BOUNDARY VALUE PROBLEM FOR CERTAIN CLASSES OF NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH FREE BOUNDARY

(C) N.E. Tovmasyan

In the interval $\left(0, t_{0}\right)$ the following problem will be considered

$$
\begin{gather*}
m(t) \frac{d \nu}{d t}=k_{1} F(t)-f_{1}(\nu), \tag{1}\\
-k_{2} \frac{d m}{d t}=F(t) \tag{2}\\
f_{2}(\nu)+K_{3} F(t)=m(t) K_{n}, \tag{3}\\
m(0)=M_{0}, V(0)=V_{0} \tag{4}\\
m\left(t_{0}\right)=m_{0} \tag{5}
\end{gather*}
$$

where $f_{1}(V)$ and $f_{2}(V)$ are given continuous on V functions at $V \geq 0, k_{1}, k_{2}, k_{3}, k_{4}$, M_{0}, m_{0} and V are given positive constants, $m(t), F(t)$ and $V(t)$ unknown functions to be found in the interval $\left(0, t_{0}\right)$, satisfying the conditions

$$
\begin{gather*}
0<m_{0}<M_{0}, f_{1}(0)=0, f_{2}\left(V_{0}\right)<k_{4} M_{0}, \tag{6}\\
f_{1}^{\prime}(V)>0, f_{2}^{\prime}(V)>0 \quad \text { at } \quad V>0 \tag{7}\\
f_{1}^{\prime}(V) \rightarrow+\infty, f_{2}^{\prime}(V) \rightarrow+\infty \quad \text { at } \quad V \rightarrow+\infty
\end{gather*}
$$

In this section we prove the following theorems.
Theorem 1. The problem (1) - (5) is uniquely solvable. To prove theorems 1 and 2 we need the following lemma.

Lemma 1. Let $F(t), V(t)$ and $m(t)$ be the solution of the problem (1) - (4) in the interval $0<t<t_{0}$ and $m(t)$ satisfy the condition

$$
\begin{equation*}
m_{0} \leq m(t) \leq M_{0} \tag{8}
\end{equation*}
$$

then $V(t)>0, F(t)>0$ at $0 \leq t<t, t_{0}<\infty$.
Proof of lemma 1. Let $V(t)$ be equal to zero at some point $\tau, 0<\tau<t_{0}$ and τ be the smallest number such that $V(\tau)=0$. As $V(0)=V_{0}>0$ then $V(t)>0$ at $0 \leq t<\tau$, so

$$
\begin{equation*}
V^{\prime}(\tau) \leq 0 \tag{9}
\end{equation*}
$$

Substituting into (3) $t=\tau$ and recalling the equality $f_{1}(0)=0$ and inequality (8), we get

$$
\begin{equation*}
F(\tau) \geq \frac{m_{0} k_{4}}{k_{3}} \tag{10}
\end{equation*}
$$

Putting into (1) $t=\tau$, we get

$$
\begin{equation*}
m(\tau) V^{\prime}(\tau)=F(\tau) k_{1} . \tag{11}
\end{equation*}
$$

From (9), (10) and (11) we have

$$
\begin{equation*}
V^{\prime}(\tau)>0 \tag{12}
\end{equation*}
$$

The condition (12) is a contradiction with (9). This means that the supposition $V(\tau)=0$ at some point $\tau \in\left(0, t_{0}\right)$ is not true. Hence

$$
V(\tau)>0 \quad \text { at } \quad 0 \leq t<t_{0} .
$$

We prove now that $F(t)>0$ at $0 \leq t<t_{0}$. From the condition $f_{2}\left(V_{0}\right)<M_{0} k_{4}$ and equality (3) at $t=0$ it follows that $F(0)>0$. Let $F(t)$ be equal to zero at some point of the interval $\left(0, t_{0}\right)$. Then, as for (9), we can show that there exists a point $\tau \in\left(0, t_{0}\right)$ where

$$
\begin{equation*}
F(\tau)=0, \quad F^{\prime}(\tau) \leq 0 \tag{13}
\end{equation*}
$$

