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1. OPTIMALITY CONDITIONS.
Consider such optimal control problem with an obstacle: to find u(t) ∈ U = {v :

v(t) ∈ L2(0, T ), | v(t) |≤ ξ for a.e. t ∈ [0, T ]} such that

I(v) =
1
2

T∫

0

(
∫

Ω

(y(x, t)− z(x))2dx + νv2(t))dt → min, (1)

where y(x, t) is the solution of variational inequality of parabolic type in [1-2]

(yt(x, t)− ε24y(x, t)− g(x)v(t))(y(x, t)− ψ(x)) = 0a.e.inQ

yt(x, t)− ε24y(x, t)− g(x)v(t) ≥ 0,

y(x, t) ≥ ψ(x) a.e. in Q, (2)

y(x, 0) = y0(x), a.e. in Ω, y(x, t) = 0, a.e. in Σ;

here Q = Ω × (0, T ), Σ = ∂Ω × (0, T ), Ω ∈ Rn–has compact closure and smooth
(from C∞) (n−1)-dimensional boundary ∂Ω, z(x) ∈ L2(Ω), g(x) ∈ Lq(Ω), y0(x) ∈
W

2−2/q,q
0 (Ω), ψ(x) ∈ H2(Ω), ψ(x) ≤ 0 a.e. on ∂Ω, y0 ≥ ψ(x) a.e. in Ω, q >max(n,2),

0 < ε ¿ 1, ν =const> 0, 4 is the Laplace operator.
The problem (1)-(2) has at least one solution u. Let (y, u) be an pair from the problem

(1)-(2). Then ([1]) there exists a function p ∈ L2(0, T ; H1(Ω))
⋂

BV ([0, T ]; Y ∗), Y =
Hs(Ω)

⋂
H1(Ω), s > n/2 which satisfies the following equations:

−pt − ε24p = y(x, t)− z(x)a.e.in{(x, t) : y(x, t) > ψ(x)},
p(x, t) = 0, a.e. inΣ;

p(x, t)(g(x)u(t) + ε24y) = 0a.e.in{y = ψ}, (3)

p(x, T ) = 0a.e.inΩ,

u(t) =





−ξ, (g, p(·, t))− νξ > 0,

−ν−1(g, p(·, t)),
ξ, (g, p(·, t)) + νξ < 0,

(4)

where (g, p(·, t)) =
∫
Ω

g(x)p(x, t)dx.



2. FORMAL ASYMPTOTICS.

We shall find the outer [6] decomposition of the solution of (2)-(4) in the form

ȳ(x, t) =
∞∑

i=0

εiȳi(x, t); p̄(x, t) =
∞∑

i=0

εip̄i(x, t). (5)

ASSUMPTION 1. Suppose z(x), y0(x), ψ(x), 0 ≤ g(x) ∈ C∞(Ω)• Zero components
of the decomposition (5) are defined like the solution of the problem

(ȳ0t
(x, t)− g(x)ū0(t))(ȳ0(x, t)− ψ(x)) = 0 in Q,

ȳ0t
(x, t)− g(x)ū0(t) ≥ 0, ȳ0(x, t) ≥ ψ(x) in Q,

ȳ0(x, 0) = y0(x) in Ω; (6)

−p̄0t
= ȳ0(x, t)− z(x) in {(x, t) : ȳ0(x, t) > ψ(x)},
p̄0(x, t)g(x)ū0(t) = 0 a.e. in {ȳ0 = ψ},

p̄0(x, T ) = 0 in Ω,

ū0(t) =





−ξ, (g, p̄0(·, t))− νξ > 0,

−ν−1(g, p̄0(·, t)),
ξ, (g, p̄0(·, t)) + νξ < 0.

(7)

Introduce sets

Q0 = {(x, t) : y(x, t) = ψ(x)a.e.}, Q+ = {(x, t) : y(x, t) > ψ(x)a.e.}, (8)

Q = Q0

⋃
Q+, Q0

⋂
Q+ = ∅,

where y(x, t) is the solution of (2)-(4).
Then Q̄0, Q̄+ are their zeroth-order approximations.
ASSUMPTION 2. Suppose that p(x, t) = 0 in Q0 and let Q0 be a cylinder in

Rn+1 and its base be two-connected domain (Ω\Ω0). Suppose that the outer boundary
is equivalent to ∂Ω and the inner boundary (∂Ω) possesses properties of the outer
boundary •

Then the correlations are fulfilled in Q̄+

(x ∈ Ω0, t ∈ T 0
1 ) :

{
˙̄y0 = −g(x)ξ,

− ˙̄p0 = ȳ0 − z, (g, p̄0)0 − νξ > 0;
(9)

