OPTIMAL CONTROL IN PARABOLIC SINGULAR PERTURBATED PROBLEM WITH OBSTACLE.

(C) Vladimir Y. Kapustyan

1. OPTIMALITY CONDITIONS.

Consider such optimal control problem with an obstacle: to find $u(t) \in U=\{v$: $v(t) \in L_{2}(0, T),|v(t)| \leq \xi$ for a.e. $\left.t \in[0, T]\right\}$ such that

$$
\begin{equation*}
I(v)=\frac{1}{2} \int_{0}^{T}\left(\int_{\Omega}(y(x, t)-z(x))^{2} d x+\nu v^{2}(t)\right) d t \rightarrow \min \tag{1}
\end{equation*}
$$

where $y(x, t)$ is the solution of variational inequality of parabolic type in [1-2]

$$
\begin{gather*}
\left(y_{t}(x, t)-\epsilon^{2} \triangle y(x, t)-g(x) v(t)\right)(y(x, t)-\psi(x))=0 \text { a.e.in } Q \\
y_{t}(x, t)-\epsilon^{2} \triangle y(x, t)-g(x) v(t) \geq 0 \\
y(x, t) \geq \psi(x) \text { a.e. in } Q \tag{2}\\
y(x, 0)=y_{0}(x), \text { a.e. in } \Omega, y(x, t)=0, \text { a.e. in } \Sigma
\end{gather*}
$$

here $Q=\Omega \times(0, T), \Sigma=\partial \Omega \times(0, T), \Omega \in R^{n}$-has compact closure and smooth (from C^{∞}) (n-1)-dimensional boundary $\partial \Omega, z(x) \in L_{2}(\Omega), g(x) \in L_{q}(\Omega), y_{0}(x) \in$ $W_{0}^{2-2 / q, q}(\Omega), \psi(x) \in H^{2}(\Omega), \psi(x) \leq 0$ a.e. on $\partial \Omega, y_{0} \geq \psi(x)$ a.e. in $\Omega, q>\max (\mathrm{n}, 2)$, $0<\epsilon \ll 1, \nu=$ const $>0, \triangle$ is the Laplace operator.

The problem (1)-(2) has at least one solution u. Let (y, u) be an pair from the problem (1)-(2). Then ([1]) there exists a function $p \in L_{2}\left(0, T ; H^{1}(\Omega)\right) \cap B V\left([0, T] ; Y^{*}\right), Y=$ $H^{s}(\Omega) \bigcap H^{1}(\Omega), s>n / 2$ which satisfies the following equations:

$$
\begin{gather*}
-p_{t}-\epsilon^{2} \triangle p=y(x, t)-z(x) \text { a.e.in }\{(x, t): y(x, t)>\psi(x)\}, \\
p(x, t)=0, \text { a.e. in } \Sigma ; \\
p(x, t)\left(g(x) u(t)+\epsilon^{2} \triangle y\right)=0 \text { a.e.in }\{y=\psi\}, \tag{3}\\
p(x, T)=0 \text { a.e.in } \Omega, \\
u(t)=\left\{\begin{array}{rr}
-\xi, & (g, p(\cdot, t))-\nu \xi>0, \\
-\nu^{-1}(g, p(\cdot, t)), \\
\xi, & (g, p(\cdot, t))+\nu \xi<0,
\end{array}\right. \tag{4}
\end{gather*}
$$

where $(g, p(\cdot, t))=\int_{\Omega} g(x) p(x, t) d x$.

2. FORMAL ASYMPTOTICS.

We shall find the outer [6] decomposition of the solution of (2)-(4) in the form

$$
\begin{equation*}
\bar{y}(x, t)=\sum_{i=0}^{\infty} \epsilon^{i} \bar{y}_{i}(x, t) ; \bar{p}(x, t)=\sum_{i=0}^{\infty} \epsilon^{i} \bar{p}_{i}(x, t) \tag{5}
\end{equation*}
$$

ASSUMPTION 1. Suppose $z(x), y_{0}(x), \psi(x), 0 \leq g(x) \in C^{\infty}(\Omega) \bullet$ Zero components of the decomposition (5) are defined like the solution of the problem

$$
\begin{gather*}
\left(\bar{y}_{0_{t}}(x, t)-g(x) \bar{u}_{0}(t)\right)\left(\bar{y}_{0}(x, t)-\psi(x)\right)=0 \text { in } Q, \\
\bar{y}_{0_{t}}(x, t)-g(x) \bar{u}_{0}(t) \geq 0, \bar{y}_{0}(x, t) \geq \psi(x) \text { in } Q, \\
\bar{y}_{0}(x, 0)=y_{0}(x) \text { in } \Omega ; \tag{6}\\
-\bar{p}_{0_{t}}=\bar{y}_{0}(x, t)-z(x) \text { in }\left\{(x, t): \bar{y}_{0}(x, t)>\psi(x)\right\}, \\
\bar{p}_{0}(x, t) g(x) \bar{u}_{0}(t)=0 \text { a.e. in }\left\{\bar{y}_{0}=\psi\right\}, \\
\bar{p}_{0}(x, T)=0 \text { in } \Omega, \\
\bar{u}_{0}(t)=\left\{\begin{array}{rr}
-\xi, & \left(g, \bar{p}_{0}(\cdot, t)\right)-\nu \xi>0, \\
-\nu^{-1}\left(g, \bar{p}_{0}(\cdot, t)\right), \\
\xi, & \left(g, \bar{p}_{0}(\cdot, t)\right)+\nu \xi<0 .
\end{array}\right. \tag{7}
\end{gather*}
$$

