaternion-free, then G is p-nilpotent.

Theorem 1.5 ([8], Main theorem). Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of $|G|$ with $(|G|, p-1)=1$. If every minimal subgroup of $P \cap G^{\mathcal{N}}$ is permutable in $N_{G}(P)$ and, when $p=2$, either every cyclic subgroup of $P \cap G^{\mathcal{N}}$ of order 4 is permutable in $N_{G}(P)$ or P is quaternion-free, then G is p-nilpotent.
2. Preliminaries. Recall that a subgroup H of a group G is permutable (or quasinormal) in G if H permutes with every subgroup of G. H is c-supplemented in G if there exists a subgroup K_{1} of G such that $G=H K_{1}$ and $H \cap K_{1} \leq H_{G}=\operatorname{Core}_{G}(H)$ [5, 6]; in this case, if we denote $K=H_{G} K_{1}$, then $G=H K$ and $H \cap K=H_{G}$; of course, $H \cap K$ is permutable in G. Based on this observation, we introduce:

Definition 2.1. A subgroup H of a group G is said to be c^{\star}-supplemented in G if there exists a subgroup K of G such that $G=H K$ and $H \cap K$ is a permutable subgroup of G. We say that K is a c^{\star}-supplement of H in G.

It is clear from Definition 2.1 that a permutable or c-supplemented subgroup must be a c^{\star}-supplemented subgroup. But the converses are not true. For example, let $G=A_{4}$, the alternating group of degree 4. Then any Sylow 3 -subgroup of G is c-supplemented but not permutable in G. If we take $G=\left\langle a, b \mid a^{16}=b^{4}=1, b a=a^{3} b\right\rangle$, then $b^{2}\left(a^{i} b^{j}\right)=$ $=\left(a^{i} b^{j}\right)^{9+2\left((-1)^{j}-1\right)} b^{2}$. Hence $\left\langle b^{2}\right\rangle$ is permutable in G. However, $\left\langle b^{2}\right\rangle$ is not c-supplemented in G as $\left\langle b^{2}\right\rangle$ is in $\Phi(G)$ and not normal in G.

The following lemma on c^{\star}-supplemented subgroups is crucial in the sequel. The proof is a routine check, we omit its detail.

Lemma 2.1. Let H be a subgroup of a group G. Then:
(1) If H is c^{\star}-supplemented in $G, H \leq M \leq G$, then H is c^{\star}-supplemented in M;
(2) Let $N \triangleleft G$ and $N \leq H$. Then H is c^{\star}-supplemented in G if and only if H / N is c^{\star}-supplemented in G / N;
(3) Let π be a set of primes, H a π-subgroup and N a normal π^{\prime}-subgroup of G. If H is c^{\star}-supplemented in G, then $H N / N$ is c^{\star}-supplemented in G / N;
(4) Let $L \leq G$ and $H \leq \Phi(L)$. If H is c^{\star}-supplemented in G, then H is permutable in G.

Lemma 2.2. Let c be an element of a group G of order p, where p is a prime divisor of $|G|$. If $\langle c\rangle$ is permutable in G, then c is centralized by every element of G of order p or 4 (if $p=2$).

Proof. Let x be an element of G with order p or 4 (if $p=2$). By the hypotheses, $\langle x\rangle\langle c\rangle=\langle c\rangle\langle x\rangle$. Clearly, if x is of order p, then c is centralized by c. Now assume that $p=2$ and x is of order 4. If $[c, x] \neq 1$, then $c^{-1} x c=x^{-1}$ and $(x c)^{2}=1$. Furthermore, $|\langle x\rangle\langle c\rangle| \leq 4$, of course, $[c, x]=1$, a contradiction. We are done.

Lemma 2.3 ([9], Lemma 2). Let \mathcal{F} be a saturated formation. Assume that G is a non- \mathcal{F}-group and there exists a maximal subgroup M of G such that $M \in \mathcal{F}$ and $G=$ $=F(G) M$, where $F(G)$ is the Fitting subgroup of G. Then:
(1) $G^{\mathcal{F}} /\left(G^{\mathcal{F}}\right)^{\prime}$ is a chief factor of G;
(2) $G^{\mathcal{F}}$ is a p-group for some prime p;
(3) $G^{\mathcal{F}}$ has exponent p if $p>2$ and exponent at most 4 if $p=2$;
(4) $G^{\mathcal{F}}$ is either an elementary abelian group or $\left(G^{\mathcal{F}}\right)^{\prime}=Z\left(G^{\mathcal{F}}\right)=\Phi\left(G^{\mathcal{F}}\right)$ is an elementary abelian group.

Lemma 2.4 ([10], Lemma 2.8(1)). Let M be a maximal subgroup of a group G and let P be a normal p-subgroup of G such that $G=P M$, where p a prime. Then $P \cap M$ is a normal subgroup of G.

Lemma 2.5 ([11], Theorem 2.8). If a solvable group G has a Sylow 2-subgroup P which is quaternion-free, then $P \cap Z(G) \cap G^{\mathcal{N}}=1$.

Lemma 2.6. Let G be a group and let p be a prime number dividing $|G|$ with $(|G|, p-1)=1$. Then:
(1) If N is normal in G of order p, then N lies in $Z(G)$;
(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent;
(3) If M is a subgroup of G of index p, then M is normal in G.