(x ∈ Ω0, t ∈ T 0
2 ) :

{
˙̄y0 = g(x)ξ,

− ˙̄p0 = ȳ0 − z, (g, p̄0)0 + νξ < 0;
(10)

(x ∈ Ω0, t ∈ T 0
3 ) :

{
˙̄y0 = −ν−1g(x)(g, p̄0)0,

− ˙̄p0 = ȳ0 − z,
(11)



T =
3⋃

i=1

T 0
i , T 0

i

⋂
T 0

j = ∅, i 6= j,

where (·, ·) denotes the scalar products by Ω̄0.
Let’s go over to the problems for (g, ỹ0)0, (g, p̄0)0 for the definition of zero components

of the control switching moments

t ∈ T 0
1 :

{
(g, ˙̃y0)0 = − ‖ g ‖20 ξ,

−(g, ˙̄p0)0 = (g, ỹ0)0, (g, p̄0)0 − νξ > 0;
(12)

t ∈ T 0
2 :

{
(g, ˙̃y0)0 =‖ g ‖20 ξ,

−(g, ˙̄p0)0 = (g, ỹ0)0, (g, p̄0)0 + νξ < 0;
(13)

t ∈ T 0
3 :

{
(g, ˙̃y0)0 = −ν−1 ‖ g ‖20 (g, p̄0)0,

−(g, ˙̄p0)0 = (g, ỹ0)0, ỹ0 = ȳ0 − z.
(14)

The problems (12)-(14) may be solved by dint of phase picture [3] which allows to define
the control structure. Then two cases are possible: 1) phase point ((g, ỹ0)0, (g, p̄0))
doesn’t go on bounds, i.e. it belongs to set P1 = {0 < (g, p̄0)0 ≤ νξ, ν−1/2 ‖ g ‖0
(g, p̄0)0 < (g, ỹ0)0 < ∞} ⋃{−νξ ≤ (g, p̄0)0 < 0, −∞ < (g, ỹ0)0 < ν−1/2× × ‖ g ‖0
(g, p̄0)0}; 2) phase point goes on bounds, i.e. it belongs to set P2 = {(g, p̄0)0 ≥ νξ,
ν−1/2 ‖ g ‖0 (g, p̄0)0 ≤ (g, ỹ0)0 < ∞} ⋃{−νξ > (g, p̄0)0, −∞ < (g, ỹ0)0 ≤ ν−1/2

‖ g ‖0 (g, p̄0)0}. In the case 1) the solution has an appearance:




(g, ỹ0)0 = (y0 − z, g)0ch((ν−1/2 ‖ g ‖0 ×
×(T − t))(ch(ν−1/2 ‖ g ‖0 T ))−1,

(g, p̄0)0 = ν1/2 ‖ g ‖−1
0 (y0 − z, g)0×

×sh(ν−1/2 ‖ g ‖0 (T − t))××(ch(ν−1/2 ‖ g ‖0 T ))−1

(15)

on condition that initial data satisfy the inclusion

{(y0 − z, g)0, ν1/2 ‖ g ‖−1
0 (y0 − z, g)0th(ν−1/2 ‖ g ‖0 T )} ∈ P1. (16)

In the case 2) systems (12)-(13) have the solution in 0 ≤ t ≤ τ0 (τ0 is the moments of
descent of control from limitation)

{
(g, ỹ0) = ∓ξ ‖ g ‖20 t + (g, y0 − z)0,

(g, p̄0) = ±ξ(ν − 1/2 ‖ g ‖20 [τ2
0 − t2]) + (g, y0 − z0)0(τ0 − t).

(17)

On the segment t ∈ (τ0, T ] system (14) has the solution




(g, ỹ0)0 = ±ξν1/2 ‖ g ‖0 ch(ν−1/2 ‖ g ‖0 (T − t))×
×(sh(ν−1/2 ‖ g ‖0 (T − τ0)))−1,

(g, p̄0)0 = ±ξνsh(ν−1/2 ‖ g ‖0 ×
×(T − t))(sh(ν−1/2 ‖ g ‖0 (T − τ0)))−1.

