

О простых концах на римановых многообразиях

Денис П. Ильютко, Евгений А. Севостьянов

(Представлена В. Я. Гутлянским)

Аннотация. Изучается граничное поведение классов кольцевых отображений на римановых многообразиях, являющихся обобщением квазиконформных отображений по Герингу. В терминах простых концов регулярных областей получены теоремы о непрерывном продолжении указанных классов на границу области.

2010 MSC. 30C65, 30D40, 31B15, 31C12.

Ключевые слова и фразы. Простые концы, отображения с ограниченным и конечным искажением, модули, ёмкости.

1. Введение

Основная цель настоящей работы — изложить наиболее важные результаты, касающиеся граничного поведения отображений между римановыми многообразиями в случае плохих границ. В статье рассмотрены квазиконформные отображения и некоторые их обобщения, исследование которых осуществлено методом модулей. Одной из первых работ в этом направлении является известная статья Някки [1], в которой предложено решение вопроса о граничном продолжении квазиконформных отображений евклидового пространства в терминах простых концов, см. также [2–7].

Приведём теперь необходимые для изложения сведения. Всюду ниже \mathbb{M}^n и \mathbb{M}^n_* – римановы многообразия размерности $n\geqslant 2$ с геодезическими расстояниями d и d_* соответственно, D,D' – области, лежащие в \mathbb{M}^n и \mathbb{M}^n_* соответственно, а $Q\colon \mathbb{M}^n\to [0,\infty]$ – измеримая относительно меры объёма функция, равная нулю вне заданной области D (при этом, при всех $\mathbf{x}\in D$ мы предполагаем, что

Статья поступила в редакцию 14.02.2018

Исследование первого автора выполнено при поддержке $P\Phi\Phi U$ (грант № 19-01-00775) и НШ (грант № 6399.2018.1).

 $0 < Q(\mathbf{x}) < \infty$). Мы считаем далее известными понятия римановой метрики, геодезического расстояния, объёма и длины на многообразии (см. [5]). По умолчанию замыкание \overline{A} и граница ∂A множества $A \subset \mathbb{M}^n$ понимаются в смысле геодезического расстояния на \mathbb{M}^n . Мы также считаем известными понятия кривых и модуля семейств кривых (поверхностей), которые для многообразий также могут быть найдены в работе [5] (см. также классическую работу Фугледе по этому поводу [8]). Всюду далее, если не оговорено противное, $\|\mathbf{x}\| = \sqrt{(x^1)^2 + \ldots + (x^n)^2}$, где $\mathbf{x} = (x^1, \ldots, x^n) \in \mathbb{R}^n$. Для удобства положим (r > 0)

$$\mathbb{B}^{n} := \{ \mathbf{x} \in \mathbb{R}^{n} \mid ||\mathbf{x}|| < 1 \},$$

$$\mathbb{B}^{n}_{+} := \{ \mathbf{x} = (x^{1}, \dots, x^{n}) \in \mathbb{R}^{n} \mid ||\mathbf{x}|| < 1, x^{n} > 0 \},$$

$$\mathbb{B}^{n-1} := \{ \mathbf{x} = (x^{1}, \dots, x^{n}) \in \mathbb{R}^{n} \mid ||\mathbf{x}|| < 1, x^{n} = 0 \},$$

$$S_{+}(\mathbf{x}_{0}, r) = \{ \mathbf{x} = (x^{1}, \dots, x^{n}) \in \mathbb{R}^{n} \mid ||\mathbf{x} - \mathbf{x}_{0}|| = r, x^{n} > 0 \},$$

$$B_{+}(\mathbf{x}_{0}, r) = \{ \mathbf{x} = (x^{1}, \dots, x^{n}) \in \mathbb{R}^{n} \mid ||\mathbf{x} - \mathbf{x}_{0}|| < r, x^{n} > 0 \}$$

в \mathbb{R}^n и

$$B(\mathbf{x}_0, r) = \{ \mathbf{x} \in \mathbb{M}^n \mid d(\mathbf{x}, \mathbf{x}_0) < r \},$$

$$S(\mathbf{x}_0, r) = \{ \mathbf{x} \in \mathbb{M}^n \mid d(\mathbf{x}, \mathbf{x}_0) = r \},$$

$$A(\mathbf{x}_0, r_1, r_2) = \{ \mathbf{x} \in \mathbb{M}^n \mid r_1 < d(\mathbf{x}, \mathbf{x}_0) < r_2 \},$$

для любого многообразия \mathbb{M}^n , где $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$ для случая $\mathbb{M}^n = \mathbb{R}^n$. Геодезическим расстоянием между множествами $F, F^* \subset D \subset \mathbb{M}^n$, где D – область в \mathbb{M}^n , будем называть величину

$$d(F, F^*) := \inf_{\mathbf{x} \in F, \mathbf{y} \in F^*} d(\mathbf{x}, \mathbf{y}).$$

Также геодезическим диаметром F будем называть величину

$$d(F) := \sup_{\mathbf{x}, \mathbf{y} \in F} d(\mathbf{x}, \mathbf{y}).$$

Определение 1.1. Гомеоморфизм $f\colon D\to D'$ между областями $D\subset \mathbb{M}^n$ и $D'\subset \mathbb{M}^n_*$ будем называть *квазиконформным отображением*, если для каждого семейства кривых Γ в области D и некоторой постоянной $1\leqslant K<\infty$ мы имеем

$$(1/K)\cdot M(\Gamma)\leqslant M(f(\Gamma))\leqslant K\cdot M(\Gamma),$$

где $M(\Gamma)$ обозначает модуль семейства кривых Γ (см., напр., [5, раздел 1.8]).

Следующие определения могут быть найдены в работе [2]. Пусть ω – область в \mathbb{R}^k , $k=1,\ldots,n-1$. Непрерывное отображение $\sigma\colon\omega\to\mathbb{M}^n$ называется k-мерной поверхностью в \mathbb{M}^n . Поверхностью будет называться произвольная (n-1)-мерная поверхность σ в \mathbb{M}^n . Поверхность σ называется жордановой поверхностью, если $\sigma(\mathbf{x})\neq\sigma(\mathbf{y})$ при $\mathbf{x}\neq\mathbf{y}$. Далее мы иногда будем использовать σ для обозначения всего образа $\sigma(\omega)\subset\mathbb{M}^n$ при отображении $\sigma,\overline{\sigma}$ вместо $\overline{\sigma(\omega)}$ в \mathbb{M}^n и $\partial\sigma$ вместо $\overline{\sigma(\omega)}\setminus\sigma(\omega)$. Жорданова поверхность $\sigma\colon\omega\to D$ в области D называется разрезом области D, если σ разделяет D, т. е. $D\setminus\sigma$ имеет больше одной компоненты, $\partial\sigma\cap D=\varnothing$ и $\partial\sigma\cap\partial D\neq\varnothing$.

Последовательность $\sigma_1, \sigma_2, \dots, \sigma_m, \dots$ разрезов области D называется uenbw, если:

(i) множество σ_{m+1} содержится в точности в одной компоненте d_m множества $D \setminus \sigma_m$, при этом, $\sigma_{m-1} \subset D \setminus (\sigma_m \cup d_m)$;

(ii)
$$\cap d_m = \emptyset$$
.

Согласно определению, цепь разрезов $\{\sigma_m\}$ определяет цепь областей $d_m\subset D$, таких, что $\partial\,d_m\cap D\subset\sigma_m$ и $d_1\supset d_2\supset\ldots\supset d_m\supset\ldots$ Две цепи разрезов $\{\sigma_m\}$ и $\{\sigma_k'\}$ называются эквивалентными, если для каждого натурального числа $m\in\mathbb{N}$ область d_m содержит все области d_k' за исключением конечного числа, и для каждого $k\in\mathbb{N}$ область d_k' также содержит все области d_m за исключением конечного числа.

Определение 1.2. *Конец* области D – это класс эквивалентных ценей разрезов области D.

Пусть K – конец области D в \mathbb{M}^n , $\{\sigma_m\}$ и $\{\sigma'_m\}$ – две цепи в K, d_m и d'_m – области, соответствующие σ_m и σ'_m . Тогда

$$\bigcap_{m=1}^{\infty} \overline{d_m} \subset \bigcap_{m=1}^{\infty} \overline{d'_m} \subset \bigcap_{m=1}^{\infty} \overline{d_m} ,$$

и, таким образом,

$$\bigcap_{m=1}^{\infty} \overline{d_m} = \bigcap_{m=1}^{\infty} \overline{d'_m} \ ,$$

т. е. множество

$$I(K) = \bigcap_{m=1}^{\infty} \overline{d_m}$$

зависит только от K и не зависит от выбора цепи разрезов $\{\sigma_m\}$. Множество I(K) называется *телом конца* K.

Хорошо известно, что I(K) является континуумом, т.е. связным компактным множеством, см., напр., [9, I(9.12)]. Кроме того, ввиду условий (i) и (ii), имеем, что

$$I(K) = \bigcap_{m=1}^{\infty} (\partial d_m \cap \partial D) = \partial D \cap \bigcap_{m=1}^{\infty} \partial d_m.$$

Таким образом, получаем следующее утверждение.

Предложение 1.1. Для каждого конца K области D в \mathbb{M}^n

$$I(K) \subset \partial D$$
.

Всюду далее, как обычно, $\Gamma(E,F,D)$ обозначает семейство всех таких кривых $\gamma\colon [a,b]\to D$, что $\gamma(a)\in E$ и $\gamma(b)\in F$. Следуя [1], будем говорить, что конец K является простым концом, если K содержит цепь разрезов $\{\sigma_m\}$, такую, что

$$M(\Gamma(\sigma_m, \sigma_{m+1}, D)) < \infty \quad \forall \quad m \in \mathbb{N}$$
 (1.1)

И

$$\lim_{m \to \infty} M(\Gamma(C, \sigma_m, D)) = 0 \tag{1.2}$$

для произвольного континуума C в D. В дальнейшем используются следующие обозначения: множество простых концов, соответствующих области D, обозначается символом E_D , а пополнение области D её простыми концами обозначается \overline{D}_P .