Proof. (1) Since $|\operatorname{Aut}(N)|=p-1$ and $G / C_{G}(N)$ is isomorphic to a subgroup of $\operatorname{Aut}(N),\left|G / C_{G}(N)\right|$ must divide $(|G|, p-1)=1$. It follows that $G=C_{G}(N)$ and $N \leq Z(G)$.
(2) Let $P \in \operatorname{Syl}_{p}(G)$ and $|P|=p^{n}$. Since P is cyclic, $|\operatorname{Aut}(P)|=p^{n-1}(p-1)$. Again, $N_{G}(P) / C_{G}(P)$ is isomorphic to a subgroup of $\operatorname{Aut}(P)$, so $\left|N_{G}(P) / C_{G}(P)\right|$ must divide $(|G|, p-1)=1$. Thus $N_{G}(P)=C_{G}(P)$, and statement (2) follows by the wellknown Burnside theorem.
(3) We may assume that $M_{G}=1$ by induction. As everyone knows the result is true in the case where $p=2$. So assume that $p>2$ and consequently G is of odd order as $(|G|, p-1)=1$. Now we know that G is solvable by the Odd Order Theorem. Let N be a minimal normal subgroup of G. Then N is an elementary abelian q-group for some prime q. It is obvious that $G=M N$ and $M \cap N$ is normal in G. Therefore $M \cap N=1$
and $|N|=|G: M|=p$. Now $N \leq Z(G)$ by statement (1) and, of course, M is normal in G as desired.

3. Proofs of theorems.

Proof of Theorem 1.1. Let G be a minimal counterexample. Then we have the following claims:
(1) M is p-nilpotent whenever $P \leq M<G$.

Since $N_{M}(P) \leq N_{G}(P), N_{M}(P)$ is p-nilpotent. Let x be an element of $M \backslash N_{M}(P)$. Then, since $P \cap P^{x} \cap M^{\mathcal{N}_{p}} \leq P \cap P^{x} \cap G^{\mathcal{N}_{p}}$, every minimal subgroup of $P \cap P^{x} \cap M^{\mathcal{N}_{p}}$ is c^{\star}-supplemented in P by Lemma 2.1. If G satisfies (a), then every cyclic subgroup of $P \cap P^{x} \cap M^{\mathcal{N}_{p}}$ with order 4 is c^{\star}-supplemented in P. If G satisfies (b), then

$$
\left[\Omega_{2}\left(P \cap P^{x} \cap M^{\mathcal{N}_{p}}\right), P\right] \leq Z\left(P \cap G^{\mathcal{N}_{p}}\right) \cap\left(P \cap M^{\mathcal{N}_{p}}\right) \leq Z\left(P \cap M^{\mathcal{N}_{p}}\right)
$$

Now we see that M satisfies the hypotheses of the theorem. The minimality of G implies that M is p-nilpotent.
(2) $O_{p^{\prime}}(G)=1$.

If not, we consider $\bar{G}=G / N$, where $N=O_{p^{\prime}}(G)$. Clearly $N_{\bar{G}}(\bar{P})=N_{G}(P) N / N$ is p-nilpotent, where $\bar{P}=P N / N$. For any $x N \in \bar{G} \backslash N_{\bar{G}}(\bar{P})$, since $\bar{G}^{\mathcal{N}_{p}}=G^{\mathcal{N}_{p}} N / N$ and $P \cap P^{x} N=P^{x n}$ for some $n \in N$, we have

$$
\bar{P} \cap \bar{P}^{x N} \cap \bar{G}^{\mathcal{N}_{p}}=\left(P \cap P^{x n} \cap G^{\mathcal{N}_{p}} N\right) N / N=\left(P \cap P^{x n} \cap G^{\mathcal{N}_{p}}\right) N / N
$$

Because $x N \in \bar{G} \backslash N_{\bar{G}}(\bar{P}), x n \in G \backslash N_{G}(P)$. Now let $\bar{P}_{0}=P_{0} N / N$ be a minimal subgroup of $\bar{P} \cap \bar{P}^{x N} \cap \bar{G}^{\mathcal{N}_{p}}$. We may assume that $P_{0}=\langle y\rangle$, where y is an element of $P \cap P^{x n} \cap G^{\mathcal{N}_{p}}$ of order p. By the hypotheses, there exists a subgroup K_{0} of P such that $P=P_{0} K_{0}$ and $P_{0} \cap K_{0}$ is a permutable subgroup of P. It follows that $P N / N=$ $=\left(P_{0} N / N\right)\left(K_{0} N / N\right)$ and $\left(P_{0} N / N\right) \cap\left(K_{0} N / N\right)=\left(P_{0} \cap K_{0} N\right) N / N$. If $P_{0} \cap K_{0} N=$ $=P_{0}$ then $P_{0} \leq P \cap K_{0} N=K_{0}$ and consequently $P_{0}=P_{0} \cap K_{0}$ is permutable in P. In this case, \bar{P}_{0} is permutable in \bar{P}. If $P_{0} \cap K_{0} N=1$ then \bar{P}_{0} is complemented in \bar{P}. Thus \bar{P}_{0} is c^{\star}-supplemented in \bar{P}. Assume that G satisfies (a). Let $\bar{P}_{1}=P_{1} N / N$ be a cyclic subgroup of $\bar{P} \cap \bar{P}^{x N} \cap \bar{G}^{\mathcal{N}_{p}}$ of order 4 . We may assume that $P_{1}=\langle z\rangle$, where z is an element of $P \cap P^{x n} \cap G^{\mathcal{N}_{p}}$ of order 4. Since P_{1} is c^{\star}-supplemented in P, $P=P_{1} K_{1}$ and $P_{1} \cap K_{1}$ is permutable in P. We have $P N / N=\left(P_{1} N / N\right)\left(K_{1} N / N\right)$ and $\left(P_{1} N / N\right) \cap\left(K_{1} N / N\right)=\left(P_{1} \cap K_{1} N\right) N / N$. If $P_{1} \cap K_{1} N=1$ then \bar{P}_{1} is complemented in \bar{P}. If $P_{1} \cap K_{1} N=\left\langle z^{2}\right\rangle$, since $z^{2} \leq \Phi(P)$ and $\left\langle z^{2}\right\rangle$ is c^{\star}-supplemented in $P,\left\langle z^{2}\right\rangle$ is permutable in P by Lemma 2.1. Furthermore, $\left\langle z^{2}\right\rangle N / N$ is permutable in $P N / N$ and \bar{P}_{1} is c^{\star}-supplemented in \bar{P}. If $P_{1} \cap K_{1} N=P_{1}$ then $P_{1}=P_{1} \cap K_{1}$ is permutable in P and \bar{P}_{1} is permutable in \bar{P}. In a ward, \bar{P}_{1} is c^{\star}-supplemented in \bar{P}. Now assume that G satisfies (b), then

