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About one extremal problem
for projections of the points on unit circle

Andrey L. Targonskii
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Abstract. Sharp estimates of product of inner radii for pairwise dis-
joint domains are obtained. In particular, we solve an extremal problem
in the case of arbitrary finite number of free poles on the system points
on the rays.
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1. Introduction

This paper belongs to the theory of extremal problems on classes of
non-overlapping domain, which is a separate direction in geometric theory
of functions of a complex variable. The begin of these investigations
associated with the paper of M. A. Lavrent’ev [1] in 1934. He found
the maximum of some functional with respect to two simply connected
domains with two fixed points. We note that this result was needed him
for applying to some aerodynamics problems. In 1947, G. M. Goluzin
solved a similar problem for three fixed points on the complex plane
[2]. Then the topic began to evolve rapidly. In this connection we may
recall papers of many authors, including Y.E. Alenitsin, M. A. Lebedev,
J. Jenkins, P.M. Tamrazov, P. P. Kufarev and others. Using the idea
of P.M. Tamrazov, in 1975 G. P. Bakhtina solved first the problem with
so-called “free poles” on the unit circle, see, e.g., [3].

An important step for the development of this topic was papers of
V. N. Dubinin. He developed a new method of research that is method
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of piecewise-separating transformation. He also first solved numerous of
extremal problems for an arbitrary but multi connected non-overlapping
domains (see, e.g., [4–6]). Now this type of extremal problems is used for
investigations in holomorphic dynamics.

In the last decade actively used Bakhtin’s method of “managing func-
tional”. He managed to solve a series of extremal problems for so-called
“radial systems of points” (see, e.g., [4, 7–15]). In the present paper we
use the mentioned about Bakhtin’s method.

Let N, R – the sets natural and real numbers conformity, C – the plain
complex numbers, C = C

∪
{∞} – the Riemannian sphere, R+ = (0;∞).

For fix number n ∈ N system points

An = {ak}nk=1

the relations are executed:

0 = arg a1 < arg a2 < ... < arg an < 2π. (1.1)

For such systems of points we will consider the following sizes:

σk =
1

π
(arg ak+1 − arg ak) , k = 1, 2, ..., n, an+1 := a1.

Let’s consider system of angular domains:

Mk := {w : arg ak < argw < arg ak+1} , k = 1, n, an+1 := a1

Let’s consider the following “managing functional” for arbitrary An-
system points

T(An) =

n∏
k=1

χ

(∣∣∣∣ akak+1

∣∣∣∣ 1
2σk

)
|ak|,

where χ(t) = 1
2(t+

1
t ).

Let {Bk}nk=1 – arbitrary non-overlapping domains such that

ak ∈ Bk, Bk ⊂ C, k = 1, n. (1.2)

Let D, D ⊂ C – arbitrary open set and w = a ∈ D, then D(a) the
define connected component D, the contain point a. For arbitrary system
points An = {ak ∈ C : k = 1, n} , the satisfied condition (1.1), and open
set D, An ⊂ D the define Dk (as) connected component set D (as)

∩
Mk,

the contain point as, k = 1, n, s = k, k + 1, an+1 := a1.

The open set D, An ⊂ D satisfied condition meets the condition of
unapplied in relation to the system of points An if a condition is executed

Dk(ak)
∩
Dk(ak+1) = ∅, (1.3)
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k = 1, n, on all corners Mk.

Let
gB (z, a) = hB,a(z) + log

1

|z − a|

generalized Green’s function of domains B with respect to a point a ∈ B.
If a = ∞, then

gB (z,∞) = hB,∞(z) + log
1

|z|
.

The value of
r(B, a) := exp (hB,a(z))

the define of inner radius domain B ⊂ C with respect to a point a ∈ B
(see [4–6,16–18]).

We use the concept of a quadratic differential. Recall that a quadratic
differential on a Riemann surface S is a map

φ : TS → C

satisfying
φ(λυ) = λ2φ(υ)

for all υ ∈ TS and all λ ∈ C, TS – tangent space. If z ∈ U → C, is a
chart defined on some open set U ⊂ S then φ is equal on U to

φU (z)dz
2

for some function φU defined on z(U).

Suppose that two charts z : U → C and w : V → C on S overlap, and
let

h := w ◦ z−1

be the transition function. If φ is represented both as φU (z)dz
2 and

φV (w)dw
2 on U ∩ V , then we have

φV (h(z))
(
h′(z)

)2
= φU (z).