Putting in (2) $t=\tau$, we get

$$
\begin{equation*}
m^{\prime}(\tau)=0 \tag{14}
\end{equation*}
$$

Differentating the both sides of (3) with respect to t and substituting $t=\tau$, we get

$$
\begin{equation*}
V^{\prime}(\tau) f_{2}^{\prime}(V(\tau))+F^{\prime}(\tau) k_{3}=0 \tag{15}
\end{equation*}
$$

As $V(\tau)>0$, the condition (7) implies $f_{2}^{\prime}(V(\tau))>0$. So from (13) and (15) we have

$$
\begin{equation*}
V^{\prime}(\tau) \geq 0 \tag{16}
\end{equation*}
$$

Putting into (1) $t=\tau$ and recalling the condition $F(\tau)=0$ we obtain

$$
\begin{equation*}
m(\tau) V^{\prime}(\tau)=-f_{1}(V(\tau)) \tag{17}
\end{equation*}
$$

As $f_{1}(0)=0$ and $f^{\prime}(V)>0$ at $V>0$, then $f_{1}(V)>0$ at $V>0$. So from (17) it follows that

$$
\begin{equation*}
V^{\prime}(\tau)<0 \tag{18}
\end{equation*}
$$

The condition (18) is a contradiction with (16). This means that $F(t)$ is not equal to zero in the interval $\left(0, t_{0}\right)$. As $F(0)>0$ we get $F(t)>0$ at $0 \leq t<t_{0}$.

We prove now that $t_{0}<\infty$. Integrating the inequality (2) from zero to $t, t \in\left(0, t_{0}\right)$ and using the inequality (8) we have

$$
\begin{equation*}
\int_{0}^{t_{0}} F(t) d t \leq k_{2}\left(M_{0}-m_{0}\right) . \tag{19}
\end{equation*}
$$

As $F(t)>0$ the inequality (19) implies that the left - hand side has a limit at $t \rightarrow t_{0}$. Passing in (19) to the limit at $t \rightarrow t_{0}$, we get

$$
\begin{equation*}
\int_{0}^{t_{0}} F(t) d t \leq k_{2}\left(M_{0}-m_{0}\right) . \tag{20}
\end{equation*}
$$

Let ω and Ω be two subsets of the interval $\left(0, t_{0}\right)$ satisfying the conditions

$$
\begin{align*}
& F(t) \leq \frac{m_{0} k_{4}}{2 k_{3}} \quad \text { at } \quad t \in \omega, \tag{21}\\
& F(t) \leq \frac{m_{0} k_{4}}{2 k_{3}} \quad \text { at } \quad t \in \Omega, \tag{22}
\end{align*}
$$

respectively. Denote by ω_{0} and Ω_{0} the Lebesgue measure of the sets ω and Ω,

$$
0 \leq \omega_{0} \leq t_{0}, \Omega_{0}=t_{0}-\omega_{0}
$$

It is clear that

$$
\begin{equation*}
\int_{0}^{t_{0}} F(t) d t \geq \int F(t) d t \geq \omega_{0} \frac{m_{0} k_{4}}{2 k_{3}} \tag{23}
\end{equation*}
$$

From (20) and (23) follows the inequality

$$
\begin{equation*}
\omega_{0} \leq \frac{2 k_{2} k_{3}\left(M_{0}-m_{0}\right)}{k_{4} m_{0}} . \tag{24}
\end{equation*}
$$

From the inequalities (10), (22) and the equality (3) we have

$$
\begin{equation*}
f_{2}(V(t)) \geq \frac{m_{0} k_{4}}{2} \tag{25}
\end{equation*}
$$