Определение 1.3. Будем говорить, что граница области D в \mathbb{M}^n является локально квазиконформной, если каждая точка $\mathbf{x}_0 \in \partial D$ имеет окрестность U в \mathbb{M}^n , которая может быть отображена квазиконформным отображением φ на единичный шар $\mathbb{B}^n \subset \mathbb{R}^n$ так, что $\varphi(\partial D \cap U)$ является пересечением \mathbb{B}^n с координатной гиперплоскостью.

Рассмотрим также следующее определение (см. [2]).

Определение 1.4. Будем называть цепь разрезов $\{\sigma_m\}$ регулярной, если $\overline{\sigma_m} \cap \overline{\sigma_{m+1}} = \emptyset$ при каждом $m \in \mathbb{N}$ и, кроме того, $d(\sigma_m) \to 0$ при $m \to \infty$. Если конец содержит по крайней мере одну регулярную цепь, то этот конец будем называть регулярным. Говорим, что ограниченная область D в \mathbb{M}^n регулярна, если D может быть квазиконформно отображена на область с локально квазиконформной границей и, кроме того, каждый простой конец из E_D является регулярным.

Заметим, что в пространстве \mathbb{R}^n каждый простой конец регулярной области содержит цепь разрезов со свойством $d(\sigma_m) \to 0$ при $m \to \infty$, и наоборот, если в конце указанное свойство имеет место, то он – простой (см. [1, теорема 5.1]).

Как обычно, M_p обозначает p-модуль семейств кривых на многообразии (см., напр., [10, раздел 1.3]). Для дальнейшего изложения будет полезным следующее определение (см. [11, разд. 13.3]).

Определение 1.5. Будем говорить, что граница ∂D области D сильно достижима в точке $\mathbf{x}_0 \in \partial D$ относительно р-модуля, если для любой окрестности U точки \mathbf{x}_0 найдется компакт $E \subset D$, окрестность $V \subset U$ точки \mathbf{x}_0 и число $\delta > 0$, такие, что

$$M_n(\Gamma(E, F, D)) \geqslant \delta$$
 (1.3)

для любого континуума F в D, пересекающего ∂U и ∂V . Если p=n, то приставка «p-модуля» по отношению к (1.3), как правило, опускается.

Смысл условия (1.3) состоит в том, что при приближении континуума F фиксированного диаметра к точке границы области, модуль семейств кривых, соединяющих этот континуум с некоторым фиксированным компактом, не стремится к нулю. Указанное свойство имеет место, в частности, для «хороших» областей в \mathbb{R}^n : единичного шара, всего пространства \mathbb{R}^n , а также любой ограниченной выпуклой области. Несложно также привести примеры областей, в которых данное условие нарушается.

Определение 1.6. Отображение $f: X \to Y$ будем называть *дискретным*, если для каждого $\mathbf{y} \in Y$ множество $f^{-1}(\mathbf{y})$ состоит только из изолированных точек.

Отображение $f: D \to \mathbb{M}^n_*, D \subset \mathbb{M}^n$, будем называть *открытым*, если для каждого открытого множества $A \subset D$ множество f(A) открыто в \mathbb{M}^n_* . Отображение $f: D \to \mathbb{M}^n_*, D \subset \mathbb{M}^n$, будем называть замкнутым, если для каждого замкнутого множества $A \subset D$ множество f(A) замкнуто в f(D).

Определение функций класса FMO (конечного среднего колебания), использующееся далее по тексту, также могут быть найдены в работах [5,10].

Ниже через \overline{D}_P и $\overline{D'}_P$ мы обозначаем пополнение регулярных областей $D\subset \mathbb{M}^n$ и $D'\subset \mathbb{M}^n_*$ их простыми концами (см. замечание 2.1 по этому поводу). Как будет показано ниже, \overline{D}_P и $\overline{D'}_P$ можно

интерпретировать как метрические пространства относительно некоторых метрик ρ и ρ_* , соответственно, и непрерывность какого-либо отображения f между \overline{D}_P и $\overline{D'}_P$ следует понимать именно относительно них.

Пусть теперь $0 < r_1 < r_2 < r_0$,

$$A = A(\mathbf{x}_0, r_1, r_2) = {\mathbf{x} \in \mathbb{M}^n | r_1 < d(\mathbf{x}, \mathbf{x}_0) < r_2},$$

 $S_i = S(\mathbf{x}_0, r_i), \ i = 1, 2, -$ геодезические сферы с центром в точке \mathbf{x}_0 и радиусами r_1 и r_2 соответственно, а $\Gamma(S_1, S_2, A)$ обозначает семейство всех кривых, соединяющих S_1 и S_2 внутри области A. Пусть $p \geqslant 1, Q \colon \mathbb{M}^n \to [0, \infty]$ – измеримая по Лебегу функция, $Q(\mathbf{x}) \equiv 0$ при всех $\mathbf{x} \not\in D$. Отображение $f \colon D \to \mathbb{M}^n_*$ будем называть кольцевым Q-отображением относительно p-модуля в точке $\mathbf{x}_0 \in \partial D$, если для некоторого $r_0 = r(\mathbf{x}_0) > 0$, такого, что шар $B(\mathbf{x}_0, r_0)$ лежит в некоторой нормальной окрестности точки \mathbf{x}_0 , произвольного "сферического" кольца $A = A(\mathbf{x}_0, r_1, r_2)$, центрированного в точке \mathbf{x}_0 , радиусами r_1 и r_2 , $0 < r_1 < r_2 < r_0$, и любых континуумов $E_1 \subset \overline{B(\mathbf{x}_0, r_1)} \cap D$, $E_2 \subset \mathbb{M}^n \setminus B(\mathbf{x}_0, r_2) \cap D$ отображение f удовлетворяет соотношению

$$M_p\left(f\left(\Gamma\left(E_1, E_2, D\right)\right)\right) \leqslant \int_{A} Q(\mathbf{x})\eta^p(d(\mathbf{x}, \mathbf{x}_0)) \ dv(\mathbf{x})$$
 (1.4)

для каждой измеримой функции $\eta\colon (r_1,r_2)\to [0,\infty],$ такой, что имеет место соотношение

$$\int_{r_1}^{r_2} \eta(r)dr \geqslant 1. \tag{1.5}$$

Основной результат настоящей статьи содержится в следующем утверждении.

Теорема 1.1. Пусть $n \geqslant 2$, области D и D' имеют компактные замыкания, $Q \colon \mathbb{M}^n \to [0,\infty]$, $Q(\mathbf{x}) \equiv 0$ на $\mathbb{M}^n \setminus D$, $p \geqslant 1$, область $D \subset \mathbb{M}^n$ регулярна, а $D' \subset \mathbb{M}^n$ имеет локально квазиконформную границу, являющуюся сильно достижимой относительно p-модуля. Пусть также отображение $f \colon D \to D'$, D' = f(D), является кольцевым Q-отображением относительно p-модуля в каждой точке $\mathbf{x}_0 \in \partial D$, кроме того, f является дискретным, открытым и замкнутым. Тогда f продолжается до непрерывного отображения $f \colon \overline{D}_P \to \overline{D'}_P$, $f(\overline{D}_P) = \overline{D'}_P$, если выполнено одно из следующих условий:

1) либо в каждой точке $\mathbf{x}_0 \in \partial D$ при некотором $\varepsilon_0 = \varepsilon_0(\mathbf{x}_0) > 0$ и всех $0 < \varepsilon < \varepsilon_0$

$$\int_{\varepsilon}^{\varepsilon_0} \frac{dt}{t^{\frac{n-1}{p-1}} q_{\mathbf{x}_0}^{\frac{1}{p-1}}(t)} < \infty, \qquad \int_{0}^{\varepsilon_0} \frac{dt}{t^{\frac{n-1}{p-1}} q_{\mathbf{x}_0}^{\frac{1}{p-1}}(t)} = \infty,$$

$$\varepsilon \partial e \ q_{\mathbf{x}_0}(r) := \frac{1}{r^{n-1}} \int_{S(\mathbf{x}_0, r)} Q(\mathbf{x}) \, d\mathcal{A};$$
(1.6)

2) либо $Q \in FMO(\mathbf{x}_0)$ в каждой точке $\mathbf{x}_0 \in \partial D$ при условии, что $p \leqslant n$.

2. Аналог лемм Някки для многообразий

Для дальнейшего изложения необходимы вспомогательные утверждения о соответствии простых концов между областями, одна из которых является квазиконформным образом области с локально квазиконформной границей. Для пространства \mathbb{R}^n такие утверждения известны и доказаны Някки в его работе [1, теорема 4.1]. Так как справедливость этих результатов на многообразиях нам неизвестна, мы установим эти результаты путём прямого доказательства. Следующее утверждение содержит расшифровку понятия локально квазиконформной границы в терминах соотношений вида (1.3). Его доказательство дословно повторяет доказательство [12, теорема 17.10], и потому опускается.

Лемма 2.1. Пусть $D \subset \mathbb{M}^n$ – область с локально квазиконформной границей, тогда граница этой области является слабо плоской u, в частности, является сильно достижимой. Более того,, окрестность U в определении локально квазиконформной границы может быть взята сколь угодно малой, при этом, в этом определении можно считать $\varphi(\mathbf{x}_0) = 0$.

Здесь, как обычно, граница ∂D области D называется слабой плоской в точке $\mathbf{x}_0 \in \partial D$, если для любой окрестности U точки \mathbf{x}_0 и для каждого P>0 найдется окрестность $V\subset U$ точки \mathbf{x}_0 , такая, что для любых двух континуумов F и G, пересекающих ∂U и ∂V , выполняется неравенство $M(\Gamma(E,F,D))\geqslant P$ (см. [11, разд. 13.9]). Граница ∂D области D будет называться слабой плоской, если она является слабо плоской в каждой точке $\mathbf{x}_0\in D$. Справедлива также следующая лемма (см. [1, лемма 3.5]).

Лемма 2.2. Предположим, $D \subset \mathbb{M}^n$ – область с локально квазиконформной границей, такая, что \overline{D} является компактом в \mathbb{M}^n . Тогда

тело I(P) простого конца $P \in E_D$ состоит из одной точки $\mathbf{p} \in \partial D$ и $d(\sigma_k, \sigma_{k+1}) > 0$.

Доказательство. По предложению 1.1 имеем: $I(P) \subset \partial D$. Заметим, прежде всего, что $I(P) \neq \emptyset$. Действительно, $I(P) = \bigcap_{m=1}^{\infty} \overline{D_m}$, где D_m – соответствующая P последовательность областей. Тогда $I(P) \neq \emptyset$ ввиду компактности $\overline{D} \supset D_m$ и аксиомы Кантора (см. [13, (2'), §41, гл. 4]).