$$
\left[\Omega_{2}\left(\bar{P} \cap \bar{P}^{x N} \cap \bar{G}^{\mathcal{N}_{p}}\right), \bar{P}\right]=\left[\Omega_{2}\left(P \cap P^{x n} \cap G^{\mathcal{N}_{p}}\right), P\right] N / N \leq Z\left(P \cap G^{\mathcal{N}_{p}}\right) N / N
$$

namely

$$
\left[\Omega_{2}\left(\bar{P} \cap \bar{P}^{x N} \cap \bar{G}^{\mathcal{N}_{p}}\right), \bar{P}\right] \leq Z\left(\bar{P} \cap \bar{G}^{\mathcal{N}_{p}}\right)
$$

If G satisfies (c) then $\bar{P} \cong P$ is quaternion-free. Therefore $\bar{G}=G / N$ satisfies the hypotheses of the theorem. The choice of G implies that \bar{G} is p-nilpotent and so is G, a contradiction.
(3) $G / O_{p}(G)$ is p-nilpotent and $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$.

Suppose that $G / O_{p}(G)$ is not p-nilpotent. Then, by Frobenius' theorem (refer [12], Theorem 10.3.2), there exists a subgroup of P properly containing $O_{p}(G)$ such that its G-normalizer is not p-nilpotent. Since $N_{G}(P)$ is p-nilpotent, we may choice a subgroup P_{1} of P such that $O_{p}(G)<P_{1}<P$ and $N_{G}\left(P_{1}\right)$ is not p-nilpotent but $N_{G}\left(P_{2}\right)$ is p nilpotent whenever $P_{1}<P_{2} \leq P$. Denote $H=N_{G}\left(P_{1}\right)$. It is obvious that $P_{1}<P_{0} \leq P$ for some Sylow p-subgroup P_{0} of H. The choice of P_{1} implies that $N_{G}\left(P_{0}\right)$ is p-nilpotent, hence $N_{H}\left(P_{0}\right)$ is also p-nilpotent. Take $x \in H \backslash N_{H}\left(P_{0}\right)$. Since $P_{0}=P \cap H$, we have $x \in G \backslash N_{G}(P)$. Again,

$$
P_{0} \cap P_{0}^{x} \cap H^{\mathcal{N}_{p}} \leq P \cap P^{x} \cap G^{\mathcal{N}_{p}}
$$

so every minimal subgroup of $P_{0} \cap P_{0}^{x} \cap H^{\mathcal{N}_{p}}$ is c^{\star}-supplemented in P_{0} by Lemma 2.1. If (a) is satisfied then every cyclic subgroup of $P_{0} \cap P_{0}^{x} \cap H^{\mathcal{N}_{p}}$ of order 4 is c^{\star}-supplemented in P_{0}. If (b) is satisfied then

$$
\left[\Omega_{2}\left(P_{0} \cap P_{0}^{x} \cap H^{\mathcal{N}_{p}}\right), P_{0}\right] \leq Z\left(P \cap G^{\mathcal{N}_{p}}\right) \cap\left(P_{0} \cap H^{\mathcal{N}_{p}}\right) \leq Z\left(P_{0} \cap H^{\mathcal{N}_{p}}\right)
$$

If (c) is satisfied then P_{0} is quaternion-free. Therefore H satisfies the hypotheses of the theorem. The choice of G yields that H is p-nilpotent, which is contrary to the choice of P_{1}. Thereby $G / O_{p}(G)$ is p-nilpotent and G is p-solvable with $O_{p^{\prime}}(G)=1$. Consequently, we obtain $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$ (refer [13], Theorem 6.3.2).
(4) $G=P Q$, where Q is an elementary abelian Sylow q-subgroup of G for a prime $q \neq p$. Moreover, P is maximal in G and $Q O_{p}(G) / O_{p}(G)$ is minimal normal in $G / O_{p}(G)$.

For any prime divisor q of $|G|$ with $q \neq p$, since G is p-solvable, there exists a Sylow q-subgroup Q of G such that $G_{0}=P Q$ is a subgroup of G [13] (Theorem 6.3.5). If $G_{0}<G$, then, by (1), G_{0} is p-nilpotent. This leads to $Q \leq C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$, a contradiction. Thus $G=P Q$ and so G is solvable. Now let $T / O_{p}(G)$ be a minimal normal subgroup of $G / O_{p}(G)$ contained in $O_{p p^{\prime}}(G) / O_{p}(G)$. Then $T=O_{p}(G)(T \cap Q)$. If $T \cap Q<Q$, then $P T<G$ and therefore $P T$ is p-nilpotent by (1). It follows that

$$
1<T \cap Q \leq C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)
$$

which is impossible. Hence $T=O_{p p^{\prime}}(G)$ and $Q O_{p}(G) / O_{p}(G)$ is an elementary abelian q-group complementing $P / O_{p}(G)$. This yields that P is maximal in G.
(5) $\left|P: O_{p}(G)\right|=p$.