Dividing the both sides of (1) by $m(t)$ we obtain

$$
\begin{equation*}
\frac{f_{1}(V(t))}{m(t)}=\frac{k_{1} F(t)}{m(t)}-V^{\prime}(t) . \tag{26}
\end{equation*}
$$

Integrating (26) from zero to $t,\left(t \in\left(0, t_{0}\right)\right)$ we get

$$
\begin{equation*}
\int_{0}^{t} \frac{f_{1}(V(t))}{m(t)} d t=k_{1} \int_{0}^{t} \frac{F(t)}{m(t)} d t-V^{\prime}(t)+V . \tag{27}
\end{equation*}
$$

As $V(t)>0$ and $F(t)>0$ at $t \in\left(0, t_{0}\right)$ and $m_{0} \leq m(t) \leq M_{0}$, (29) implies

$$
\begin{equation*}
\int_{0}^{t} \frac{f_{1}(V(\tau)) d \tau}{m(\tau)} \leq \frac{k_{1}}{m_{0}} \int_{0}^{t} F(\tau) d \tau+V_{0} \tag{28}
\end{equation*}
$$

The last inequality and (20) yield

$$
\begin{equation*}
\int_{0}^{t} \frac{f_{1}(V(\tau)) d \tau}{m(\tau)} \leq \frac{k_{1} k_{2}}{m_{0}}\left(M_{0}-m_{0}\right)+V_{0}, \quad t \in\left(0, t_{0}\right) \tag{29}
\end{equation*}
$$

As $V(\tau)>0, f_{1}(V(\tau))>0$ and $m(\tau)>0$, from the inequality (29) we deduce that the left - hand side has a limit at $t \rightarrow t_{0}$ and this limit satisfies the inequality

$$
\begin{equation*}
\int_{0}^{t} \frac{f_{1}(V(\tau)) d \tau}{m(\tau)} \leq V_{0}+\frac{k_{1} k_{2}}{m_{0}}\left(M_{0}-m_{0}\right) . \tag{30}
\end{equation*}
$$

Let c_{0} be a positive solution of the equation

$$
\begin{equation*}
f_{2}\left(c_{0}\right)=\frac{m_{0} k_{4}}{2} . \tag{31}
\end{equation*}
$$

As $f_{1}(V)$ and $f_{2}(V)$ are increasing functions, from (25) and (31) it follows that

$$
\begin{gather*}
V(t) \geq c_{0} \quad \text { at } \quad t \in \Omega \tag{32}\\
f_{1}(V(t)) \geq f_{1}\left(c_{0}\right) \quad \text { at } \quad t \in \Omega . \tag{33}
\end{gather*}
$$

From (10) and (33) we have

$$
\begin{equation*}
\int_{0}^{t_{0}} \frac{f_{1}(V(\tau)) d \tau}{m(\tau)} \leq \int_{\Omega} \frac{f_{1}(V(\tau)) d \tau}{m(\tau)} \geq \frac{f_{1}\left(c_{0}\right)}{M_{0}} \Omega_{0} \tag{34}
\end{equation*}
$$

From the inequalities (30) and (34) we obtain

$$
\begin{equation*}
\Omega_{0} \leq \frac{M_{0}}{f_{1}\left(c_{0}\right)}\left[V_{0}+\frac{k_{1} k_{2}}{m_{0}}\left(M_{0}-m_{0}\right)\right] . \tag{35}
\end{equation*}
$$

From the relations (4) and (35) we get $t_{0}<\infty$. Lemma 1 is proved.
Proof of theorem 1. It is known that the problem (1) - (4) possesses a solution in a sufficiently small neighbourhood $(0, \varepsilon)(.[1],[2])$.

