BIFURCATION OF AN EQUILIBRIUM POINT IN A SYSTEM OF NONLINEAR PARABOLIC EQUATIONS WITH TRANSFORMED ARGUMENT

(C) I.I.Klevchuk

1.Introduction. We consider the system of nonlinear parabolic equations with transformed argument

$$
\begin{equation*}
\frac{\partial u}{\partial t}=D(t, \varepsilon) \frac{\partial^{2} u}{\partial x^{2}}+A(t, \varepsilon) u+B(t, \varepsilon) u_{\Delta}+f\left(t, u, u_{\Delta}, \varepsilon\right) \tag{1}
\end{equation*}
$$

with periodic condition

$$
\begin{equation*}
u(t, x+2 \pi)=u(t, x) . \tag{2}
\end{equation*}
$$

Here $u_{\Delta}=u(t, x-\Delta), \Delta$ is a transformation of the argument, the matrices $D(t, \varepsilon)$, $A(t, \varepsilon), B(t, \varepsilon)$ and function $f: R^{2 n+p+1} \rightarrow R^{n}$ are fourfold continuously differentiable with respect to all arguments and 2π - periodic with respect to $t, f(t, u, v, \varepsilon)=O\left(|u|^{2}+\right.$ $\left.|v|^{2}\right)$ as $|u|+|v| \rightarrow 0$. Therefore the function $f(t, u, v, \varepsilon)$ satisfies to the conditions

$$
\begin{gather*}
f(t, 0,0, \varepsilon)=0,\left|f(t, u, v, \varepsilon)-f\left(t, u^{\prime}, v^{\prime}, \varepsilon\right)\right| \leq \nu\left(\left|u-u^{\prime}\right|^{2}+\left|v-v^{\prime}\right|^{2}\right)^{1 / 2} \\
|u| \leq \rho,\left|u^{\prime}\right| \leq \rho,|v| \leq \rho,\left|v^{\prime}\right| \leq \rho \tag{3}
\end{gather*}
$$

where $|u|^{2}=u_{1}^{2}+\ldots+u_{n}^{2}$, Lipschitz constant ν may be make sufficiently small under decreasing ρ. Function $f(t, u, v, \varepsilon)$ can be determined outside the region $|u| \leq \rho,|v| \leq \rho$, so that the conditions (3) valid overall the space. Let the matrix $D(t, \varepsilon)$ is positive definite.

System (1) is used for modelling of nonlinear effects in optics [1]. The autonomous parabolic equation with transformed argument was considered in paper [2].

We consider the linear system

$$
\begin{equation*}
\frac{\partial u}{\partial t}=D(t, \varepsilon) \frac{\partial^{2} u}{\partial x^{2}}+A(t, \varepsilon) u+B(t, \varepsilon) u_{\Delta} . \tag{4}
\end{equation*}
$$

We will search the solution of the problem (4),(2) in the form of complex Fourier series

$$
\begin{equation*}
u(t, x)=\sum_{k=-\infty}^{\infty} y_{k}(t) \exp (-i k x), y_{-k}(t)=\bar{y}_{k}(t) \tag{5}
\end{equation*}
$$

Substituting (5) into (4) and comparising the coefficients under $\exp (-i k x)$, we obtain the countable system of differential equations in Fourier coefficients

$$
\begin{equation*}
\frac{d y_{k}(t)}{d t}=\left[-k^{2} D(t, \varepsilon)+A(t, \varepsilon)+B(t, \varepsilon) \exp (i k \Delta)\right] y_{k}(t), k=0, \pm 1, \ldots \tag{6}
\end{equation*}
$$

System (6) is a one of linear differential equations with periodic coefficients. According to the Floquet theorem, a matrix $H_{k}(t, \varepsilon), \operatorname{det} H_{k}(t, \varepsilon) \neq 0, H_{k}(t+2 \pi, \varepsilon)=H_{k}(t, \varepsilon)$ exists, such that the substitution $y_{k}=H_{k}(t, \varepsilon) z_{k}$ transforms system (6) to the form

$$
\begin{equation*}
\frac{d z_{k}}{d t}=C_{k}(\varepsilon) z_{k}, C_{-k}(\varepsilon)=\bar{C}_{k}(\varepsilon), k=0, \pm 1, \ldots \tag{7}
\end{equation*}
$$

Suppose that the characteristic equation $\operatorname{det}\left(C_{k}(\varepsilon)-\lambda E\right)=0, k \in Z$, has the simple roots $\alpha_{m}(\varepsilon) \pm i \beta_{m}(\varepsilon), \alpha_{m}(0)=0, \beta_{m}(0)=\lambda_{m}>0, m=1, \ldots, p$, and the remaining of roots satisfies to the condition $|\operatorname{Re} \lambda|>\gamma+\delta, \gamma>\delta>0$. Suppose that ε is the p dimensional parameter.