(18)



Let’s regard futher for definition that the condition

{(y0 − z, g)0, ξ(ν − 1/2 ‖ g ‖20 τ2
0 ) + (g, y0 − z)0τ0} ∈ P2

⋂

{(g, p̄0)0 > νξ, ν−1/2 ‖ g ‖0 (g, p̄0)0 ≤ (g, ỹ0)0 < ∞},
(19)

which guarantees uniqueness of the solution of equation

−ξ ‖ g ‖0 (ν1/2cth(ν−1/2 ‖ g ‖0 (T − τ0))+ ‖ g ‖0 τ0) = (g, y0 − z)0, (20)

is fulfilled. Thus in case 1) the couple (ȳ0(x, t), p̄0(x, t)) is fined from (11). In particular,

ȳ0(x, t) = y0(x)− g(x) ‖ g ‖−2
0 (y0 − z, g)0(ch(ν−1/2 ‖ g ‖0 T )−

−ch(ν−1/2 ‖ g ‖0 (T − t)))(ch(ν−1/2 ‖ g ‖0 T ))−1.
(21)

The question about choice of domain Ω̄0 is solved this way. Let Ω̃0 be a set from
Ω, which satisfies the condition y0(x) > ψ(x) and suppose that for any x ∈ Ω̃0 the
inequality

ȳ0(x, T ) > ψ(x) (22)

is fulfilled, at that the function ch(ν−1/2 ‖ g ‖0 T )− ch(ν−1/2 ‖ g ‖0 (T − t)) increases
monotonically. Systems (9)-(11) are the conditions of optimality in the optimal control
problem: find ū0(t) ∈ U such that

I0(v) =
1
2

T∫

0

(
∫

Ω̄0

(ȳ0(x, t)− z(x))2dx+

+νv2(t))dt → min

by bounds
˙̄y0(x, t) = g(x)v(t), ȳ0(x, 0) = y0(x).

Let ˜̃Ω0 be a system of expanded sets which belong to Ω and contain Ω̃0 (boundaries of
the indicated sets have the properties of the boundary ∂Ω). Then Ω̄0 is the solution of
the optimization problem

1
2

T∫

0

(
∫

˜̃Ω0

(ȳ0(x, t)− z(x))2dx +
∫

Ω/ ˜̃Ω0

(ψ(x)− z(x))2dx+

+ν(
∫

˜̃Ω0

g(x)p̄0(x, t))2)dt → min

(23)

by bound (16),(22), ȳ0(x, t) is given by the representation (21) and scalar products (·, ·)0
are calculated by ˜̃Ω0 in all terms.



In case 2) the solution of (9),(11), continuous for t ∈ [0, T ] and smooth for x ∈ Ω̄0, is
given by the couple (ȳ0(x, t), p̄0(x, t)). In particular, for t ∈ [0, τ0]

ȳ0(x, t) = −ξg(x)t + y0(x),

for t ∈ (τ0, T ]
ȳ0(x, t) = −ξg(x)τ0 + y0(x) + ξν1/2 ‖ g ‖−1

0 ×
×g(x)(sh(ν−1/2 ‖ g ‖0 (T − τ0)))−1(ch(ν−1/2×
× ‖ g ‖0 (T − t))− ch(ν−1/2 ‖ g ‖0 (T − τ0))).

(24)

The question about choice of domain Ω̄0 is solved by analogy with preceding case with
next changes: the function (23) is minimized by bounds (19),(20),(22) and ȳ0(x, t) is
given by representation (24). Let’s supplement the solutions (ȳ0(x, t), p̄0(x, t)) on ∂Ω̄0

by following boundary layer functions ỹ0(t̄, s, t), p̃0(t̄, s, t) [5,7].
Thereby the solution of (6)-(7) is constructed completely, i.e. zeroth components of

decomposition (5) are fined.
ASSUMPTION 3. Suppose the problem’s data such that the moment of the control

switching τ0 ∈ (0, T ) exists and ∂Ω̄0 = ∂Ω •
Let τ be a moment of the control descent from the bound of the initial problem.

Let’s to find it in the form of an asymptotic series

τ =
∞∑

j=0

εjτj .

The algorithm of the specification of the control switching moment is constructed in [4].
THEOREM. Let’s suppose that the assumptions 1-3 are true and (19) takes place.

Then the next inequalities hold

||grad(y − y(N))||L2(Q) + ||grad(p − p(N))||L2(Q) ≤ CεN ,

||y − y(N)||L2(Q) + ||p − p(N)||L2(Q) ≤ CεN+1,

||u − u(N)||L2(0,T ) ≤ CεN+1, |I(u) − I(u(N))| ≤ Cε2(N+1),

where

τN =
N∑

i=0

εiτi, y(N)(x, t) =
N∑

j=0

(ȳj(x, t) + ỹj(t̄, s, t))εj ,

p(N)(x, t) =
N∑

j=0

(p̄j(x, t) + p̃j(t̄, s, t))εj ,

u(N)(t) =

{ −ξ, 0 ≤ t ≤ τN ,

−ν−1 (g, p(N)(., t)), τN ≤ t ≤ T.
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