Clearly, $O_{p}(G)<P$. Let P_{0} be a maximal subgroup of P containing $O_{p}(G)$ and let $G_{0}=P_{0} O_{p p^{\prime}}(G)$. Then P_{0} is a Sylow p-subgroup of G_{0}. The maximality of P in G implies that either $N_{G}\left(P_{0}\right)=G$ or $N_{G}\left(P_{0}\right)=P$. If the latter holds, then $N_{G_{0}}\left(P_{0}\right)=P_{0}$. On the other hand, in view of (3), we have $G^{\mathcal{N}_{p}} \leq O_{p}(G)$, hence $P \cap P^{x} \cap G^{\mathcal{N}_{p}}=$ $=G^{\mathcal{N}_{p}}$ for every $x \in G$. Now it is easy to see that G_{0} satisfies the hypotheses of the theorem. Thereby G_{0} is p-nilpotent and $Q \leq C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$, a contradiction. Thus $N_{G}\left(P_{0}\right)=G$ and $P_{0}=O_{p}(G)$. This proves (5).
(6) $G=G^{\mathcal{N}_{p}} L$, where $L=\langle a\rangle[Q]$ is a non-abelian split extension of Q by a cyclic p-subgroup $\langle a\rangle, a^{p} \in Z(L)$ and the action of a (by conjugate) on Q is irreducible.

From (3) we see that $G^{\mathcal{N}_{p}} \leq O_{p}(G)$. Clearly, $T=G^{\mathcal{N}_{p}} Q \triangleleft G$. Let P_{0} be a maximal subgroup of P containing $G^{\mathcal{N}_{p}}$. Then, by the maximality of P, either $N_{G}\left(P_{0}\right)=P$ or $N_{G}\left(P_{0}\right)=G$. If $N_{G}\left(P_{0}\right)=P$, then $N_{M}\left(P_{0}\right)=P_{0}$, where $M=P_{0} T=P_{0} Q$.

Evidently, $P_{0} \cap P_{0}^{x} \cap M^{\mathcal{N}_{p}} \leq G^{\mathcal{N}_{p}}$ for all $x \in M \backslash N_{M}\left(P_{0}\right)$, hence M satisfies the hypotheses of the theorem. By the minimality of G, M is p-nilpotent. It follows that $T=G^{\mathcal{N}_{p}} Q=G^{\mathcal{N}_{p}} \times Q$ and so $Q \triangleleft G$, a contradiction. Thereby $N_{G}\left(P_{0}\right)=G$ and $P_{0} \leq O_{p}(G)$. This infers from (5) that $O_{p}(G)=P_{0}$ and hence $P / G^{\mathcal{N}_{p}}$ is a cyclic group. Now applying the Frattini argument we have $G=G^{\mathcal{N}_{p}} N_{G}(Q)$. Therefore we may assume that $G=G^{\mathcal{N}_{p}} L$, where $L=\langle a\rangle[Q]$ is a non-abelian split extension of a normal Sylow q-subgroup Q by a cyclic p-group $\langle a\rangle$. Noticing that $\left|P: O_{p}(G)\right|=p$ and $O_{p}(G) \cap N_{G}(Q) \triangleleft N_{G}(Q)$, we have $a^{p} \in Z(L)$. Also since P is maximal in G, $G^{\mathcal{N}_{p}} Q / G^{\mathcal{N}_{p}}$ is minimal normal in $G / G^{\mathcal{N}_{p}}$ and consequently a acts irreducibly on Q.
(7) $G^{\mathcal{N}_{p}}$ has exponent p if $p>2$ and exponent at most 4 if $p=2$.

By Lemma 2.3 it will suffice to show that there exists a p-nilpotent maximal subgroup M of G such that $G=G^{\mathcal{N}_{p}} M$. In fact, let M be a maximal subgroup of G containing L. Then $M=L\left(M \cap G^{\mathcal{N}_{p}}\right)$ and $G=G^{\mathcal{N}_{p}} M$. By Lemma 2.4, $M \cap G^{\mathcal{N}_{p}} \triangleleft G$, hence $M=\left(\langle a\rangle\left(M \cap G^{\mathcal{N}_{p}}\right)\right) Q$. Write $P_{0}=\langle a\rangle\left(M \cap G^{\mathcal{N}_{p}}\right)$ and let M_{0} be a maximal subgroup of M containing P_{0}. Then $M_{0}=P_{0}\left(M_{0} \cap Q\right)$ and $G^{\mathcal{N}_{p}} M_{0}<G$. By applying (1) we know that $G^{\mathcal{N}_{p}} M_{0}$ is p-nilpotent, therefore

$$
M_{0} \cap Q \leq C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)
$$

It follows that $M_{0} \cap Q=1$ and so P_{0} is maximal in M. In this case, if $P_{0} \triangleleft M$, then $\langle a\rangle=P_{0} \cap L \triangleleft L$, which is contrary to (6). Hence $N_{M}\left(P_{0}\right)=P_{0}$ and M satisfies the hypotheses of the theorem. The choice of G implies that M is p-nilpotent, as desired.