We will search the solution of the problem (1),(2) in the form of series (5). Substituting (5) into (1) and comparising the coefficients under $\exp (-i k x), k \in Z$, we obtain the countable system of differential equations in Fourier coefficients

$$
\begin{equation*}
\frac{d y}{d t}=M(t, \varepsilon) y+F(t, y, \varepsilon), \tag{8}
\end{equation*}
$$

where $y=\left(y_{0}, y_{1}, y_{-1}, \ldots\right)^{T}, M(t, \varepsilon)$ is infinite blocks- diagonal matrix with the blocks $M_{k}(t, \varepsilon)=-k^{2} D(t, \varepsilon)+A(t, \varepsilon)+B(t, \varepsilon) \exp (i k \Delta), k=0, \pm 1, \ldots ; F(t, y, \varepsilon)=\left(f_{0}, f_{1}\right.$, $\left.f_{-1}, \ldots\right)^{T}$ is nonlinear function, where f_{k} are the Fourier coefficients of the function $f\left(t, u, u_{\Delta}, \varepsilon\right)$ under $\exp (-i k x)$.

We will show that the function $F(t, y, \varepsilon)$ satisfies to the Lipschitz condition. Let us introduse in the space of sequences the following norm $|y|=\left(\sum_{k=-\infty}^{\infty}\left|y_{k}\right|^{2}\right)^{1 / 2}$. We consider another vector $z=\left(z_{0}, z_{1}, z_{-1}, \ldots\right)^{T}$ of Fourier coefficiets for solution $v(t, x)$ of equation (1) and the corresponding vector $F(t, z, \varepsilon)=\left(g_{0}, g_{1}, g_{-1}, \ldots\right)^{T}$. Using Parseval equation, we obtain

$$
\begin{gathered}
|F(t, y, \varepsilon)-F(t, z, \varepsilon)|=\left(\sum_{k=-\infty}^{\infty}\left|f_{k}-g_{k}\right|^{2}\right)^{1 / 2}=\left(\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \right\rvert\, f\left(t, u, u_{\Delta}, \varepsilon\right)-\right. \\
\left.-\left.f\left(t, v, v_{\Delta}, \varepsilon\right)\right|^{2} d x\right)^{1 / 2} \leq \nu\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(|u-v|^{2}+\left|u_{\Delta}-v_{\Delta}\right|^{2}\right) d x\right)^{1 / 2}= \\
=\nu\left(2 \sum_{k=-\infty}^{\infty}\left|y_{k}-z_{k}\right|^{2}\right)^{1 / 2}=\sqrt{2} \nu|y-z|
\end{gathered}
$$

Therefore the function F satisfies the Lipschitz condition with the constant $\sqrt{2} \nu$.
In the system (8), we make the substitution $y_{k}=H_{k}(t, \varepsilon) z_{k}, k=0, \pm 1, \ldots$, then we obtain the system

$$
\begin{equation*}
\frac{d z}{d t}=C(\varepsilon) z+G(t, z, \varepsilon) \tag{9}
\end{equation*}
$$

where $z=\left(z_{0}, z_{1}, z_{-1}, \ldots\right)^{T}, C(\varepsilon)=\operatorname{diag}\left(C_{0}(\varepsilon), C_{1}(\varepsilon), C_{-1}(\varepsilon), \ldots\right), G(t, z, \varepsilon)=H^{-1}$ $(t, \varepsilon) F(t, H(t, \varepsilon) z, \varepsilon), H(t, \varepsilon)=\operatorname{diag}\left(H_{0}, H_{1}, H_{-1}, \ldots\right)$. We reduce the matrices $C_{k}(\varepsilon)$ with eigenvalues $\alpha_{m}(\varepsilon) \pm i \beta_{m}(\varepsilon)$ and eigenvalues with positive real parts to the Jordan canonical form. Under this transformation, we obtain the system

$$
\begin{align*}
& \frac{d w_{1}}{d t}=A_{1}(\varepsilon) w_{1}+G_{1}(t, w, \varepsilon) \\
& \frac{d w_{2}}{d t}=A_{2}(\varepsilon) w_{2}+G_{2}(t, w, \varepsilon) \tag{10}
\end{align*}
$$