Покажем, что I(P) – одноточечное множество. Предположим противное, то есть, существуют, по крайней мере, две точки $\mathbf{x}, \mathbf{y} \in I(P)$. Тогда $d(\mathbf{x}, \mathbf{y}) = r > 0$. Пусть $D_m, m = 1, 2, \ldots,$ — последовательность областей в \mathbb{M}^n , соответствующих простому концу P, тогда, согласно определению, $I(P) = \bigcap_{m=1}^{\infty} \overline{D_m}$. В таком случае, найдутся последовательности $\mathbf{x}_m, \mathbf{y}_m \in D_m$, такие, что $\mathbf{x}_m \to \mathbf{x}$ и $\mathbf{y}_m \to \mathbf{y}$ при $m \to \infty$. В силу неравенства треугольника, $d(\mathbf{x}_m, \mathbf{y}_m) \geqslant r/2$ при достаточно больших $m \geqslant m_0 \in \mathbb{N}$. Соединим точки \mathbf{x}_m и \mathbf{y}_m кривыми C_m в области D_m . По построению $d(C_m) \geqslant r/2$ при $m \geqslant m_0 \in \mathbb{N}$.

Пусть U_0 – произвольная окрестность точки \mathbf{x} , не содержащая точки \mathbf{y} . По лемме 2.1 область D имеет слабо плоскую границу, поэтому найдётся окрестность $V_0 \subset U_0$, такая, что для всяких континуумов F и G, пересекающих ∂U_0 и ∂V_0 , выполняется условие

$$M(\Gamma(E, F, D)) \geqslant 1/2. \tag{2.1}$$

Поскольку последовательность \mathbf{x}_m сходится к \mathbf{x} , то при всех $m \geqslant m_1$, $m_1 \geqslant m_0, m_1 \in \mathbb{N}$, все точки \mathbf{x}_m принадлежат окрестности V_0 . Таким образом, континуум C_m пересекает ∂U_0 и ∂V_0 ввиду [13, теорема 1.І.5, § 46]. Рассмотрим произвольную кривую C, соединяющую $\partial U_0 \cap D$ и $\partial V_0 \cap D$. Тогда ввиду (2.1) мы будем иметь, что

$$M(\Gamma(C_m, C, D)) \geqslant 1/2.$$

С другой стороны, очевидно, при больших $m \geqslant m_2, m_2 \in \mathbb{N}$, выполнено соотношение $\Gamma(C_m,C,D) > \Gamma(\sigma_m,C,D)$, откуда в силу минорирования модуля следует, что

$$M(\Gamma(\sigma_m, C, D)) \geqslant M(\Gamma(C_m, C, D)) \geqslant 1/2$$
,

что противоречит соотношению (1.2). Полученное противоречие указывает на неверность предположения о наличии не менее двух точек в множестве I(P).

Осталось показать, что $d(\sigma_k, \sigma_{k+1}) > 0$. Предположим противное, а именно, пусть при некотором $k \in \mathbb{N}$ выполнено $d(\sigma_k, \sigma_{k+1}) = 0$. Так как любое замкнутое подмножество компакта — компакт (см. [13, теорема 2.II.4]), $\overline{\sigma_k}$ и $\overline{\sigma_{k+1}}$ — непересекающиеся компактные подмножества \overline{D} . Заметим, что по определению

$$0 = d(\sigma_k, \sigma_{k+1}) = \inf_{\mathbf{x} \in \sigma_k, \mathbf{y} \in \sigma_{k+1}} d(\mathbf{x}, \mathbf{y}).$$

В силу определения точной нижней грани найдутся последовательности $\mathbf{x}_l \in \sigma_k, \mathbf{y}_l \in \sigma_{k+1}$, такие, что $d(\mathbf{x}_l, \mathbf{y}_l) \to d(\sigma_k, \sigma_{k+1})$ при $l \to \infty$. Поскольку $\overline{\sigma_k}$ и $\overline{\sigma_{k+1}}$ – компакты, без ограничения общности рассуждений мы можем считать, что обе последовательности \mathbf{x}_l и \mathbf{y}_l сходятся к точкам $\mathbf{x}_0 \in \sigma_k$ и $\mathbf{y}_0 \in \sigma_{k+1}$ соответственно. Тогда в силу неравенства треугольника

$$d(\mathbf{x}_0, \mathbf{y}_0) \leqslant d(\mathbf{x}_0, \mathbf{x}_l) + d(\mathbf{x}_l, \mathbf{y}_l) + d(\mathbf{y}_l, \mathbf{y}_0) \to 0, \quad l \to \infty,$$

откуда следует $\mathbf{x}_0 = \mathbf{y}_0$. Таким образом, $\overline{\sigma_k} \cap \overline{\sigma_{k+1}} \neq \emptyset$, то есть, найдётся точка $\mathbf{p}_0 \in \overline{\sigma_k} \cap \overline{\sigma_{k+1}}$. Заметим, что $\mathbf{p}_0 \in \partial D$. Выберем окрестность U точки \mathbf{p}_0 , такую, что $\partial U \cap \sigma_k \neq \emptyset \neq \sigma_{k+1} \cap \partial U$. Ввиду леммы 2.1 для каждого $\delta > 0$ существует окрестность $V \subset U$ этой же точки \mathbf{p}_0 , такая, что $M(\Gamma(E, F, D)) > \delta$ как только E и F пересекают ∂U и ∂V . Ввиду условия $\mathbf{p}_0 \in \overline{\sigma_k} \cap \overline{\sigma_{k+1}}$ мы можем считать, что условия $\partial V \cap \sigma_k \neq \emptyset \neq \sigma_{k+1} \cap \partial V$ выполнены. Тогда $M(\Gamma(\sigma_k, \sigma_{k+1}, D)) = \infty$ ввиду произвольности $\delta > 0$. Последнее противоречит свойству (1.1), входящего в определение простого конца. Полученное противоречие указывает на неверность предположения $d(\sigma_k, \sigma_{k+1}) = 0$. Лемма доказана.

Следующее утверждение для пространства \mathbb{R}^n и областей с локально квазиконформными границами также доказано в [1, лемма 3.5].

Лемма 2.3. Предположим, $D \subset \mathbb{M}^n$ – область с локально квазиконформной границей, такая, что \overline{D} является компактом в \mathbb{M}^n . Тогда для каждой точки $\mathbf{x}_0 \in \partial D$ найдётся простой конец P, для которого $I(P) = \{\mathbf{x}_0\}$.

Доказательство. Пусть $\mathbf{x}_0 \in \partial D$ и φ — квазиконформное отображение из определения локально квазиконформной границы. Ввиду леммы 2.1 мы можем считать, что $\varphi(\mathbf{x}_0) = 0$. Легко видеть, что найдётся последовательность сфер $S(0,1/2^k), k=1,2,\ldots$, и убывающая последовательность окрестностей V_k точки \mathbf{x}_0 , для которых $\varphi(V_k) = B(0,1/2^k), \ \varphi(\partial V_k \cap D) = S(0,1/2^k) \cap \mathbb{B}^n_+$. В самом деле, выберем окрестность $V \subset U$, содержащую точку \mathbf{x}_0 . Если 0 < r < 1,

то шар B(0,r) лежит строго внутри \mathbb{B}^n . Поскольку φ – гомеоморфизм в U, то, в частности, φ^{-1} – непрерывное отображение. В таком случае, найдётся 0 < r < 1 со следующим свойством: из условия $|\varphi(\mathbf{x})| < r$ вытекает, что $\mathbf{x} \in V$. Кроме того, если $\varphi(\mathbf{x}) \in \mathbb{B}^n_+ \cup \mathbb{B}^{n-1}$ и $|\varphi(\mathbf{x})| < r$, то $\mathbf{x} \in V \cap \overline{D}$. Полагая $U_r := \varphi^{-1}(B(0,r))$, мы заметим, что $U_r \subset V$ и U_r является окрестностью точки \mathbf{x}_0 , при этом, $\varphi^{-1}(S(0,r) \cap \mathbb{B}^n_+) = \partial U_r \cap D$, поскольку φ – гомеоморфизм. Приведенные рассуждения доказывают существование требуемой последовательности V_k , так как достаточно теперь положить $r = 1/2^k$ и $V_k := U_{1/2^k}$.

Заметим, что последовательность областей V_k соответствует простому концу P с требуемыми свойствами, где $\sigma_k := \partial V_k \cap D$.

Для доказательства этого заметим, прежде всего, что σ_k , действительно, является разрезом, поскольку V_k и $D\setminus \overline{V_k}$, действительно, являются различными компонентами связности $D\setminus \sigma_k$, при этом, $\sigma_{k+1}\subset V_k$. Условия $\partial\sigma_k\cap D=\varnothing$ и $\partial\sigma_k\cap\partial D\neq\varnothing$, участвующие в определении разреза, выполняются (как мы отметили ранее, σ_k отождествляется с поверхностью $\sigma_k=\varphi^{-1}\circ S_k$, где $S_k\colon\omega\to\mathbb{R}^n$ обозначает некоторую параметризацию полусферы $S(0,1/2^k)$, и ω – соответствующая этой параметризации область в пространстве \mathbb{R}^{n-1}).

Проверим теперь условия (i) и (ii) из определения цепи и требования (1.1) и (1.2). Как уже было отмечено выше, σ_{k+1} содержится в V_k , кроме того, $\sigma_{k-1} \subset D \setminus V_k$ по построению. Наконец, $\bigcap_{k=1}^{\infty} V_k = \varnothing$, поскольку, в противном случае, мы имели бы точку $\mathbf{p}_0 \in \bigcap_{k=1}^{\infty} V_k$, однако, тогда также $\varphi(\mathbf{p}_0) \in \bigcap_{k=1}^{\infty} B_+(0,1/2^k)$, что не имеет места. Условие (ii), таким образом, также выполняется.