One way to say this is that quadratic differentials transform under pull-
backs by the square of the derivative. As the main results associated with
it can be found in [19].

Definition 1.1. A set of points
{
ãk = ak

|ak| : ak ∈ C, k = 1, 2, ..., n
}

is

called projections of the points on the unit circle.
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Subject of studying of our work are the following problems.

Problem 1. Let n ∈ N, n ≥ 2, α ≥ 0. Maximum functional be found

n∏
k=1

(
|ãk+1 − ãk|α · r (Bk, ak)

)
,

where An = {ak}nk=1 – arbitrary system points on the rays, the satisfied
condition (1.1), {ãk}nk=1 – projections of the points on the unit circle,
{Bk}nk=1 – arbitrary set non-overlapping domains, the satisfied condition
(1.2), ak ∈ Bk ⊂ C, and all extremal the describe (k = 1, n).

Problem 2. Let n ∈ N, n ≥ 2, α ≥ 0. Maximum functional be found

n∏
k=1

(
|ãk+1 − ãk|α · r (D, ak)

)
,

where An = {ak}nk=1 – arbitrary system points on the rays, the satisfied
condition (1.1), {ãk}nk=1 – projections of the points on the unit circle, D
– the open set, the satisfied condition (1.3), ak ∈ D ⊂ C, and all extremal
the describe (k = 1, n).

2. The case of non-ovellapping domains

Lemma 2.1. The function

P (τ) = ln sin
πτ

2

is convex for τ ∈ (0, 2).

Proof. Find the second-order derivative

P ′′(τ) =
π

2
·
(
ctg

πτ

2

)′
= −

(π
2

)2
· 1

sin2 πτ
2

.

Consequently,
P ′′(τ) < 0, for 0 < τ < 2.

Theorem 2.1. Let n ∈ N, n ≥ 2. Then for all system points An =
{ak}nk=1, the satisfied condition (1.1) and arbitrary set non-overlapping
domains {Bk}nk=1, the satisfied condition (1.2), be satisfied inequality

n∏
k=1

(|ãk+1 − ãk|α · r (Bk, ak)) ≤
(
2α+2

n
· sinα π

n

)n

· T(An) .
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The equality obtain in this inequality, when points ak and domains Bk

are, conformity, the poles and the circular domains of the quadratic dif-
ferential

Q(w)dw2 = − wn−2

(wn − 1)2
dw2. (2.1)

Proof. The theorem of the proof leans on a method of the piece-dividing
transformation developed by Dubinin (see [4–6]).

Function

ζk (w) = −i
(
e−i arg akw

) 1
σk , k = 1, 2, . . . , n (2.2)

realizes univalent and conformal transformations of domain Mk to the
right half-plane Reζ > 0, for all k = 1, n.

From a formula (2.2) we receive the following asymptotic expressions

|ζk (w)− ζk (am)| ∼ 1

σk
|am|

1
σk

−1 |w − am| ,

w → am, k = 1, 2, ..., n, m = k, k + 1. (2.3)

It’s obvious that

ζk (ak) = −i|ak|
1
σk , ζk (ak+1) = i|ak+1|

1
σk , k = 1, 2, ..., n. (2.4)

Family of functions {ζk(w)}nk=1, set by equality (2.2), it is possible for
by piece-dividing transformation (see [4–6]) domains

{
Bk : k = 1, n

}
in

relation to the system of corners {Mk}nk=1. For any domain ∆ ∈ C the de-

fine (∆)∗ :=
{
w ∈ C : w ∈ ∆

}
. Let G

(1)
k the define connected component

ζk
(
Bk
∩
Mk

)∪ (
ζk
(
Bk
∩
Mk

))∗
, containing a point (−i), G(2)

k−1 – the

define connected component ζk−1

(
Bk
∩
Mk−1

)∪ (
ζk−1

(
Bk
∩
Mk−1

))∗
,

containing a point i, k = 1, n, M0 := Mn, ζ0 := ζn, G
(2)
0 := G

(2)
n . It

is clear, that, G
(s)
k generally speaking, domains are multiconnected do-

mains, k = 1, n, s = 1, 2. Pair of domains G
(2)
k−1 and G

(1)
k grows out of

piece-dividing transformation domainsBk concerning families {Mk−1,Mk},
{ζk−1, ζk} in point ak, k = 1, n.