Without losing generality, we assume in the following that $P=G^{\mathcal{N}_{p}}\langle a\rangle$.
(8) If $G^{\mathcal{N}_{p}}$ has exponent p, then $G^{\mathcal{N}_{p}} \cap\langle a\rangle=1$.

Assume on the contrary that $G^{\mathcal{N}_{p}} \cap\langle a\rangle \neq 1$ if $G^{\mathcal{N}_{p}}$ has exponent p. Then we can take an element c in $G^{\mathcal{N}_{p}} \cap\langle a\rangle$ such that c is of order p. Since P is not normal in $G, G^{\mathcal{N}_{p}} \cap\langle a\rangle<$ $<\langle a\rangle$. Consequently $c \in\left\langle a^{p}\right\rangle \leq \Phi(P)$ and $\langle c\rangle$ is permutable in P. By (6), (7) and Lemma 2.2, we see that c is centralized by both $G^{\mathcal{N}_{p}}$ and L, hence $c \in Z(G)$. If G satisfies (c) then, since $G^{\mathcal{N}_{p}} \leq G^{\mathcal{N}}, c=1$ by Lemma 2.5, a contradiction. If G satisfies (a) or (b), we consider the factor group $\bar{G}=G /\langle c\rangle$. It is obvious that $N_{\bar{G}}(\bar{P})=N_{G}(P) /\langle c\rangle$ is p-nilpotent, where $\bar{P}=P /\langle c\rangle$. Now let $\langle y\rangle\langle c\rangle /\langle c\rangle$ be a minimal subgroup of $G^{\mathcal{N}_{p}} /\langle c\rangle$, where $y \in G^{\mathcal{N}_{p}}$. Since y is of order p, by the hypotheses, $\langle y\rangle$ has a c^{\star}-supplement K in P. If $\langle y\rangle \cap K=1$ then K is a maximal subgroup of P and $\langle c\rangle \leq K$. It follows that $P /\langle c\rangle=(\langle y\rangle\langle c\rangle /\langle c\rangle)(K /\langle c\rangle)$ with $\langle y\rangle\langle c\rangle /\langle c\rangle \cap K /\langle c\rangle=1$. If $\langle y\rangle \cap K=\langle y\rangle$ then $\langle y\rangle$ is permutable in P and hence $\langle y\rangle\langle c\rangle /\langle c\rangle$ is permutable in $P /\langle c\rangle$. That is $\langle y\rangle\langle c\rangle /\langle c\rangle$ is c^{\star}-supplemented in $P /\langle c\rangle$, therefore \bar{G} satisfies (a) or (b). The choice of G implies that $G /\langle c\rangle$ is p-nilpotent and so G is p-nilpotent, a contradiction.
(9) The exponent of $G^{\mathcal{N}_{p}}$ is not p.

If not, $G^{\mathcal{N}_{p}}$ has exponent p. Let P_{1} be a minimal subgroup of $G^{\mathcal{N}_{p}}$ not permutable in P. Then, by the hypotheses, there is a subgroup K_{1} of P such that $P=P_{1} K_{1}$ and $P_{1} \cap K_{1}=1$. In general, we may find minimal subgroups $P_{1}, P_{2}, \ldots, P_{m}$ of $G^{\mathcal{N}_{p}}$ and also subgroups $K_{1}, K_{2}, \ldots, K_{m}$ of P such that $P=P_{i} K_{i}$ and $P_{i} \cap K_{i}=1$ for each i and every minimal subgroup of $G^{\mathcal{N}_{p}} \cap K_{1} \cap \ldots \cap K_{m}$ is permutable in P. Furthermore, we may assume that $P_{i} \leq K_{1} \cap \ldots \cap K_{i-1}, i=2,3, \ldots, m$. Henceforth $K_{1} \cap \ldots \cap K_{i-1}=$ $=P_{i}\left(K_{1} \cap \ldots \cap K_{i}\right)$ for $i=2,3, \ldots, m$. It is easy to see that $G^{\mathcal{N}_{p}} \cap K_{i}$ is normal in P and $\left(G^{\mathcal{N}_{p}} \cap K_{i}\right)\langle a\rangle$ is a complement of P_{i} in P, so we may replace K_{i} by $\left(G^{\mathcal{N}_{p}} \cap K_{i}\right)\langle a\rangle$ and further assume that $\langle a\rangle \leq K_{i}$ for each i. Now, $K_{1} \cap \ldots \cap K_{m}=\left(G^{\mathcal{N}_{p}} \cap K_{1} \cap \ldots \cap K_{m}\right)\langle a\rangle$. Since, for any $x \in G^{\mathcal{N}_{p}} \cap K_{1} \cap \ldots \cap K_{m},\langle x\rangle\langle a\rangle=\langle a\rangle\langle x\rangle$, we have

$$
x^{a} \in\left(G^{\mathcal{N}_{p}} \cap K_{1} \cap \ldots \cap K_{m}\right) \cap\langle x\rangle\langle a\rangle=\langle x\rangle
$$

This means that a induces a power automorphism of p-power order in the elementary abelian p-group $G^{\mathcal{N}_{p}} \cap K_{1} \cap \ldots \cap K_{m}$. Hence $\left[G^{\mathcal{N}_{p}} \cap K_{1} \cap \ldots \cap K_{m}, a\right]=1$ and $K_{1} \cap \ldots \cap K_{m}$ is abelian.