where $w=\left(w_{1}, w_{2}\right)^{T}, A_{1}(\varepsilon)=\operatorname{diag}\left(A_{3}(\varepsilon), A_{4}(\varepsilon)\right), w_{1} \in R^{l+2 p}$, w_{2} belong to the some Banach space M, the eigenvalues of the matrix $A_{3}(\varepsilon)$ lie on the half-plane $\operatorname{Re} \lambda>$ $\gamma+\delta, A_{4}(\varepsilon)$ is the diagonal matrix with number $\alpha_{m}(\varepsilon) \pm i \beta_{m}(\varepsilon)$ on diagonal, and the eigenvalues of the infinite blocks-diagonal matrix $A_{2}(\varepsilon)$ lieing on half-plane $\operatorname{Re} \lambda<$ $-\gamma-\delta$. Since the vector-function G satisfies the Lipschitz condition and $G(t, 0, \varepsilon)=0$, we obtain

$$
\begin{align*}
& G_{1}(t, 0, \varepsilon)=G_{2}(t, 0, \varepsilon)=0,\left(\left|G_{1}(t, v, \varepsilon)-G_{1}(t, w, \varepsilon)\right|^{2}+\right. \tag{11}\\
& \left.\quad+\left|G_{2}(t, v, \varepsilon)-G_{2}(t, w, \varepsilon)\right|^{2}\right)^{1 / 2} \leq \nu_{1}|v-w|
\end{align*}
$$

The following estimations are valid

$$
\begin{gather*}
\left|\exp \left[A_{3}(\varepsilon) t\right] \leq N \exp [(\gamma+\delta) t], t \leq 0,\left|\exp \left[A_{2}(\varepsilon) t\right]\right| \leq\right. \\
\leq N \exp [-(\gamma+\delta) t], t \geq 0,\left|\exp \left[A_{4}(\varepsilon) t\right]\right| \leq N \exp [(\gamma-\delta)|t|], t \in R \tag{12}
\end{gather*}
$$

2.Existence and properties of integral manifolds.

Theorem 1. Let the estimates (11),(12) holds. Thus, if

$$
\begin{equation*}
\nu_{1}<\frac{\delta}{N(1+2 N)} \tag{13}
\end{equation*}
$$

then there exists a function $h: R^{l+3 p+1} \rightarrow M$,

$$
\begin{equation*}
h(t, 0, \varepsilon),\left|h\left(t, w_{1}, \varepsilon\right)-h\left(t, w_{1}^{\prime}, \varepsilon\right)\right| \leq \frac{1}{2}\left|w_{1}-w_{1}^{\prime}\right|, \tag{14}
\end{equation*}
$$

such that the set $S^{-}=\left\{\left(t, w_{1}, w_{2}\right) \mid t \in R, w_{1} \in R^{l+2 p}, w_{2}=h\left(t, w_{1}, \varepsilon\right), w_{2} \in M\right\}$ is the integral manifold of the system (10). For any solution $w(t)=\left(w_{1}(t), h\left(t, w_{1}(t), \varepsilon\right)\right)$ of the system (10) on manifold S^{-}, the following estimate is valid

$$
|w(t)| \leq 2 N\left|w_{1}(\sigma)\right| \exp [\gamma(\sigma-t)], t \leq \sigma
$$

Theorem 2. Let the conditions (11)-(13) are satisfied. Then there exists a function $g: R^{p+1} \times M \rightarrow R^{l+2 p}, g(t, 0, \varepsilon)=0,\left|g(t, w, \varepsilon)-g\left(t, w^{\prime}, \varepsilon\right)\right| \leq \frac{1}{2}\left|w-w^{\prime}\right|$, such that the set $S^{+}=\left\{\left(t, w_{1}, w_{2}\right) \mid t \in R, w_{2} \in M, w_{1}=g\left(t, w_{2}, \varepsilon\right), w_{1} \in R^{l+2 p}\right\}$ is the integral manifold of the system (10). For any solution $w(t)=\left(g\left(t, w_{2}(t), \varepsilon\right), w_{2}(t)\right)$ of the system
(10) on manifold S^{+}, the folloving estimate is valid $|w(t)| \leq 2 N\left|w_{2}(\sigma)\right| \exp [\gamma(\sigma-t)]$, $t \geq \sigma$.

Let $t=\sigma$ is some number (initial value). We show that the integral manifold S^{-}is exponential stable.