From the Theorem 1.9 [16] (see also [5,6]) and the formulae (2.3), we
have the inequalities

r (Bk, ak) ≤
[
|ak|

1− 1
σk · σk · r

(
G

(1)
k , ζk (ak)

)
· σk−1

× |ak|
1− 1

σk−1 · r
(
G

(2)
k−1, ζk−1 (ak)

)] 1
2

, k = 1, 2, ..., n. (2.5)
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From the condition that the points ak, k = 1, 2, .., n, we get that

|ãk+1 − ãk| = 2 sin
πσk
2
, k = 1, 2, ..., n. (2.6)

Using formulas (2.5), (2.6) it is received the following ratio:

n∏
k=1

(|ãk+1 − ãk|α · r (Bk, ak)) ≤ 2nα ·
n∏

k=1

σk |ak|

|ak|
1

2σk · |ak|
1

2σk−1

×
n∏

k=1

sinα
πσk
2

·
n∏

k=1

(
r
(
G

(1)
k , ζk (ak)

)
· r
(
G

(2)
k , ζk (ak+1)

)) 1
2
. (2.7)

Inequalities Lavrent’ev using [1] and (2.4), we get:

r
(
G

(1)
k , ζk (ak)

)
· r
(
G

(2)
k , ζk (ak+1)

)
≤
(
|ak|

1
σk + |ak+1|

1
σk

)2
, k = 1, 2, ..., n.

Taking into account the last inequality, the expression (2.7) can be
written as follows:

n∏
k=1

(|ãk+1 − ãk|α · r (Bk, ak))

≤ 2nα ·
n∏

k=1

σk sin
α πσk

2
·

n∏
k=1

|ak|
1
σk + |ak+1|

1
σk

|ak|
1

2σk · |ak|
1

2σk−1

|ak| .

It’s obvious that

n∏
k=1

|ak|
1
σk + |ak+1|

1
σk

|ak|
1

2σk · |ak|
1

2σk−1

|ak| = 2n · T(An) .

Also,
n∏

k=1

σk ≤
(
2

n

)n

.

The equality obtain in this inequality, if and only if

σ1 = σ2 = ... = σn =
2

n
.

Then, we have:

n∏
k=1

(|ãk+1 − ãk|α · r (Bk, ak)) ≤
(
2α+2

n

)n

· T (An) ·
n∏

k=1

sinα
πσk
2
. (2.8)
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The equality obtain in this inequality, when points ak and domains Bk

are, conformity, the poles and the circular domains of the quadratic dif-
ferential

Q(ζ)dζ2 =
dζ2

(ζ2 + 1)2
. (2.9)

Using the Lemma 2.1 that the function α ln sin πσk
2 , is convex for

σk ∈ (0; 2) , α ≥ 0. Hence, when σk ∈ (0; 2), then

α

n
·

n∑
k=1

ln sin
πσk
2

≤ α ln sin

(
π

2
· 1
n

n∑
k=1

σk

)
.

Given that
n∑

k=1

σk = 2,

we obtain
n∏

k=1

sinα
πσk
2

≤ sinnα
π

n
. (2.10)

The equality obtain in this inequality, if and only if

σ1 = σ2 = ... = σn =
2

n
.

Then from (2.8) using formulas (2.10) it is received the following ratio

n∏
k=1

(|ãk+1 − ãk|α · r (Bk, ak)) ≤
(
2α+2

n

)n

· T (An) · sinnα
π

n
.

The equality obtain in this inequality, when points ak and domains
Bk are, conformity, the poles and the circular domains of the quadratic
differential (2.1). It is derived from the square of the quadratic differen-
tial (2.9) conversion using

ζ = −iw
n
2 .

As a consequence, at α = 0.

Corollary 2.1. [4] Let n ∈ N, n ≥ 2. Then for all system points An =
{ak}nk=1, the satisfied condition (1.1), and arbitrary set non-overlapping
domains {Bk}nk=1, the satisfied condition (1.2), be satisfied inequality

n∏
k=1

r (Bk, ak) ≤
(
4

n

)n

· T(An) .
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The equality obtain in this inequality, when points ak and domains Bk

are, conformity, the poles and the circular domains of the quadratic dif-
ferential (2.1).