Осталось убедиться в выполнении условий (1.1) и (1.2). Действительно, так как $\overline{\sigma_k}$ и $\overline{\sigma_{k+1}}$ не пересекаются, то $r:=\mathrm{dist}\,(\sigma_k,\sigma_{k+1})>0$. Тогда функция $\rho(\mathbf{x})$, равная 1/r при $\mathbf{x}\in D$ и $\rho(\mathbf{x})=0$ при $\mathbf{x}\not\in D$, допустима для семейства $\Gamma(\sigma_k,\sigma_{k+1},D)$. Так как \overline{D} – компакт, множество D имеет конечный объём v(D), поскольку \overline{D} можно покрыть конечным числом окрестностей конечного объёма. Значит,

$$M(\Gamma(\sigma_k, \sigma_{k+1}, D)) \leqslant \int_{\mathbb{M}^n} \frac{dv(\mathbf{x})}{r^n} \leqslant \frac{v(D)}{r^n} < \infty.$$

Чтобы проверить условие (1.2), выберем произвольный континуум $C\subset D$. Заметим, что $C\subset D\setminus V_k$ при некотором достаточно большом

 $k \in \mathbb{N}$. Тогда

$$\Gamma(C, \sigma_m, D) > \Gamma(\partial V_k \cap D, \sigma_m, V_k \cap D)$$
 (2.2)

при всех m > k. Кроме того, заметим, что

$$\varphi(\Gamma(\partial V_k \cap D, \sigma_m, V_k \cap D)) = \Gamma(S_+(0, 1/2^k), S_+(0, 1/2^m), B_+(0, 1/2^k))$$
(2.3)

и что согласно [12, разд. 7.5]

$$\begin{split} M(\Gamma(S_{+}(0,1/2^{k}),S_{+}(0,1/2^{m}),B_{+}(0,1/2^{k})) \leqslant \\ \leqslant M(\Gamma(S(0,1/2^{k}),S(0,1/2^{m}),B(0,1/2^{k}) \setminus \overline{B(0,1/2^{m})})) = \\ = \frac{\omega_{n-1}}{\left(\log \frac{2^{m}}{2^{k}}\right)^{n-1}} \to 0, \quad m \to \infty \,, \quad (2.4) \end{split}$$

где ω_{n-1} – площадь единичной сферы $\partial \mathbb{B}^n$ в \mathbb{R}^n . Окончательно, из (2.2), (2.3) и (2.4) ввиду свойства минорирования модуля вытекает, что

$$M(\varphi(\Gamma(C, \sigma_m, D))) \leqslant \frac{\omega_{n-1}}{(\log \frac{2^m}{2^k})^{n-1}} \to 0, \quad m \to \infty.$$

Однако, так как φ – квазиконформное отображение, то из последнего соотношения также вытекает, что $M(\Gamma(C, \sigma_m, D)) \to 0$ при $m \to \infty$, что и завершает доказательство леммы.

Следующее фундаментальное утверждение также доказано Някки в случае \mathbb{R}^n (см. [1, теорема 4.1]).

Теорема 2.1. Пусть D, D' – области с компактными замыканиями на римановых многообразиях \mathbb{M}^n и \mathbb{M}^n_* соответственно, и пусть D – область с локально квазиконформной границей. Предположим, f – квазиконформное отображение области D на D'. Тогда существует взаимно однозначное соответствие между точками границы области D и простыми концами области D'.

Доказательство. Прежде всего, установим, что между простыми концами областей D и D' имеется взаимно однозначное соответствие. Действительно, пусть P – простой конец в D и σ_k , $k=1,2,\ldots,$ – соответствующая ему цепь разрезов. Заметим, прежде всего, что последовательность $f(\sigma_k)$, $k=1,2,\ldots,$ также образует цепь разрезов. В самом деле, если $D\setminus \sigma_k$ состоит из двух и более компонент, то $f(D)\setminus f(\sigma_k)$ также не может быть связным множеством. Кроме того, если $\partial\sigma_k\cap D=\varnothing$ и $\partial\sigma_k\cap\partial D\neq\varnothing$, то ввиду гомеоморфности отображения f также и $\partial f(\sigma_k)\cap f(D)=\varnothing$ и $\partial f(\sigma_k)\cap\partial f(D)\neq\varnothing$. Заметим

также, что выполнены условия (i) и (ii) из определения цепи разрезов:

- (i) множество $f(\sigma_{m+1})$ содержится в точности в одной компоненте $f(d_m)$ множества $f(D) \setminus f(\sigma_m)$, при этом, $f(\sigma_{m-1}) \subset f(D) \setminus (f(\sigma_m) \cup f(d_m))$;
- (ii) $\cap f(d_m) = \emptyset$, где $f(d_m)$ компонента $f(D) \setminus f(\sigma_m)$, содержащая $f(\sigma_{m+1})$.

Наконец, условия вида (1.1) и (1.2) выполнены для последовательности $f(\sigma_m)$, $m=1,2,\ldots$, ввиду квазиконформности f. Таким образом, отображение f может быть продолжено до отображения $f\colon \overline{D}_P \to \overline{D'}_P$, которое сюръективно и инъективно.

Таким образом, для доказательства утверждения теоремы 2.1 достаточно установить взаимно однозначное соответствие между E_D и ∂D . Будем следовать схеме доказательства [1, теорема 4.1]. Построим отображение $h: \overline{D}_P \to \overline{D}$, положив h тождественным отображением на D и h(P) = I(P) для $P \in E_D$.

Ввиду леммы 2.2 множество I(P) состоит из единственной граничной точки $\mathbf{b} \in \partial D$, а по лемме 2.3 указанное соответствие является сюръективным отображением E_D на ∂D . Покажем, что h является также и инъективным отображением на множестве E_D . Предположим противное, а именно, что найдётся точка $\mathbf{b} \in \partial D$ и два различных простых конца $P_1 \neq P_2$, $P_1, P_2 \in E_D$, такие, что $I(P_1) = I(P_2) = \mathbf{b}$. Предположим, D_i – последовательность областей, соответствующая простому концу P_1 . Согласно определению

$$\bigcap_{i=1}^{\infty} \overline{D_i} = \mathbf{b} \,. \tag{2.5}$$

Пусть G_i , $i=1,2,\ldots,$ — последовательность областей, соответствующая простому концу P_2 , тогда также

$$\bigcap_{i=1}^{\infty} \overline{G_i} = \mathbf{b} \,. \tag{2.6}$$

Так как по предположению $P_1 \neq P_2$, то соответствующие им цепи разрезов не эквивалентны, т.е., либо область D_i (при некотором $i \in \mathbb{N}$) не содержит бесконечное число областей G_k , либо область G_m (при некотором $m \in \mathbb{N}$) не содержит бесконечное число областей G_s . Другими словами, выполнено одно из двух условий:

1) либо найдутся $i \in \mathbb{N}$, возрастающая последовательность чисел k_l , $l = 1, 2, \ldots$, и элементы $\mathbf{a}_{k_l} \in G_{k_l}$, такие, что $\mathbf{a}_{k_l} \in D \setminus D_i$;

2) либо найдутся $m \in \mathbb{N}$, возрастающая последовательность чисел r_l , $l = 1, 2, \ldots$, и элементы $\mathbf{c}_{r_l} \in D_{r_l}$, такие, что $\mathbf{c}_{r_l} \in D \setminus G_m$.

Так как \overline{D} – компакт, то мы можем считать, что и в первом, и во втором случае последовательности \mathbf{a}_{k_l} и \mathbf{c}_{r_l} являются сходящимися, причём ввиду (2.5) и (2.6) они могут сходиться только к точке \mathbf{b} . В любом из этих двух случаев мы имеем последовательность элементов $\mathbf{b}_l,\ l=1,2,\ldots$, сходящуюся при $l\to\infty$ к \mathbf{b} и лежащую в $D\setminus D_i$ (либо в $D\setminus G_m$) при всех $l\in\mathbb{N}$. Пусть для определённости указанная последовательность \mathbf{b}_l лежит в $D\setminus D_i$ при всех $l=1,2,\ldots$, и пусть σ_k – цепь разрезов, соответствующих последовательности областей D_k .

Докажем, что при сделанных предположениях $\mathbf{b} \in \overline{\sigma_k}$ при всех $k \geqslant i$. Если $\mathbf{b} \notin \overline{\sigma_k}$ хотя бы при одном $k \geqslant i$, то найдётся окрестность U точки \mathbf{b} , такая, что $U \cap \sigma_k = \emptyset$, при этом, для некоторого квазиконформного отображения $\varphi \colon U \to \mathbb{R}^n$ выполнялись бы условия $\varphi(U) = \mathbb{B}^n$ и $\varphi(U \cap D) = \mathbb{B}^n_+$, так как по предположению Dимеет локально квазиконформную границу. Таким образом, множество $U \cap D$ является связным и, значит, оно принадлежит только одной из связных компонент $D \setminus \sigma_k$, а именно либо $U \cap D \subset D_k$, либо $U \cap D \subset D \setminus \overline{D_k}$. Так как последовательность \mathbf{b}_l сходится при $l \to \infty$ к точке **b**, то $\mathbf{b}_l \in U \cap D$ при больших $l \geqslant l_0$, поэтому случай $U \cap D \subset D_k$, $k \geqslant i$, невозможен, поскольку по предположению \mathbf{b}_l лежит в $D \setminus D_i$ при всех $l=1,2,\ldots$ В таком случае, $U\cap D\subset D\setminus \overline{D_k},\ k\geqslant i$, что также не может иметь места, так как ввиду соотношения (2.5) мы можем найти последовательность элементов $\mathbf{a}_m \in D_m, m = 1, 2, \dots,$ сходящуюся к **b** при $m \to \infty$, т.е., $U \cap D \cap D_m \neq \emptyset$ при больших $m \geqslant k$ и, в частности, $U \cap D \cap D_k \neq \emptyset$. Полученное противоречие говорит о том, что $\mathbf{b} \in \overline{\sigma_k}$ при всех $k \geqslant i$. Тогда $d(\sigma_k, \sigma_{k+1}) = 0$, что противоречит утверждению леммы 2.2. Указанное противоречие говорит о том, что исходное предположение о наличии различных простых концов $P_1 \neq P_2, P_1, P_2 \in E_D$, таких что $I(P_1) = I(P_2) = \mathbf{b}$, было неверным. Теорема доказана.

Следствие 2.1. Пусть D, D' – области c компактными замыканиями на римановых многообразиях \mathbb{M}^n и \mathbb{M}^n_* соответственно, имеющие локально квазиконформную границу. Предположим, $f \colon D \to D'$ – квазиконформное отображение области D на D'. Тогда f продолжается до гомеоморфизма \overline{D} на $\overline{D'}$.