Now we claim that p is even. If it is not the case, then, by [13] (Theorem 6.5.2), $K_{1} \cap \ldots \cap K_{m} \leq O_{p}(G)$. Consequently, $P=G^{\mathcal{N}_{p}}\left(K_{1} \cap \ldots \cap K_{m}\right) \leq O_{p}(G)$, a contradiction. We proceed now to consider the following two cases:

Case 1. $|\langle a\rangle|=2^{n}, n>1$.
Since $K_{1} \cap \ldots \cap K_{m}$ is an abelian normal subgroup of P and $a \in K_{1} \cap \ldots \cap K_{m}$, $\Phi\left(K_{1} \cap \ldots \cap K_{m}\right)=\left\langle a^{2}\right\rangle \triangleleft P$ and so $\Omega_{1}\left(\left\langle a^{2}\right\rangle\right)=\langle c\rangle \leq Z(P)$, where $c=a^{2^{n-1}}$. Again, $c \in Z(L)$ by (6), so $c \in Z(G)$. If G satisfies (c) then we obtain $c=1$ by Lemma 2.5, which is absurd. If G satisfies (a) or (b), then, with the same arguments to those used in (8), we may prove that $G /\langle c\rangle$ satisfies the hypotheses of the theorem. The minimality of G implies that $G /\langle c\rangle$ is 2-nilpotent and therefore G is also 2-nilpotent, a contradiction.

Case 2. $|\langle a\rangle|=2$.
Since a acts irreducibly on Q, a is an involutive automorphism of Q; consequently, Q is a cyclic subgroup of order q and $b^{a}=b^{-1}$, where $Q=\langle b\rangle$. In this case, $G^{\mathcal{N}_{2}}$ is minimal normal in G. In fact, let N be a minimal normal subgroup of G contained in $G^{\mathcal{N}_{2}}$ and let $H=N L$. Since $N\langle a\rangle$ is maximal but not normal in H, we see that $N_{H}(N\langle a\rangle)=N\langle a\rangle$. Noticing that $N\langle a\rangle \cap H^{\mathcal{N}_{2}} \leq N$, every minimal subgroup of $N\langle a\rangle \cap$ $\cap H^{\mathcal{N}_{2}}$ is c^{\star}-supplemented in $N_{H}(N\langle a\rangle)=N\langle a\rangle$ by Lemma 2.1. If further $H<G$, then the choice of G implies that H is 2-nilpotent. Consequently, $N Q=N \times Q$ and so $1 \neq N \cap Z(P) \leq Z(G)$. The choice of N implies that $N=N \cap Z(P)$ is of order 2. This is contrary to Lemma 2.5 if G satisfies (c). Now assume that G satisfies (a) or (b). In this case, if $N \not \leq \Phi(P)$, then N has a complement to P. By applying Gaschütz Theorem [12] (I, 17.4), N also has a complement to G, say M. It follows that M is a normal subgroup of G. Furthermore, G / M is cyclic of order 2 and so $N \leq G^{\mathcal{N}_{2}} \leq M$, a contradiction. Hence $N \leq \Phi(P)$. Now we go to consider the factor group G / N. For any minimal subgroup $\langle y\rangle N / N$ of $(G / N)^{\mathcal{N}_{2}}=G^{\mathcal{N}_{2}} / N$, by the hypotheses, $P=\langle y\rangle K$ and $\langle y\rangle \cap K$ is permutable in P, where $y \in G^{\mathcal{N}_{2}}$. Since $N \leq K$, we have $P / N=$ $=(\langle y\rangle N / N)(K / N)$ and $(\langle y\rangle N / N) \cap(K / N)=(\langle y\rangle \cap K) N / N$ is permutable in P / N, so $\langle y\rangle N / N$ is c^{\star}-supplemented in P / N. This yields at once that G / N is 2-nilpotent and so is G. Hence $H=G$ and $G^{\mathcal{N}_{2}}$ must be a minimal normal subgroup of G; of course, $G^{\mathcal{N}_{2}}$ is an elementary abelian 2-group. Since $G^{\mathcal{N}_{2}} \cap N_{G}(Q) \triangleleft N_{G}(Q)$, we know that $G^{\mathcal{N}_{2}} \cap N_{G}(Q)=1$ and so b acts fixed-point-freely on $G^{\mathcal{N}_{2}}$. We may assume that $N_{1}=$ $=\left\{1, c_{1}, c_{2}, \ldots, c_{q}\right\}$ is a subgroup of $G^{\mathcal{N}_{2}}$ with $c_{1} \in Z(P)$ and $b=\left(c_{1}, c_{2}, \ldots, c_{q}\right)$ is a permutation of the set $\left\{c_{1}, c_{2}, \ldots, c_{q}\right\}$. Noticing that $b^{a}=b^{-1}$ and $\left(c_{1}\right)^{a^{-1} b a}=\left(c_{1}\right)^{b^{-1}}$, $\left(c_{2}\right)^{a}=c_{q}$. By using $\left(b^{i}\right)^{a}=b^{-i}$ and $\left(c_{1}\right)^{a^{-1} b^{i} a}=\left(c_{1}\right)^{b^{-i}}$, we see that $\left(c_{i+1}\right)^{a}=$ $=c_{q-i+1}$ for $i=1,2, \ldots,(q+1) / 2$. Hence N_{1} is normalized by both $G^{\mathcal{N}_{2}}$ and L and so N_{1} is normal in G. The minimal normality of $G^{\mathcal{N}_{2}}$ implies that $G^{\mathcal{N}_{2}}=N_{1}$, thus we have $Z(P)=\left\{1, c_{1}\right\}$. Since $G^{\mathcal{N}_{2}} \cap K_{1} \cap \ldots \cap K_{m}$ is centralized by both $G^{\mathcal{N}_{2}}$ and $\langle a\rangle$, we have $1<G^{\mathcal{N}_{2}} \cap K_{1} \cap \ldots \cap K_{m} \leq Z(P)$. In view of P is not abelian, we get $\Phi(P)=P^{\prime}=Z(P)$, namely P is an extra-special 2-group. By applying Theorem 5.3.8 of [12], there exists some positive integer h such that $|P|=2^{2 h+1}$. Hence $\left|G^{\mathcal{N}_{2}}\right|=2^{2 h}$. However, $2^{2 h}-1=\left(2^{h}+1\right)\left(2^{h}-1\right)$ and $q=2^{2 h}-1$, hence $h=1, q=3$ and $|P|=2^{3}$. Now we see that $L \cong S_{3}$ and $G^{\mathcal{N}_{2}} Q \cong A_{4}$, therefore $G \cong S_{4}$, which is contrary to the hypothesis on G.
(10) The final contradiction.