As a consequence, at α = 0, T(An) = 1 we obtain the well known
result.

Corollary 2.2. [4–6] Let n ∈ N, n ≥ 2. Then for all system points
An = {ak}nk=1, the satisfied condition (1.1) and

T(An) = 1,

and arbitrary set non-overlapping domains {Bk}nk=1, the satisfied condi-
tion (1.2), be satisfied inequality

n∏
k=1

r (Bk, ak) ≤
(
4

n

)n

.

The equality obtain in this inequality, when points ak and domains Bk

are, conformity, the poles and the circular domains of the quadratic dif-
ferential (2.1).

3. The case of open set

Theorem 3.1. Let n ∈ N, n ≥ 2. Then for all system points An =
{ak}nk=1, the satisfied condition (1.1), arbitrary open set D, the satisfied
condition (1.3), ak ∈ D ⊂ C, k = 1, n, be satisfied inequality

n∏
k=1

(|ãk+1 − ãk|α · r (D, ak)) ≤
(
2α+2

n
· sinα π

n

)n

· T (An) .

The equality obtain in this inequality, when D =
n∪

k=1

Bk, where points ak

and domains Bk are, conformity, the poles and the circular domains of
the quadratic differential (2.1).

Proof. At once we will note that from the condition of unapplying fol-
lows that capC\D > 0 and set D possesses Green’s generalized function
gD(z, a), where

gD(z, a) =


gD(a)(z, a), z ∈ D(a),

0, z ∈ C\D(a),

lim
ζ→z

gD(a)(ζ, a), ζ ∈ D(a), z ∈ ∂D(a)
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– Green’s generalized function open set D concerning a point a ∈ D, and
gD(a)(z, a) – Green’s function domain D(a) concerning a point a ∈ D(a).

Further, we will use methods of works [4, 6, 7]. Sets we will consider
E0 = C\D; E(ak, t) = {w ∈ C : |w − ak| 6 t}, k = 1, n, n > 2, n ∈ N,
t ∈ R+. The condenser we will enter into consideration for rather small
t > 0

C (t, D, An) = {E0, E1} ,

where

E1 =

n∪
k=1

E(ak, t).

Capacity of the condenser C (t, D, A2n,2m−1) is called as ( [4], [6])

capC (t, D, An) = inf

∫ ∫ [
(G′

x)
2 + (G′

y)
2
]
dxdy,

where an infimum undertakes on all continuous and to the lipschicevym

in C functions G = G(z), such that G
∣∣∣
E0

= 0, G
∣∣∣
E1

= 1.

Let is named the module of condenser C, reverse the capacity of
condenser

|C| = [capC]−1

From a theorem 1 [16] get

|C (t,D,A2n,2m−1) | =
1

2π
· 1
n
· log 1

t
+M(D,An) + o(1), t→ 0, (3.1)

where

M(D,An) =
1

2π
· 1

n2
·
[ n∑
k=1

log r(D, ak) + 2
∑
k ̸=q

gD(ak, aq)
]
. (3.2)

Function (2.2) and definition ζk (ak) , ζk (ak+1), an+1, ζ0, M0, ∆,

(∆)∗, using, by us the theorems entered at proof 1. Let, too, Ω
(1)
k de-

fine connected component ζk
(
D
∩
Mk

)∪ (
ζk
(
D
∩
Mk

))∗
, containing a

point ζk (ak), a Ω
(2)
k−1 – connected component ζk−1

(
D
∩
Mk−1

)∪(
ζk−1

(
D
∩
Mk−1

))∗
, containing a point ζk−1 (ak), k = 1, n, Ω

(2)
0 :=

Ω
(2)
n . It is clear, that Ω

(s)
k generally speaking, domains are multicon-

nected domains, k = 1, n, s = 1, 2. Pair of domains Ω
(2)
k−1 and Ω

(1)
k

grows out of piece-dividing transformation open set D concerning fami-
lies {Mk−1,Mk}, {ζk−1, ζk} in point ak, k = 1, n.
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Let’s consider condensers