Доказательство. Пусть $\mathbf{x}_m \in D$, где $\mathbf{x}_m \stackrel{d}{\to} \mathbf{x}_0 \in \overline{D}$ при $m \to \infty$, – произвольная последовательность. Нужно показать, что существует

 $\lim_{\substack{m \to \infty \\ \text{нечего.}}} f(\mathbf{x}_m)$ в метрике d_* . Если \mathbf{x}_0 – внутренняя точка D, доказывать нечего.

Пусть $\mathbf{x}_0 \in \partial D$. По теореме 2.1 найдётся единственный простой конец $P_0 \in E_D$ такой, что $\mathbf{x}_0 = I(P_0)$. По этой же теореме простому концу P_0 соответствует единственный простой конец области D', а именно простой конец $f(P_0)$, более того, найдётся точка $\mathbf{y}_0 \in D'$, такая, что $\mathbf{y}_0 = I(f(P_0))$.

Пусть φ – квазиконформное отображение из определения локально квазиконформной границы, соответствующее точке \mathbf{x}_0 . Ввиду леммы 2.1 мы можем считать, что $\varphi(\mathbf{x}_0)=0$. Следуя началу доказательства леммы 2.3, заключаем, что найдётся последовательность сфер $S(0,1/2^k),\ k=1,2,\ldots$, и убывающая последовательность окрестностей V_k точки \mathbf{x}_0 , для которых $\varphi(V_k)=B(0,1/2^k),\ \varphi(\partial V_k\cap D)=S(0,1/2^k)\cap \mathbb{B}^n_+$. Заметим, что последовательность областей V_k соответствует простому концу P_0 с требуемыми свойствами, где $\sigma_k:=\partial V_k\cap D$ (этот факт был установлен при доказательстве леммы 2.3).

Отсюда следует, что $\mathbf{x}_m \in V_k$ при каждом фиксированном $k \in \mathbb{N}$ и всех $m \geqslant m_0(k)$, где $m_0 \in \mathbb{N}$.

Выберем произвольно $\varepsilon > 0$. Так как $\mathbf{y}_0 = I(f(P_0))$, найдётся номер $k_0(\varepsilon) \in \mathbb{N} : f(V_k) \subset B(y_0, \varepsilon)$ при всех $k \geqslant k_0$. Положим $M(\varepsilon) := m_0(k_0(\varepsilon))$. Тогда при $m \geqslant M(\varepsilon)$ имеем $d_*(f(\mathbf{x}_m), \mathbf{y}_0) < \varepsilon$, поскольку $\mathbf{x}_m \in V_{k_0}$, а $f(V_{k_0}) \in B(y_0, \varepsilon)$. Отсюда следует, что $f(\mathbf{x}_m) \stackrel{d_*}{\to} \mathbf{y}_0$, что и доказывает непрерывность отображения $f : \overline{D} \to \overline{D'}$.

Осталось установить, что $f(\overline{D}) = \overline{D'}$. Очевидно, $f(\overline{D}) \subset \overline{D'}$. Покажем обратное включение. Пусть $\mathbf{y}_0 \in \overline{D'}$. Если $\mathbf{y}_0 \in D'$, то, очевидно, $\mathbf{y}_0 \in f(D)$.

Пусть теперь $\mathbf{y}_0 \in \partial D'$. По теореме 2.1 найдутся единственные простые концы $P_0 \in E_D$ и $f(P) \in E_{D'}$, такие, что $\mathbf{y}_0 = I(f(P_0))$ и, кроме того, найдётся $\mathbf{x}_0 \in \partial D$, такая, что $\mathbf{x}_0 = I(P_0)$. Следовательно, найдётся также последовательность $\mathbf{x}_k \in D$, такая, что $\mathbf{x}_k \stackrel{d}{\to} \mathbf{x}_0$. По доказанному выше $f(\mathbf{x}_0) = \mathbf{y}_0$. Следствие доказано.

Замечание 2.1. Обозначим $\overline{D}_P := D \cup E_D$, где E_D – множество всех простых концов области D. Пусть D, D' – области c компактными замыканиями на римановых многообразиях \mathbb{M}^n и \mathbb{M}^n_* соответственно, и пусть D – область c локально квазиконформной границей. Руководствуясь теоремой 2.1, положим $h : \overline{D}_P \to \overline{D}$, где $h(\mathbf{x}) = \mathbf{x}$ при $\mathbf{x} \in D$ и h(P) = I(P) при $P \in E_D$. Ввиду теоремы 2.1 отображение h взаимнооднозначно отображает \overline{D}_P на \overline{D} ; в частности, h взаимнооднозначно отображает E_D на ∂D .

Если $\overline{D'}_P$ является пополнением регулярной области D' её простыми концами и g_0 является квазиконформным отображением области D с локально квазиконформной границей на D', то оно естественным образом определяет в $\overline{D'}_P$ метрику

$$\rho_0(\mathbf{p}_1, \mathbf{p}_2) = d\left(h(g_0^{-1}(\mathbf{p}_1)), h(g_0^{-1}(\mathbf{p}_2))\right).$$

Если g_* является другим квазиконформным отображением некоторой области D_* с локально квазиконформной границей на область D', то соответствующая метрика

$$\rho_*(\mathbf{p}_1, \mathbf{p}_2) = d\left(h(g_*^{-1}(\mathbf{p}_1)), h(g_*^{-1}(\mathbf{p}_2))\right)$$
(2.7)

порождает ту же самую сходимость и, следовательно, ту же самую топологию в $\overline{D'}_P$ как и метрика ρ_0 , поскольку $g_0^{-1} \circ g_*$ является квазиконформным отображением между областями D_* и D, которое по теореме 2.1 продолжается до гомеоморфизма между $\overline{D_*}$ и \overline{D} . В дальнейшем, будем называть данную топологию в пространстве $\overline{D'}_P$ топологией простых концов и понимать непрерывность отображений $F\colon \overline{D}_P \to \overline{D'}_P$ как раз относительно этой топологии.

Замечание 2.2. Пусть D, D' – области с компактными замыканиями на римановых многообразиях \mathbb{M}^n и \mathbb{M}^n_* соответственно, и пусть D – область с локально квазиконформной границей. Заметим, что метрическое пространство ($\overline{D'}_P$, ρ_0) компактно. В самом деле, пусть у нас есть последовательность элементов $\mathbf{x}_k \in \overline{D'}_P$, $k=1,2,\ldots$, и g_0 является квазиконформным отображением области D с локально квазиконформной границей на D', которому соответствует метрика ρ_0 , определённая соотношением из замечания 2.1. Тогда $\mathbf{z}_k := h(g_0^{-1}(\mathbf{x}_k))$ – последовательность элементов в \overline{D} , где h определено в замечании 2.1. Так как \overline{D} предполагалось компактным множеством, то из последовательности \mathbf{z}_k можно извлечь сходящуюся подпоследовательность \mathbf{z}_{k_l} , $l=1,2,\ldots$, к некоторой точке $\mathbf{z}_0 \in \overline{D}$. Точке \mathbf{z}_0 соответствует некоторый простой конец $P_0 \in E_D$ (точка $P_0 \in D$), которому, в свою очередь, соответствует простой конец $f(P_0) \in E_{D'}$ (точка $f(P_0) \in D'$).

Из теоремы 2.1 и замечания 2.1 вытекает следующее утверждение, обобщающее классический результат Някки для пространства \mathbb{R}^n (см. [1, теорема 4.2]).

Теорема 2.2. Пусть D, D' – области с компактными замыканиями на римановых многообразиях \mathbb{M}^n и \mathbb{M}^n_* соответственно, и пусть

D — область с локально квазиконформной границей. Предположим, f — квазиконформное отображение области D на D'. Тогда отображение f продолжается до гомеоморфизма $f: \overline{D} \to \overline{D'}_P$.

3. Основная лемма о регулярных концах

В настоящем разделе рассматриваются области, содержащие регулярные цепи разрезов. Следующее утверждение обобщает [2, лемма 1] на римановы многообразия.

Пемма 3.1. Каждый регулярный конец K области $D \subset \mathbb{M}^n$, имеющей компактное замыкание $\overline{D} \subset \mathbb{M}^n$, содержит в себе цепь разрезов σ_m , лежащих на сферах S_m с центром в некоторой точке $\mathbf{x}_0 \in \partial D$ и геодезическими радиусами $\rho_m \to 0$ при $m \to \infty$.

Доказательство. Пусть $\{\sigma_m\}$ — цепь разрезов в конце K и \mathbf{x}_m — последовательность точек в σ_m . Без ограничения общности можем считать, что $\mathbf{x}_m \to \mathbf{x}_0 \in \partial D$ при $m \to \infty$, поскольку \overline{D} — компакт. Положим

$$\rho_m^- := d(\mathbf{x}_0, \sigma_m)$$
.

По неравенству треугольника $d(\mathbf{x}_0, \sigma_m) \leqslant d(\mathbf{x}_0, \mathbf{x}_m) + d(\mathbf{x}_m, \sigma_m) \leqslant d(\mathbf{x}_0, \mathbf{x}_m) + d(\sigma_m)$. Поскольку $d(\sigma_m) \to 0$ при $m \to \infty$, отсюда следует, что

$$\rho_m^- \to 0, \quad m \to \infty.$$

Кроме того,

$$\rho_m^+ := H(\mathbf{x}_0, \sigma_m) = \sup_{\mathbf{x} \in \sigma_m} d(\mathbf{x}, \mathbf{x}_0) = \sup_{\mathbf{x} \in \overline{\sigma_m}} d(\mathbf{x}, \mathbf{x}_0)$$

— хаусдорфово расстояние между компактными множествами $\{\mathbf{x}_0\}$ и $\overline{\sigma_m}$ в \overline{D} . В силу всё того же неравенства треугольника $d(\mathbf{x}_0, \mathbf{x}) \leq d(\mathbf{x}_0, \mathbf{x}_m) + d(\mathbf{x}_m, \mathbf{x}) \leq d(\mathbf{x}_0, \mathbf{x}_m) + d(\sigma_m)$ для $\mathbf{x} \in \sigma_m$. Отсюда следует, что

$$\rho_m^+ \to 0, \quad m \to \infty.$$

Ввиду регулярности конца K мы можем считать, что $\rho_m^->0$ при всех $m\in\mathbb{N}$. Кроме того, переходя, если это нужно к подпоследовательности, мы можем считать, что $\rho_{m+1}^+<\rho_m^-$ для всех $m=1,2,\ldots$

Положим

$$\delta_m = \Delta_m \setminus d_{m+1},$$

где $\Delta_m = S_m \cap d_m$ и

$$S_m = \left\{ \mathbf{x} \in \mathbb{M}^n \mid d(\mathbf{x}_0, \mathbf{x}) = \frac{1}{2} \left(\rho_m^- + \rho_{m+1}^+ \right) \right\}.$$

Очевидно, что Δ_m и δ_m относительно замкнуты в d_m .