Note that the equation on manifold S^{-}is of the following form

$$
\begin{equation*}
\frac{d v}{d t}=A_{1}(\varepsilon) v+G_{1}(t, v, h(t, v, \varepsilon), \varepsilon) \tag{15}
\end{equation*}
$$

Theorem 3. Let $w(t)=\left(w_{1}(t), w_{2}(t)\right)$ be arbitrary solution of the system (10) with initial value $w(\sigma)$ under $t=\sigma$. If the condition (13) is satisfied, then there exists a solution $\xi(t)=\left(v(t), h(t, v(t), \varepsilon)\right.$ on manifold S^{-}, such that the following estimate is valid

$$
|w(t)-\xi(t)| \leq 2 N\left|w_{2}(\sigma)-h(\sigma, v(\sigma), \varepsilon)\right| \exp [\gamma(\sigma-t)], t \geq \sigma .
$$

The equation (15) can be represented in the form

$$
\begin{align*}
& \frac{d w_{3}}{d t}=A_{3}(\varepsilon) w_{3}+G_{3}\left(t, w_{3}, w_{4}, h\left(t, w_{3}, w_{4}, \varepsilon\right), \varepsilon\right) \\
& \frac{d w_{4}}{d t}=A_{4}(\varepsilon) w_{4}+G_{4}\left(t, w_{3}, w_{4}, h\left(t, w_{3}, w_{4}, \varepsilon\right), \varepsilon\right) . \tag{16}
\end{align*}
$$

where $v=\left(w_{3}, w_{4}\right), G_{1}=\left(G_{3}, G_{4}\right)$. If the condition (13) is satisfies, then the integral manifold $S_{1}^{+}=\left\{\left(t, w_{3}, w_{4}\right) \mid t \in R, w_{4} \in R^{2 p}, w_{3}=r\left(t, w_{4}, \varepsilon\right), w_{3} \in R^{l}\right\}$ of the system (16) exists [3,4]. The function $r(t, w, \varepsilon)$ satisfies the following estimate

$$
r(t, 0, \varepsilon)=0,|r(t, w, \varepsilon)-r(t, v, \varepsilon)| \leq \frac{1}{2}|w-v|, w \in R^{2 p}, v \in R^{2 p}
$$

We denote $r_{1}(t, w, \varepsilon)=h(t, r(t, w, \varepsilon), w, \varepsilon)$.
Theorem 4. Let the conditions (11)-(13) be satisfied. Then there exists the central manifold $S=\left\{\left(t, w_{3}, w_{4}, w_{2}\right) \mid t \in R, w_{4} \in R^{2 p}, w_{3}=r\left(t, w_{4}, \varepsilon\right), w_{3} \in R^{l}, w_{2}=\right.$ $\left.r_{1}\left(t, w_{4}, \varepsilon\right), w_{2} \in M\right\}$ of the system (10).
3.Bifurcation of equilibrium point. The equation on manifold S is of the following form

$$
\begin{equation*}
\frac{d w_{4}}{d t}=A_{4}(\varepsilon) w_{4}+G_{4}\left(t, r\left(t, w_{4}, \varepsilon\right), w_{4}, r_{1}\left(t, w_{4}, \varepsilon\right), \varepsilon\right) . \tag{17}
\end{equation*}
$$

The equation (17) can be represented in the form

$$
\begin{gather*}
\frac{d v_{k}}{d t}=\left[\alpha_{k}(\varepsilon)+i \beta_{k}(\varepsilon)\right] v_{k}+V_{k}(t, v, \bar{v}, \varepsilon), \\
\frac{d \bar{v}_{k}}{d t}=\left[\alpha_{k}(\varepsilon)-i \beta_{k}(\varepsilon)\right] \bar{v}_{k}+\bar{V}_{k}(t, v, \bar{v}, \varepsilon), \tag{18}
\end{gather*}
$$

where v_{k} is the complex variable, $v=\left(v_{1}, \ldots, v_{p}\right)^{T}, V_{k}(t+2 \pi, v, \bar{v}, \varepsilon)=V_{k}(t, v, \bar{v}, \varepsilon)$, $V_{k}(t, v, \bar{v}, \varepsilon)=O\left(|v|^{2}\right)$ as $|v| \rightarrow 0, k=1, \ldots, p$.

Let the following condition be satisfied

1) $n_{1} \lambda_{1}+\ldots+n_{p} \lambda_{p} \neq m$ as $0<\left|n_{1}\right|+\ldots+\left|n_{p}\right|<6$, where m, n_{1}, \ldots, n_{p} are the integer numbers.