Ck (t, D, An) =
(
E

(k)
0 , E

(k)
1

)
,

where
E(k)

s = ζk

(
Es

∩
P k

)∪[
ζk

(
Es

∩
P k

)]∗
,

k = 1, n, s = 0, 1, {Mk}nk=1 – the system of corners corresponding to
system of points An; operation [A]∗ compares to any the set A ⊂ C a
set, symmetric a set A is relative unit circle |w| = 1. From this it follows
that to the condenser C (t, D, An), at dividing transformation is relative
{Pk}nk=1 and {ζk}nk=1, there corresponds a set of condensers the system of
corners corresponding to system of points An; operation [A]∗ compares
to any the set A ⊂ C a set, symmetric a set A is relative unit circle |w| =
1. From this it follows that to the condenser C (t, D, An), at dividing
transformation is relative {Mk}nk=1 and {ζk}nk=1, there corresponds a set
of condensers {Ck (t, D, An)}nk=1, symmetric relatively {z : |z| = 1}.
According to works [4, 16], we will receive

capC (t,D,An) >
1

2

n∑
k=1

capCk (t,D,An) . (3.3)

From here follows

|C (t,D,An) | 6 2

(
n∑

k=1

|Ck (t,D,An) |−1

)−1

. (3.4)

The formula (3.1) gives a module asymptotics C (t, D, An) at t→ 0,
and M (D,An) is the given module of a set D relatively An. Using
formulas (2.3) and that fact that a setD meets the condition of unapplied
in relation to the system of points An, for condensers we will receive
similar asymptotic representations Ck (t,D,An), k = 1, n

|Ck (t,D,An) | =
1

4π
log

1

t
+Mk (D,An) + o(1), t→ 0, (3.5)

where

Mk (D,An) =
1

8π
·

log r
(
Ω

(1)
k , ζk (ak)

)
1
σk

|ak|
1
σk

−1
+ log

r
(
Ω

(2)
k−1, ζk−1 (ak)

)
1

σk−1
|ak|

1
σk−1

−1

 .
By means of (3.5), we receive

|Ck (t,D,An)|−1 =
4π

log 1
t

·

(
1 +

4π

log 1
t

Mk (D,An) + o

(
1

log 1
t

))−1

=
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=
4π

log 1
t

−

(
4π

log 1
t

)2

Mk (D,An) + o

( 1

log 1
t

)2
 , t→ 0. (3.6)

Further, from (3.6), follows that

n∑
k=1

|Ck (t,D,An)|−1 =

4πn

log 1
t

−

(
4π

log 1
t

)2

·
n∑

k=1

Mk (D,An) + o

( 1

log 1
t

)2
 , t→ 0. (3.7)

In turn, allows (3.7) to receive the following asymptotic representa-
tion (

n∑
k=1

|Ck (t,D,An)|−1

)−1

=
log 1

t

4πn
·

(
1− 4π

n log 1
t

·
n∑

k=1

Mk (D,An) + o

(
1

log 1
t

))−1

=
log 1

t

4πn
+

1

n2
·

n∑
k=1

Mk (D,An) + o(1), t→ 0. (3.8)

Inequalities, (3.3) and (3.4) taking into (3.1) and (3.8) allow to notice
that

1

2π
· 1
n
·log 1

t
+M(D,An)+o(1) 6

log 1
t

2πn
+

2

n2
·

n∑
k=1

Mk (D,An)+o(1). (3.9)

From (3.9) at t→ 0 we receive that

M(D,An) 6
2

n2
·

n∑
k=1

Mk (D,An) . (3.10)

Formulas (3.2), (3.5) and (3.10) lead to the following expression

1

2π
· 1

n2
·
[ n∑
k=1

log r(D, ak) + 2
∑
k ̸=q

gD(ak, aq)
]

≤ 1

4πn2
·

 n∑
k=1

log
r
(
Ω

(1)
k , ζk (ak)

)
1
σk

|ak|
1
σk

−1
+

n∑
k=1

log
r
(
Ω

(2)
k−1, ζk−1 (ak)

)
1

σk−1
|ak|

1
σk−1

−1

 .
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Thus, taking into (2.6), we receive

n∏
k=1

(|ãk+1 − ãk|α · r (D, ak)) ≤ 2nα ·
n∏

k=1

σk |ak|

|ak|
1

2σk · |ak|
1

2σk−1

×
n∏

k=1

sinα
πσk
2

·
n∏

k=1

(
r
(
Ω

(1)
k , ζk (ak)

)
· r
(
Ω

(2)
k , ζk (ak+1)

)) 1
2
.

Further, the proof of the theorem comes to an end in the same way, as
well as the proof of the theorem 2.1.
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