Заметим, что d_{m+1} содержится в одной из компонент связности открытого множества $d_m \setminus \delta_m$. Действительно, предположим, что пара точек \mathbf{x}_1 и $\mathbf{x}_2 \in d_{m+1}$ находится в различных компонентах Ω_1 и Ω_2 множества $d_m \setminus \delta_m$. Поскольку на римановых многообразиях открытые связные множества являются также и линейно связными (см. [11, предложение 13.1]), точки \mathbf{x}_1 и \mathbf{x}_2 могут быть соединены кривой $\gamma\colon [0,1]\to d_{m+1}$. Однако, по построению, d_{m+1} , а поэтому и γ , не пересекают δ_m , следовательно, $[0,1]=\bigcup_{k=1}^\infty \omega_k$, где $\omega_k=\gamma^{-1}(\Omega_k)$, Ω_k — перенумерация компонент $d_m \setminus \delta_m$ (поскольку многообразие \mathbb{M}^n локально связно, все компоненты Ω_k множества $d_m \setminus \delta_m$ открыты и их не более, чем счётно, см. [13, теоремы 4 и 6, разд. 6.49.II]). Но ω_k является открытым в [0,1], поскольку Ω_k открыто и γ непрерывна. Последнее противоречит связности [0,1], так как $\omega_1 \neq \emptyset$ и $\omega_2 \neq \emptyset$ и, кроме того, ω_i и ω_j попарно не пересекаются при $i \neq j$.

Пусть d_m^* — компонента $d_m \setminus \delta_m$, содержащая d_{m+1} . Тогда по построению $d_{m+1} \subset d_m^* \subset d_m$. Покажем, что $\partial d_m^* \setminus \partial D \subset \delta_m$. Вопервых, очевидно, что $\partial d_m^* \setminus \partial D \subset \delta_m \cup \sigma_m$. (Действительно, если бы нашлась точка $\mathbf{x} \in (\partial d_m^* \setminus \partial D) \setminus (\delta_m \cup \sigma_m)$, то ввиду включений $d_m^* \subset d_m$, и $\partial d_m \cap D \subset \sigma_m$, мы имели бы $\mathbf{x} \in (\overline{d_m} \setminus \partial D) \setminus (\delta_m \cup \sigma_m) \subset (\sigma_m \cup d_m) \setminus (\delta_m \cup \sigma_m) = d_m \setminus \delta_m$. С другой стороны, всякая точка в $d_m \setminus \delta_m$ принадлежит либо d_m^* , либо другой компоненте $d_m \setminus \delta_m$, и поэтому не принадлежит границе d_m^* , ввиду относительной замкнутости δ_m в d_m . Полученное противоречие указывает на справедливость включения $\partial d_m^* \setminus \partial D \subset \delta_m \cup \sigma_m$). Таким образом, достаточно доказать, что $\sigma_m \cap \partial d_m^* \setminus \partial D = \varnothing$.

Предположим противное, а именно, что существует точка $\mathbf{x}_* \in \sigma_m$ в $\partial d_m^* \backslash \partial D$. Покажем, что найдется точка $\mathbf{y}_* \in d_m^*$, достаточно близкая к σ_m , такая, что

$$d(\mathbf{x}_0, \mathbf{y}_*) > \frac{1}{2} \left(\rho_m^- + \rho_{m+1}^+ \right) .$$
 (3.1)

В самом деле, по определению точной нижней грани $\rho_m^- \leqslant d(\mathbf{x}_0, \mathbf{x}_*)$. Поскольку согласно сделанному выше предположению $\mathbf{x}_* \in \partial d_m^* \setminus \partial D \cap \sigma_m$, найдётся последовательность $\mathbf{x}_k \in d_m^* \setminus \partial D$, $k = 1, 2, \ldots$, такая, что $d(\mathbf{x}_k, \mathbf{x}_*) < 1/k$. По неравенству треугольника $d(\mathbf{x}_0, \mathbf{x}_*) < 1/k$.

 $1/k+d(\mathbf{x}_0,\mathbf{x}_k)$. Так как неравенство $\rho_{m+1}^+<\rho_m^-$ - строгое, то из последнего неравенства при некотором достаточно большом $k\in\mathbb{N}$ имеем

$$d(\mathbf{x}_0, \mathbf{x}_k) > d(\mathbf{x}_0, \mathbf{x}_*) - 1/k \geqslant \rho_m^- - 1/k > \frac{1}{2} \left(\rho_m^- + \rho_{m+1}^+ \right),$$

что совпадает с неравенством (3.1) при $\mathbf{y}_* = \mathbf{x}_k$.

На основании аналогичных рассуждений, найдется точка $\mathbf{z}_* \in d_{m+1}$, достаточно близкая к σ_{m+1} , такая, что

$$d(\mathbf{x}_0, \mathbf{z}_*) < \frac{1}{2} \left(\rho_m^- + \rho_{m+1}^+ \right) .$$

Кроме того, точки \mathbf{z}_* и \mathbf{y}_* могут быть соединены кривой $\gamma \colon [0,1] \to d_m^*$. Заметим, что множества $\gamma^{-1}(d_m^* \setminus \overline{d_{m+1}})$ состоят из счетного набора открытых непересекающихся интервалов из [0,1] и интервала $(t_0,1]$ с $t_0 \in (0,1)$, и $\mathbf{z}_0 = \gamma(t_0) \in \sigma_{m+1}$. Таким образом,

$$d(\mathbf{x}_0, \mathbf{z}_0) < \frac{1}{2} \left(\rho_m^- + \rho_{m+1}^+ \right) ,$$
 (3.2)

поскольку $d(\mathbf{x}_0, \mathbf{z}_0) \leqslant \rho_{m+1}^+$ и $\rho_{m+1}^+ < \rho_m^-$. Из (3.1) и (3.2), в силу непрерывности функции $\varphi(t) = d(\mathbf{x}_0, \gamma(t))$, вытекает существование точки $\tau_0 \in (t_0, 1)$ такой, что

$$d(\mathbf{x}_0, \mathbf{y}_0) = \frac{1}{2} \left(\rho_m^- + \rho_{m+1}^+ \right) ,$$

где $\mathbf{y}_0 = \gamma(\tau_0) \in d_m^* \backslash \overline{d_{m+1}}$ в силу выбора γ . Полученное противоречие, состоящее в том, что одновременно $\mathbf{y}_0 \in d_m^* \backslash \overline{d_{m+1}}$ и $\mathbf{y}_0 \in S(\mathbf{x}_0, \Delta_m) \cap d_m$, показывает, что наше предположение о наличии точки $\mathbf{x}_* \in \sigma_m$ в $\partial d_m^* \setminus \partial D$ не является верным. Таким образом, $\partial d_m^* \setminus \partial D \subset \delta_m$.

В наших рассуждениях в качестве цепи разрезов следует взять множества δ_m , а в качестве последовательности соответствующих областей – последовательность d_m^* , $m=1,2,\ldots$ Остаётся показать, что данные множества δ_m действительно образуют цепь разрезов в смысле свойств (i) и (ii), приведенных в первой части работы.

Заметим, прежде всего, что множества δ_m удовлетворяют определению разреза, а именно, проверим следующие условия:

- 1) множество $D \setminus \delta_m$ имеет больше одной компоненты,
- 2) $\partial \delta_m \cap D = \emptyset$ и
- 3) $\partial \delta_m \cap \partial D \neq \emptyset$.

В самом деле, 1) область d_m^* является одной из компонент $D\setminus \delta_m$ ввиду определения d_m^* , кроме того, если бы $D\setminus \delta_m$ состояло из

одной компоненты связности, то любые две точки $\mathbf{x}_1, \mathbf{x}_2 \in D \setminus \delta_m$ можно было бы связать кривой γ в $D \setminus \delta_m$ (так как открытое связное множество на римановом многообразии является линейно связным, см. [11, следствие 13.1]). Выберем $\mathbf{x}_1 \in d_m^*, \mathbf{x}_2 \in D \setminus d_m$. Заметим, что \mathbf{x}_1 и \mathbf{x}_2 лежат в $D \setminus \delta_m$ по построению. Поскольку $d_m^* \subset d_m$, то кривая γ , соединяющая точки \mathbf{x}_1 и \mathbf{x}_2 , не лежит целиком ни в d_m^* , ни в $D \setminus d_m^*$, поэтому эта кривая ввиду [13, теорема 1.І.5, § 46]) пересекает $\partial d_m^* \cap D \subset \delta_m$, что противоречит сделанному предположению. Значит, $D \setminus \delta_m$ имеет более одной компоненты.

Осталось установить условия 2) и 3). Для этого установим сначала соотношение

$$\overline{\delta_m} \cap \partial D \neq \varnothing \,. \tag{3.3}$$

Заметим, что сфера $S_m = \frac{1}{2} \left(\rho_m^- + \rho_{m+1}^+ \right)$ при достаточно больших m лежит в нормальной окрестности точки \mathbf{x}_0 . Таким образом, S_m является связным множеством на многообразии \mathbb{M}^n , так как в локальных координатах множество S_m представляет собой евклидову сферу (см. [14, лемма 5.10 и следствие 6.11]). Тогда $(S_m \cap \overline{\delta_m}) \cap \overline{S_m} \setminus \overline{\delta_m} \neq \varnothing$ ввиду связности S_m , $\delta_m = \Delta_m \setminus d_{m+1}$ и $\Delta_m = S_m \cap d_m$ (см. [13, определение 5.I.46]). Пусть $\zeta_0 \in (S_m \cap \overline{\delta_m}) \cap \overline{S_m} \setminus \overline{\delta_m}$, тогда, в частности,

$$\zeta_0 \in S_m \cap \overline{\delta_m} = S_m \cap \overline{S_m \cap d_m \setminus d_{m+1}} \subset \overline{S_m \cap d_m} \subset \overline{d_m}.$$
 (3.4)

Так как $\zeta_0 \in \overline{S_m \setminus \delta_m} = \overline{S_m \setminus ((d_m \cap S_m) \setminus d_{m+1})}$, то найдётся последовательность $\zeta_k \in S_m \setminus ((d_m \cap S_m) \setminus d_{m+1})$, такая, что $\zeta_0 = \lim_{k \to \infty} \zeta_k$. Возможны две ситуации:

- 1) когда бесконечное число элементов последовательности ζ_k принадлежат множеству $S_m \setminus d_m$;
- 2) данному множеству принадлежат только конечное число элементов данной последовательности.