Substituting the variable

$$
v=x+\sum_{k=2}^{4} W_{k}(t, x, \bar{x}, \varepsilon)
$$

where W_{2}, W_{3}, W_{4} are the forms of the 2,3 and 4 order with periodic coefficients, we transform the system (18) to the following form [5,6]

$$
\begin{gathered}
\frac{d x_{k}}{d t}=\left[\alpha_{k}(\varepsilon)+i \beta_{k}(\varepsilon)\right] x_{k}+x_{k} \sum_{j=1}^{p} a_{k j}(\varepsilon) x_{j} \bar{x}_{j}+X_{k}(t, x, \bar{x}, \varepsilon), \\
\frac{d \bar{x}_{k}}{d t}=\left[\alpha_{k}(\varepsilon)-i \beta_{k}(\varepsilon)\right] \bar{x}_{k}+\bar{x}_{k} \sum_{j=1}^{p} \bar{a}_{k j}(\varepsilon) x_{j} \bar{x}_{j}+\bar{X}_{k}(t, x, \bar{x}, \varepsilon),
\end{gathered}
$$

where $X_{k}(t+2 \pi, x, \bar{x}, \varepsilon)=X_{k}(t, x, \bar{x}, \varepsilon), X_{k}(t, x, \bar{x}, \varepsilon)=O\left(|x|^{5}\right)$ as $|x| \rightarrow 0$. Passing to the polar coordinates $x_{k}=r_{k} \exp \left(i \varphi_{k}\right), \bar{x}_{k}=r_{k} \exp \left(-i \varphi_{k}\right)$, we obtain the real system

$$
\begin{gathered}
\frac{d r_{k}}{d t}=\alpha_{k}(\varepsilon) r_{k}+r_{k} \sum_{j=1}^{p} b_{k j}(\varepsilon) r_{j}^{2}+R_{k}(t, r, \varphi, \varepsilon) \\
\frac{d \varphi_{k}}{d t}=\beta_{k}(\varepsilon)+\sum_{j=1}^{p} c_{k j}(\varepsilon) r_{j}^{2}+\Phi_{k}(t, r, \varphi, \varepsilon)
\end{gathered}
$$

where $b_{k j}(\varepsilon)=\operatorname{Re} a_{k j}(\varepsilon), c_{k j}(\varepsilon)=\operatorname{Im} a_{k j}(\varepsilon), R_{k}(t, r, \varphi, \varepsilon)=O\left(|r|^{5}\right), \Phi_{k}(t, r, \varphi, \varepsilon)=$ $O\left(|r|^{4}\right)$ as $|r| \rightarrow 0$.

We consider the bifurcation equation $B(\varepsilon) r^{2}+a(\varepsilon)=0$, where $B(\varepsilon)$ is the matrix with elements $b_{k j}(\varepsilon), a(\varepsilon)$ and r^{2} are the vectors with elements $\alpha_{k}(\varepsilon)$ and r_{j}^{2}.

Theorem 5. Let $\operatorname{det} B(0) \neq 0, \operatorname{det} \frac{d a}{d \varepsilon}(0) \neq 0$, the all elements of vector $B^{-1}(\varepsilon) a(\varepsilon)$ are negative and condition 1 is satisfied. Then, there exists an invariant torus of the system (1).

The solutions on the torus are quasi-periodic if $|(n, \lambda)+q|>\gamma|n|^{-p-1}, \lambda=\left(\lambda_{1}\right.$, $\left.\ldots, \lambda_{p}\right)=\left(\beta_{1}(0), \ldots, \beta_{p}(0)\right)$, where γ is some positive number, $n=\left(n_{1}, \ldots, n_{p}\right), q, n_{1}, \ldots, n_{p}$ are integer numbers.

References

1. Akhmanov S.A., Vorontsov M.A., Instabilities and structures in coherent nonlinear optical systems, Nonlinear waves. Dynamics and evolution. Moskow:Nauka (1989), 228-237.
2. Kashchenko S.A., Asymptotic space-ihomogeneous structures in coherent nonlinear-optical systems, J. Vychisl. Math. i Math. Phys. 31 (1991), no. 3, 467-473.
3. Plis V.A., Integral sets of periodic systems of differential equations, Moskow: Nauka (1977), 304.
4. Fodchuk V.I., Klevchuk I.I., Integral sets and reduction principle for differential-functional equations, Ukr. Math. J. 34 (1982), no. 3, 334-340.
5. Samoilenko A.M., Polesya I.V., The birth of the invariant sets in a neigborhood of equilibrium point, Differentsial'nye Uravneniya 11 (1975), no. 8, 1409-1415.
6. Bibikov Yu.N., Hopf bifurcation for quasi-periodic motions, Differentsial'nye Uravneniya 16 (1980), no. 9, 1539-1544.

Department of Mathematics, Chernivtsi State University,
Kotsubinsky str.,2, Chernivtsi
E-mail: klevchuk@chsu.cv.ua