From (7) and (9) we see that $p=2$ and the exponent of $G^{\mathcal{N}_{2}}$ is 4 . By applying Lemma 2.3, $Z\left(G^{\mathcal{N}_{2}}\right)=\Phi\left(G^{\mathcal{N}_{2}}\right)$ is an elementary abelian 2-group. If $\Phi\left(G^{\mathcal{N}_{2}}\right) \cap\langle a\rangle \neq 1$ then there exists an element c in $\Phi\left(G^{\mathcal{N}_{2}}\right) \cap\langle a\rangle$ such that c is of order 2 . Since $\Phi\left(G^{\mathcal{N}_{2}}\right) \cap$ $\langle a\rangle<\langle a\rangle$, we have $c \in\left\langle a^{2}\right\rangle \leq Z(L)$. But c is also centralized by $G^{\mathcal{N}_{2}}$ by Lemma 2.2, so $c \in Z(G)$. If $\Phi\left(G^{\mathcal{N}_{2}}\right) \cap\langle a\rangle=1$ then a induces a power automorphism of 2-power order in the elementary abelian 2-group $\Phi\left(G^{\mathcal{N}_{2}}\right)$, hence $\left[\Phi\left(G^{\mathcal{N}_{2}}\right), a\right]=1$. In view of Lemma 2.2, $\Phi\left(G^{\mathcal{N}_{2}}\right)$ is also centralized by $G^{\mathcal{N}_{2}}$, hence $\Phi\left(G^{\mathcal{N}_{2}}\right) \leq Z(P)$. Furthermore, by the Frattini argument,

$$
G=N_{G}\left(\Phi\left(G^{\mathcal{N}_{2}}\right)\right)=C_{G}\left(\Phi\left(G^{\mathcal{N}_{2}}\right)\right) N_{G}(P)
$$

Noticing that $N_{G}(P)=P$ and $P \leq C_{G}\left(\Phi\left(G^{\mathcal{N}_{2}}\right)\right)$, we get $C_{G}\left(\Phi\left(G^{\mathcal{N}_{2}}\right)\right)=G$, namely $\Phi\left(G^{\mathcal{N}_{2}}\right) \leq Z(G)$. Thus we can also take an element c in $\Phi\left(G^{\mathcal{N}_{2}}\right)$ such that c is of order 2 and $c \in Z(G)$. This is contrary to Lemma 2.5 if G satisfies (c). Now assume that G satisfies (a). Denote $N=\langle c\rangle$ and consider $\bar{G}=G / N$. It is clear that $N_{\bar{G}}(\bar{P})=$ $=N_{G}(P) / N$ is 2-nilpotent because $N_{G}(P)$ is, where $\bar{P}=P / N$. For any $y \in G^{\mathcal{N}_{2}}$, since $\langle y\rangle$ is c^{\star}-supplemented in P, there exists a subgroup T of P such that $P=\langle y\rangle T$ and $\langle y\rangle \cap T$ is permutable in P. However, $y^{2} \in \Phi\left(G^{\mathcal{N}_{2}}\right)$, hence $\left\langle y^{2}\right\rangle$ is permutable in P and $\left\langle y^{2}\right\rangle T$ forms a group. Because $\left|P:\left\langle y^{2}\right\rangle T\right| \leq 2, N \leq\left\langle y^{2}\right\rangle T$. It follows that $P / N=(\langle y\rangle N / N)\left(\left\langle y^{2}\right\rangle T / N\right)$ and

$$
\langle y\rangle N / N \cap\left\langle y^{2}\right\rangle T / N=\left\langle y^{2}\right\rangle(\langle y\rangle \cap T) N / N
$$

is permutable in P / N. This shows that \bar{G} satisfies (a). Thereby \bar{G} is 2-nilpotent and so is G, a contradiction. Finally we assume that G satisfies (b). Let M be a maximal subgroup of G containing L. Then M is 2-nilpotent by the proof of (7), hence $\Phi\left(G^{\mathcal{N}_{2}}\right) Q$ is 2-nilpotent and $\left[\Phi\left(G^{\mathcal{N}_{2}}\right), Q\right]=1$. Write $K=C_{G}\left(G^{\mathcal{N}_{2}} / \Phi\left(G^{\mathcal{N}_{2}}\right)\right)$. Then, by the hypotheses, $P \leq K \triangleleft G$. The maximality of P yields that $P=K$ or $K=G$. If the former holds, then $G=N_{G}(P)$ is 2-nilpotent, a contradiction. If the latter holds, then $\left[G^{\mathcal{N}_{2}}, Q\right] \leq \Phi\left(G^{\mathcal{N}_{2}}\right)$. This means that Q stabilizes the chain of subgroups $1 \leq \Phi\left(G^{\mathcal{N}_{2}}\right) \leq G^{\mathcal{N}_{2}}$. It follows from [13] (Theorem 5.3.2) that $\left[G^{\mathcal{N}_{2}}, Q\right]=1$ and Q is normal in G, which is impossible. This completes our proof.