В ситуации 1) мы имеем $\zeta_0 \in \overline{S_m \setminus d_m}$, но в силу (3.4) мы также имеем, что $\zeta_0 \in \overline{d_m}$. Тогда $\zeta_0 \in \partial d_m$, что ввиду соотношения $(\partial d_m \setminus \partial D) \cap S_m = \sigma_m \cap S_m = \varnothing$ (выполненного по построению сферы S_m) может быть возможно лишь в ситуации $\zeta_0 \in \partial D$.

В ситуации 2) имеем $\zeta_0 \in \overline{d_{m+1}}$. Снова ввиду соотношения (3.4) имеем $\zeta_0 \in \overline{S_m \setminus d_{m+1}}$, откуда вытекает, что $\zeta_0 \in \partial d_{m+1}$. Так как по построению $(\partial d_{m+1} \setminus \partial D) \cap S_m = \sigma_{m+1} \cap S_m = \emptyset$, то последнее снова возможно лишь в случае $\zeta_0 \in \partial D$. Итак, в обеих ситуациях 1) и 2) мы имеем точку $\zeta_0 \in \partial D$, причём ввиду (3.4) выполнено $\zeta_0 \in \overline{\delta_m}$, что и указывает на справедливость соотношения (3.3).

Покажем теперь справедливость условия 2) $\partial \delta_m \cap D = \emptyset$. В самом деле, если бы нашлась точка $\xi_0 \in \partial \delta_m = \partial (\Delta_m \setminus d_{m+1}) = \overline{\Delta_m \setminus d_{m+1}} \setminus$

 $(\Delta_m \setminus d_{m+1})$, то это означало бы, что нашлась бы последовательность $\xi_k, \ k=1,2,\ldots$, такая что $\xi_k \in S_m \cap d_m \setminus d_{m+1}$ и $\xi_k \to \xi_0$ при $k \to \infty$. Возможны две ситуации: либо $\xi_0 \in d_m$, либо $\xi_0 \notin d_m$. Тогда, соответственно, либо $\xi_0 \in \partial d_m \cap S_m$, либо $\xi_0 \in \partial d_{m+1} \cap S_m$. Так как по построению $(\partial d_m \setminus \partial D) \cap S_m = \sigma_m \cap S_m = \emptyset$ и $(\partial d_{m+1} \setminus \partial D) \cap S_m = \sigma_{m+1} \cap S_m = \emptyset$, каждый из этих двух случаев возможен лишь при $\xi_0 \in \partial D$. Условие 2) $\partial \delta_m \cap D = \emptyset$ установлено. Наконец, условие 3) $\partial \delta_m \cap \partial D \neq \emptyset$ является следствием условия 2) и соотношения (3.3).

Наконец, проверим условия цепи разрезов:

- (i) множество δ_{m+1} содержится в точности в одной компоненте d_m^* множества $D \setminus \delta_m$, при этом, $\delta_{m-1} \subset D \setminus (\delta_m \cup d_m^*)$;
- (ii) $\cap d_m^* = \emptyset$, где d_m^* компонента $D \setminus \delta_m$, содержащая δ_{m+1} .

Действительно, $\delta_{m+1} \subset d_{m+1} \subset d_m^*$ по построению, причём d_m^* — некоторая компонента связности множества $D \setminus \delta_m$. Пусть, кроме того, $\mathbf{x} \in \delta_{m-1}$, тогда $\mathbf{x} \notin d_m^*$, поскольку по построению $d_m^* \subset d_{m-1}^*$ и $d_{m-1}^* \subset d_{m-1} \setminus \delta_{m-1}$. В силу сказанного, $\delta_{m-1} \subset D \setminus (\delta_m \cup d_m^*)$, т.е., выполнено условие (i). Наконец, пусть $\mathbf{y} \in \cap d_m^*$. Тогда также $\mathbf{y} \in \cap d_m$ ввиду свойства $d_{m+1} \subset d_m^* \subset d_m$, $m=1,2,\ldots$ Но последнее невозможно, так как исходная последовательность областей d_m образовывала пустое пересечение. Полученное противоречие указывает на выполнение условия (ii). Лемма полностью доказана.

В дальнейшем, для заданной области D в \mathbb{M}^n , $n \geqslant 2$, говорим, что последовательность точек $\mathbf{x}_k \in D, \ k=1,2,\ldots,\ cxodumcs\ \kappa$ кончу K, если для каждой цепи $\{\sigma_m\}$ в K и каждой области d_m все точки \mathbf{x}_k , за исключением, быть может, конечного числа, принадлежат d_m . В этом случае, мы пишем: $\mathbf{x}_k \stackrel{\rho}{\to} P$ при $k \to \infty$, или даже $\mathbf{x}_k \to P$, если недоразумение невозможно. Из определения метрики в пространстве простых концов вытекает, что сходимость в указанном выше смысле эквивалентна сходимости в пространстве \overline{D}_P в смысле соотношения (2.7).

4. Доказательство основного результата

Следующее утверждение в \mathbb{R}^n установлено в [15, теорема 3.3]. Его доказательство для римановых многообразий аналогично случаю \mathbb{R}^n , и потому опускается.

Предложение 4.1. Пусть $n \ge 2$, D – область на римановом многообразии \mathbb{M}^n , и пусть $f \colon D \to \mathbb{M}^n_*$ – дискретное, открытое и замкнутое отображение в риманово многообразие \mathbb{M}^n_* . Тогда f также является сохраняющим границу и собственным отображением.

Имеет место следующее утверждение, доказательство которого аналогично [15, лемма 3.7], и потому опускается.

Предложение 4.2. Пусть $n \geqslant 2$, D – область в \mathbb{M}^n , имеющая компактное замыкание $\overline{D} \subset \mathbb{M}^n$, $f \colon D \to \mathbb{M}^n_*$ – дискретное, открытое и замкнутое отображение, $\beta \colon [a,b) \to \mathbb{M}^n_*$ – кривая и точка $\mathbf{x} \in f^{-1}(\beta(a))$. Тогда кривая β имеет максимальное поднятие $\alpha \colon [a,c) \to D$ при отображении f с началом в точке \mathbf{x} , при этом c = b. Кроме того, если β продолжается до замкнутой кривой $\beta \colon [a,b] \to \mathbb{M}^n_*$, то и кривая α продолжается до замкнутой кривой $\alpha \colon [a,b] \to D$, причём $f(\alpha(t)) = \beta(t), t \in [a,b]$.

Для доказательства основного результата – теоремы 1.1 – мы докажем сначала некое вспомогательное утверждение, содержащее в себе заключение указанной теоремы в большей степени общности. Следующая лемма для случая гомеоморфизмов на плоскости доказана в [3, лемма 5.1]. В нашем случае речь идёт о ситуации римановых многообразий и отображений со значительно более общими свойствами.

Лемма 4.1. Пусть $n \geqslant 2$, $p \geqslant 1$, области D и D' имеют компактные замыкания в \mathbb{M}^n и \mathbb{M}^n_* соответственно, область $D \subset \mathbb{M}^n$ регулярна, а $D' \subset \mathbb{M}^n_*$ имеет локально квазиконформную границу, являющуюся сильно достижимой относительно p-модуля. Пусть также отображение $f \colon D \to D'$, D' = f(D), является кольцевым Q-отображением относительно p-модуля во всех точках $\mathbf{x}_0 \in \partial D$, кроме того, f является дискретным, открытым и замкнутым. Тогда f продолжается до непрерывного отображения $f \colon \overline{D}_P \to \overline{D'}_P$, $f(\overline{D}_P) = \overline{D'}_P$, если найдётся измеримая по Лебегу функция $\psi \colon (0,\infty) \to [0,\infty]$, такая, что

$$I(\varepsilon, \varepsilon_0) := \int_{\varepsilon}^{\varepsilon_0} \psi(t)dt < \infty$$
 (4.1)

при всех $\varepsilon\in(0,\varepsilon_0)$ и, кроме того, $I(\varepsilon,\varepsilon_0)\to\infty$ при $\varepsilon\to0$, и при $\varepsilon\to0$

$$\int_{\varepsilon < d(\mathbf{x}_0, \mathbf{x}) < \varepsilon_0} Q(\mathbf{x}) \cdot \psi^p(d(\mathbf{x}_0, \mathbf{x})) \ dv(\mathbf{x}) = o(I^p(\varepsilon, \varepsilon_0)) \ . \tag{4.2}$$

Доказательство. Так как область D' имеет локально квазиконформную границу, то $\overline{D'}_P = \overline{D'}$ ввиду теоремы 2.1. В силу метризуемости пространства \overline{D}_P достаточно доказать, что для каждого простого

конца P области D предельное множество

$$L = C(f, P) := \left\{ \mathbf{y} \in \mathbb{M}_*^n \,|\, \mathbf{y} = \lim_{m \to \infty} f(\mathbf{x}_m), \, \mathbf{x}_m \to P, \, \mathbf{x}_m \in D \right\}$$

состоит из единственной точки $\mathbf{y}_0 \in \partial D'$.