As $F(0)>0$, from (2) deduce that $m(t)$ is a monotone decreasing in this neighbourhood function an

$$
\begin{equation*}
m_{0}<m(t)<M_{0} \quad \text { at } \quad t \in(0, \varepsilon) . \tag{36}
\end{equation*}
$$

Let $\left(0, t_{0}\right)$ be the maximal neighbourhood where the solution of the problem (1) (4), satisfying the inequality

$$
\begin{equation*}
m_{0}<m(t)<M_{0} \quad \text { at } \quad t \in\left(0, t_{0}\right) \tag{37}
\end{equation*}
$$

exists.
According to lemma 1 , the interval $\left(0, t_{0}\right)$ is bounded.

As $m(t)$ is decreasing in interval $\left(0, t_{0}\right)$ and satisfies the inequality (37) the limit of $m(t)$ at $t \rightarrow t_{0}$ exists. Denote this limit by $m\left(t_{0}\right)$. It is clear that $m_{0}<m(t)<M_{0}$. We show that $m\left(t_{0}\right)=m_{0}$.

According to lemma $1 V(t)>0$ and $F(t)>0$ at $t \in\left(0, t_{0}\right)$. Hence $f_{2}(V)$ is also positive. Thus from (3) and (37) we get

$$
\begin{equation*}
f_{2}(V) \leq M_{0} k_{4}, \quad k_{3} F(t) \leq M_{0} k_{4} \tag{38}
\end{equation*}
$$

So

$$
\begin{equation*}
0 \leq V \leq c_{1}, \quad F(t) \leq \frac{M_{0} k_{4}}{k_{3}} \quad \text { at } \quad 0 \leq t<t_{0} \tag{39}
\end{equation*}
$$

where c_{1} is a positive solution of the equation $f_{2}\left(c_{1}\right)=M_{0} k_{4}$. The inequalities (37) and (39) imply that the right - hand side of (1) is bounded in the interval $\left(0, t_{0}\right)$. This means that is also bounded in this interval. Hence there exists the limit of $V(t)$ at $t \rightarrow t_{0}$. Denote this limit by $V\left(t_{0}\right)$. Therefore, from (1) - (3) we may conclude that $F(t), m(t)$ and $V(t)$ are continously derivable on the segment $\left[0, t_{0}\right]$ functions. As in the case of lemma 1, we can show that

$$
\begin{equation*}
F\left(t_{0}\right)>0, V\left(t_{0}\right)>0 . \tag{40}
\end{equation*}
$$

Let $m\left(t_{0}\right) \neq m_{0}$. Then

$$
\begin{equation*}
m_{0}<m\left(t_{0}\right)<M_{0} . \tag{41}
\end{equation*}
$$

Denote $V\left(t_{0}\right)=V_{1}, m\left(t_{0}\right)=m_{1}$. Consider Cauchy problem for the system of equations (1) - (3) in the interval $\left(t_{0}, t_{0}+\varepsilon\right)$ with boundary conditions

$$
\begin{equation*}
V\left(t_{0}\right)=V_{1}, m\left(t_{0}\right)=m_{1} . \tag{42}
\end{equation*}
$$

As it is know this problem admits a solution for sufficiently small ε. The double inequality $m_{0}<m\left(t_{0}\right)<M_{0}$ shows that letting ε to be small one might ensure the inequality $m_{0}<m\left(t_{0}\right)<M_{0}$ at $t_{0} \leq t \leq t_{0}+\varepsilon$. So the solution of the problem (1)-(4), satisfying the inequality (37) in the interval $\left(0, t_{0}+\varepsilon\right)$ exists. But this is not possible as $\left(0, t_{0}\right)$ is the maximal neighbourhood, where such a solution exists. This means that our supposition, namely $m\left(t_{0}\right) \neq m_{0}$, is not true, hence $m\left(t_{0}\right)=m_{0}$. Theorem 1 is proved.

The above results are used in mathematical modelling of the flight of winged aircraft along a given trajectory.

References

1. Petrovsky I.G., Lectures on the theory of ordinar01.y differential equations (Russian), M., Nauka, 1970.
2. Tricomi F., Differential equations (Russian), M., IL, 1962.