Proof of Theorem 1.3. By applying Theorem 1.1, we only need to prove that $N_{G}(P)$ is p-nilpotent.

If $N_{G}(P)$ is not p-nilpotent, then $N_{G}(P)$ has a minimal non- p-nilpotent subgroup (that is, every proper subgroup of a group is p-nilpotent but itself is not p-nilpotent) H. By results of Itô [2] (IV, 5.4) and Schmidt [2] (III, 5.2), H has a normal Sylow p-subgroup H_{p} and a cyclic Sylow q-subgroup H_{q} such that $H=\left[H_{p}\right] H_{q}$. Moreover, H_{p} is of exponent p if $p>2$ and of exponent at most 4 if $p=2$. On the other hand, the minimality of H implies that $H^{\mathcal{N}_{p}}=H_{p}$. Let P_{0} be a minimal subgroup of H_{p} and let K_{0} be a c^{\star}-supplement of P_{0} in H. Then $H=P_{0} K_{0}$ and $P_{0} \cap K_{0}$ is permutable in H. If $P_{0} \cap K_{0}=1$ then K_{0} is maximal in H of index p. By applying Lemma 2.6 we see that K_{0} is normal in H. It follows from K_{0} is nilpotent that H_{q} is normal in H, a contradiction. If $P_{0} \cap K_{0}=P_{0}$ then P_{0} is permutable in H. In this case, if $P_{0} H_{q}=H$, then $H_{p}=P_{0}$ is cyclic and H is p-nilpotent by Lemma 2.6, a contradiction. Hence $P_{0} H_{q}<H$ and $P_{0} H_{q}=P_{0} \times H_{q}$. Thus $\Omega_{1}\left(H_{p}\right)$ is centralized by H_{q}. If further $C_{H}\left(\Omega_{1}\left(H_{p}\right)\right)<H$ then $C_{H}\left(\Omega_{1}\left(H_{p}\right)\right)$ is nilpotent normal in H. This leads to $H_{q} \triangleleft H$, a contradiction. Therefore $\Omega_{1}\left(H_{p}\right) \leq Z(H)$. If H_{p} has exponent p, then $H_{p}=\Omega_{1}\left(H_{p}\right)$ and $H=H_{p} \times H_{q}$,
again a contradiction. Thus $p=2$ and H_{2} has exponent 4 . If G satisfies (b) then H_{2} is quaternion-free and, by Lemma 2.5, H_{q} acts trivially on H_{2}, thus H_{q} is normal in H, a contradiction. Now assume that G satisfies (a). Let $P_{1}=\langle x\rangle$ be a cyclic subgroup of H_{2} of order 4. Since P_{1} is c^{\star}-supplemented in $H, H=P_{1} K_{1}$ with $P_{1} \cap K_{1}$ is permutable in H. If $\left|H: K_{1}\right|=4$ then $\left|H: K_{1}\left\langle x^{2}\right\rangle\right|=2$, hence $K_{1}\left\langle x^{2}\right\rangle \triangleleft H$ and so $H_{q} \triangleleft H$, a contradiction. If $\left|H: K_{1}\right|=2$ then $K_{1} \triangleleft H$. We still get a contradiction. Therefore $K_{1}=H$ and P_{1} is permutable in H. Now Lemma 2.6 implies that $P_{1} H_{q}$ is 2-nilpotent and consequently H_{q} is normalized by H_{2}. This final contradiction completes our proof.

1. Doerk H., Hawkes T. Finite solvable groups. - Berlin; New York, 1992.
2. Huppert B. Endliche Gruppen I. - New York: Springer, 1967.
3. Ballester-Bolinches A., Esteban-Romero R. Sylow permutable subnormal subgroups of finite groups // J. Algebra. - 2002. - 251. - P. 727-738.
4. Guo X., Shum K. P. p-Nilpotence of finite groups and minimal subgroups // Ibid. - 2003. - 270. - P. 459470.
5. Wang Y. Finite groups with some subgroups of Sylow subgroups c-supplemented // Ibid. - 2000. - 224. P. 467-478.
6. Ballester-Bolinches A., Wang Y., Guo X. C-supplemented subgroups of finite groups // Glasgow Math. J. - 2000. - 42. - P. 383-389.
7. Guo X., Shum K. P. On p-nilpotence and minimal subgroups of finite groups // Sci. China. Ser. A. - 2003. - 46. - P. 176-186.
8. Guo X., Shum K. P. Permutability of minimal subgroups and p-nilpotency of finite groups // Isr. J. Math. - 2003. - 136. - P. 145-155.
9. Asaad M., Ballester-Bolinches A., Pedraza-Aguilera M. C. A note on minimal subgroups of finite groups // Communs Algebra. - 1996. - 24. - P. 2771-2776.
10. Wang Y., Wei H., Li Y. A generalization of Kramer's theorem and its applications // Bull. Austral. Math. Soc. - 2002. - 65. - P. 467-475.
11. Dornhoff L. M-groups and 2-groups // Math. Z. - 1967. - 100. - P. 226-256.
12. RobinsonD. J. S. A course in the theory of groups. - New York: Springer, 1980.
13. Gorenstein D. Finite groups. - New York: Chelsea, 1980.

[^0]: * Project supported by NSFC (10571181), NSF of Guangxi (0447038) and Guangxi Education Department.