Заметим, что $L \neq \varnothing$ в силу компактности множества $\overline{D'}$, и L является подмножеством $\partial D'$ ввиду предложения 4.1. Предположим, что существуют, по крайней мере, две точки \mathbf{y}_0 и $\mathbf{z}_0 \in L$, т.е., найдётся не менее двух последовательностей $\mathbf{x}_k,\,\mathbf{x}_k'\in D,$ таких, что $\mathbf{x}_k\to P$ и $\mathbf{x}_k' \to P$ при $k \to \infty$, и при этом, $f(\mathbf{x}_k) \to \mathbf{y}_0$ и $f(\mathbf{x}_k') \to \mathbf{z}_0$ при $k \to \infty$. В силу определения регулярной области и леммы 3.1 каждый простой конец $P \in E_D$ содержит цепь разрезов σ_m , лежащую на сферах S_m с центром в некоторой точке $\mathbf{x}_0 \in \partial D$ и геодезическими радиусами $r_m \to 0$ при $m \to \infty$. Пусть D_k – области, ассоциированные с разрезами σ_k , k=1,2,... Не ограничивая общности рассуждений, переходя к подпоследовательности, если это необходимо, мы можем считать, что $\mathbf{x}_k, \mathbf{x}_k' \in D_k$. В самом деле, так как последовательности \mathbf{x}_k и \mathbf{x}_k' сходятся к простому концу P, найдётся номер $k_1 \in \mathbb{N}$, такой, что $\mathbf{x}_{k_1}, \mathbf{x}'_{k_1} \in D_1$. Далее, найдётся номер $k_2 \in \mathbb{N}, \, k_2 > k_1$, такой, что $\mathbf{x}_{k_2}, \mathbf{x}'_{k_2} \in D_2$. И так далее. Вообще, на m-м шаге мы найдём номер $k_m \in \mathbb{N}$, $k_m > k_{m-1}$, такой, что \mathbf{x}_{k_m} , $\mathbf{x}'_{k_m} \in D_m$. Продолжая этот процесс, мы получим две последовательности \mathbf{x}_{k_m} и \mathbf{x}'_{k_m} , принадлежащие области D_m , сходящиеся к P при $m \to \infty$ и такие, что $f(\mathbf{x}_{k_m}) \to \mathbf{y}_0$ и $f(\mathbf{x}'_{k_m}) \to \mathbf{y}_0$ при $m \to \infty$. Переобозначая, если это необходимо, $\mathbf{x}_{k_m} \mapsto \mathbf{x}_m$, мы получаем последовательности \mathbf{x}_m и \mathbf{x}_m' с требуемыми свойствами.

По определению сильно достижимой границы в точке $\mathbf{y}_0 \in \partial D'$ относительно p-модуля, для любой окрестности U этой точки найдутся компакт $C_0' \subset D'$, окрестность V точки $\mathbf{y}_0, V \subset U$, и число $\delta > 0$, такие, что

$$M_p(\Gamma(C_0', F, D')) \geqslant \delta > 0 \tag{4.3}$$

для произвольного континуума F, пересекающего ∂U и ∂V . Так как отображение f — замкнутое, ввиду предложения 4.1 для множества $C_0 := f^{-1}(C_0')$ выполнено условие $C_0 \cap \partial D = \varnothing$. Поскольку $I(P) = \bigcap_{m=1}^{\infty} \overline{D_m} \subset \partial D$ (см. предложение 1.1), то не ограничивая общности рассуждений, можно считать, что $C_0 \cap \overline{D_k} = \varnothing$ для каждого $k \in \mathbb{N}$. Соединим точки \mathbf{x}_k и \mathbf{x}_k' кривой γ_k , лежащей в D_k . Заметим, что $f(\mathbf{x}_k) \in V$ и $f(\mathbf{x}_k') \in D \setminus \overline{U}$ при всех достаточно больших $k \in \mathbb{N}$. В таком случае, найдётся номер $k_0 \in \mathbb{N}$, такой, что согласно (4.3)

$$M_p(\Gamma(C_0', |f(\gamma_k)|, D')) \geqslant \delta > 0 \tag{4.4}$$

при всех $k \geqslant k_0 \in \mathbb{N}$.

При каждом фиксированном $k \in \mathbb{N}, k \geqslant k_0$, рассмотрим семейство Γ'_k (полных) поднятий $\alpha \colon [a,b] \to D$ семейства $\Gamma(C'_0,|f(\gamma_k)|,D')$ с началом в множестве $|\gamma_k|$, т.е., $f \circ \alpha = \beta$, $\beta \in \Gamma(C'_0, |f(\gamma_k)|, D')$ и $\alpha(a) \in |\gamma_k|$. (Такое семейство определено корректно ввиду предложения 4.2). По определению $\beta(b) \in C_0'$, так что $\alpha(b) \in C_0$ по определению множества C_0 . Значит, $\alpha \in \Gamma(|\gamma_k|, C_0, D)$. Погрузим компакт C_0 в некоторый континуум C_1 , всё ещё полностью лежащий в области D (см. [16, лемма 1]). Можно снова считать, что $C_1 \cap \overline{D_k} = \varnothing$, $k = 1, 2, \dots$ Заметим, что $\Gamma(|\gamma_k|, C_0, D) > \Gamma(\sigma_k, C_1, D)$, при этом, $|\gamma_k|$ и C_0 – континуумы в D, а σ_k — разрез, соответствующий области D_k . Поэтому к семейству кривых $\Gamma(\sigma_k, C_1, D)$ можно применить определение кольцевого Q-отображения (1.4). Как уже было отмечено выше, $\sigma_k \subset S(\mathbf{x}_0, r_k)$ для некоторой точки $\mathbf{x}_0 \in \partial D$ и некоторой последовательности $r_k > 0, r_k \to 0$ при $k \to \infty$. Здесь, не ограничивая общности рассуждений, можно считать, что dist $(\mathbf{x}_0, C_1) > \varepsilon_0$. Кроме того, заметим, что функция

$$\eta_k(t) = \begin{cases} \psi(t)/I(r_k, \varepsilon_0), & t \in (r_k, \varepsilon_0), \\ 0, & t \in \mathbb{R} \setminus (r_k, \varepsilon_0), \end{cases}$$

где $I(\varepsilon,\varepsilon_0):=\int\limits_{-\varepsilon}^{\varepsilon_0}\psi(t)dt$ удовлетворяет условию нормировки (1.5). По доказанному $\Gamma_k'\subset\Gamma(|\gamma_k|,C_0,D)$, так что

$$M_p(f(\Gamma'_k)) \leqslant M_p(f(\Gamma(|\gamma_k|, C_0, D))).$$

Поэтому, в силу определения кольцевого Q-отображения в граничной точке относительно p-модуля, а также ввиду условий (4.1) и (4.2),

$$M_p(f(\Gamma'_k)) \leqslant M_p(f(\Gamma(|\gamma_k|, C_0, D))) \leqslant M_p(f(\Gamma(\sigma_k, C_1, D))) \leqslant \Delta(k),$$

$$(4.5)$$

где $\Delta(k)\to 0$ при $k\to\infty$. Однако, $f(\Gamma_k')=\Gamma(C_0',|f(\gamma_k)|,D')$, поэтому из (4.5) получим, что при $k\to\infty$

$$M_p(\Gamma(C_0', |f(\gamma_k)|, D')) = M_p(f(\Gamma_k')) \leqslant \Delta(k) \to 0.$$
 (4.6)

Однако, соотношение (4.6) противоречит неравенству (4.4), что и доказывает лемму.

Доказательство теоремы 1.1 сводится к лемме 4.1 на основании подбора функций ψ из этой леммы в подходящем для нас виде (см. по этому поводу [10, доказательство теорем 1.1 и 2.1]). \square

Литература

- R. Näkki, Prime ends and quasiconformal mappings // J. Anal. Math, 35 (1979), 13–40.
- [2] Д. А. Ковтонюк, В. И. Рязанов, *Простые концы и классы Орлича- Соболева* // Алгебра и анализ, **27** (2015), No. 5, 81–116.
- [3] V. Ya. Gutlyanskii, V. I. Ryazanov, E. Yakubov, *The Beltrami equations and prime ends* // Journal of Mathematical Sciences, **210** (2015), No. 1, 22–51.
- [4] Е. С. Афанасьева, В. И. Рязанов, Р. Р. Салимов, Об отображениях в классах Орлича-Соболева на римановых многообразиях // Укр. мат. вісник, 8 (2011), No. 3, 319–342.
- [5] Д. П. Ильютко, Е. А. Севостьянов, Об открытых дискретных отображениях с неограниченной характеристикой на римановых многообразиях // Мат. сборник, **207** (2016), No. 4, 65–112.
- [6] V. Ya. Gutlyanskii, O. Martio, V. I. Ryazanov, M. Vuorinen, On convergence theorems for space quaireqular mappings // Forum Math., 10 (1998), 353–375.
- [7] V. Ya. Gutlyanskii, O. Martio, V. I. Ryazanov, M. Vuorinen, On local injectivity and asymptotic linearity of quasiregular mappings // Studia Math., 128 (1998), No. 3, 243–271.
- [8] B. Fuglede, Extremal length and functional completion // Acta Math., 98 (1957), 171–219.
- [9] G. T. Whyburn, Analytic topology, American Mathematical Society, Rhode Island, 1942.
- [10] Д. П. Ильютко, Е. А. Севостьянов, О граничном поведении открытых дискретных отображений на римановых многообразиях // Матем. сб., **209** (2018), No. 5, 3–53; translate: Boundary behaviour of open discrete mappings on Riemannian manifolds // Sb. Math., **209** (2018), No. 5, 605–651.
- [11] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, New York, Springer Science + Business Media, LLC, 2009.
- [12] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Berlin etc., Springer-Verlag, 1971.
- [13] К. Куратовский, Топология, т. 2, М., Мир, 1969.
- [14] J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, New York, Springer, 1997.
- [15] M. Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in n-space // Ann. Acad. Sci. Fenn. Ser. A 1. Math. Dissertationes, 11 1976, 1–44.
- [16] Е. С. Смоловая, Граничное поведение кольцевых Q-гомеоморфизмов в метрических пространствах // Укр. матем. ж., 62 (2010), No. 5, 682–689.

Сведения об авторах

Денис Петрович Ильютко

Кафедра дифференциальной геометрии и приложений, мехмат факультет,

МГУ имени М. В. Ломоносова

Москва, Россия

 $E ext{-}Mail:$ ilyutko@yandex.ru

Евгений Александрович Севостьянов

Житомирский государственный университет имени Ивана Франко

Житомир, Украина,

Институт прикладной математики

и механики НАН Украины,

Славянск, Украина

 $E ext{-}Mail:$ esevostyanov2009@gmail.com