Introduce sets

$$
\begin{align*}
Q_{0}=\{(x, t): y(x, t) & =\psi(x) a . e .\}, Q_{+}=\{(x, t): y(x, t)>\psi(x) \text { a.e. }\}, \tag{8}\\
Q & =Q_{0} \bigcup Q_{+}, Q_{0} \bigcap Q_{+}=\emptyset
\end{align*}
$$

where $y(x, t)$ is the solution of (2)-(4).
Then \bar{Q}_{0}, \bar{Q}_{+}are their zeroth-order approximations.
ASSUMPTION 2. Suppose that $p(x, t)=0$ in Q_{0} and let Q_{0} be a cylinder in R^{n+1} and its base be two-connected domain $\left(\Omega \backslash \Omega_{0}\right)$. Suppose that the outer boundary is equivalent to $\partial \Omega$ and the inner boundary ($\partial \Omega$) possesses properties of the outer boundary

Then the correlations are fulfilled in \bar{Q}_{+}

$$
\begin{align*}
& \left(x \in \Omega_{0}, t \in T_{1}^{0}\right):\left\{\begin{array}{r}
\dot{\bar{y}}_{0}=-g(x) \xi, \\
-\dot{\bar{p}}_{0}=\bar{y}_{0}-z,\left(g, \bar{p}_{0}\right)_{0}-\nu \xi>0 ;
\end{array}\right. \tag{9}\\
& \left(x \in \Omega_{0}, t \in T_{2}^{0}\right):\left\{\begin{array}{r}
\dot{\bar{y}}_{0}=g(x) \xi, \\
-\dot{\bar{p}}_{0}=\bar{y}_{0}-z,\left(g, \bar{p}_{0}\right)_{0}+\nu \xi<0 ;
\end{array}\right. \tag{10}\\
& \left(x \in \Omega_{0}, t \in T_{3}^{0}\right):\left\{\begin{array}{r}
\dot{\bar{y}}_{0}=-\nu^{-1} g(x)\left(g, \bar{p}_{0}\right)_{0}, \\
-\dot{\bar{p}}_{0}=\bar{y}_{0}-z,
\end{array}\right. \tag{11}
\end{align*}
$$

$$
T=\bigcup_{i=1}^{3} T_{i}^{0}, T_{i}^{0} \bigcap T_{j}^{0}=\emptyset, i \neq j
$$

where (\cdot, \cdot) denotes the scalar products by $\bar{\Omega}_{0}$.
Let's go over to the problems for $\left(g, \tilde{y}_{0}\right)_{0},\left(g, \bar{p}_{0}\right)_{0}$ for the definition of zero components of the control switching moments

$$
\begin{align*}
& t \in T_{1}^{0}:\left\{\begin{array}{r}
\left(g, \dot{\tilde{y}}_{0}\right)_{0}=-\|g\|_{0}^{2} \xi, \\
-\left(g, \dot{\bar{p}}_{0}\right)_{0}=\left(g, \tilde{y}_{0}\right)_{0},\left(g, \bar{p}_{0}\right)_{0}-\nu \xi>0 ;
\end{array}\right. \tag{12}\\
& t \in T_{2}^{0}:\left\{\begin{array}{r}
\left(g, \dot{\tilde{y}}_{0}\right)_{0}=\|g\|_{0}^{2} \xi, \\
-\left(g, \dot{\bar{p}}_{0}\right)_{0}=\left(g, \tilde{y}_{0}\right)_{0},\left(g, \bar{p}_{0}\right)_{0}+\nu \xi<0 ;
\end{array}\right. \tag{13}\\
& t \in T_{3}^{0}:\left\{\begin{array}{r}
\left(g, \dot{\tilde{y}}_{0}\right)_{0}=-\nu^{-1}\|g\|_{0}^{2}\left(g, \bar{p}_{0}\right)_{0}, \\
-\left(g, \dot{\bar{p}}_{0}\right)_{0}=\left(g, \tilde{y}_{0}\right)_{0}, \tilde{y}_{0}=\bar{y}_{0}-z .
\end{array}\right. \tag{14}
\end{align*}
$$

The problems (12)-(14) may be solved by dint of phase picture [3] which allows to define the control structure. Then two cases are possible: 1) phase point $\left(\left(g, \tilde{y}_{0}\right)_{0},\left(g, \bar{p}_{0}\right)\right)$ doesn't go on bounds, i.e. it belongs to set $P_{1}=\left\{0<\left(g, \bar{p}_{0}\right)_{0} \leq \nu \xi, \nu^{-1 / 2}\|g\|_{0}\right.$ $\left.\left(g, \bar{p}_{0}\right)_{0}<\left(g, \tilde{y}_{0}\right)_{0}<\infty\right\} \bigcup\left\{-\nu \xi \leq\left(g, \bar{p}_{0}\right)_{0}<0,-\infty<\left(g, \tilde{y}_{0}\right)_{0}<\nu^{-1 / 2} \times \times\|g\|_{0}\right.$ $\left.\left.\left(g, \bar{p}_{0}\right)_{0}\right\} ; 2\right)$ phase point goes on bounds, i.e. it belongs to set $P_{2}=\left\{\left(g, \bar{p}_{0}\right)_{0} \geq \nu \xi\right.$, $\left.\nu^{-1 / 2}\|g\|_{0}\left(g, \bar{p}_{0}\right)_{0} \leq\left(g, \tilde{y}_{0}\right)_{0}<\infty\right\} \bigcup\left\{-\nu \xi>\left(g, \bar{p}_{0}\right)_{0},-\infty<\left(g, \tilde{y}_{0}\right)_{0} \leq \nu^{-1 / 2}\right.$ $\left.\|g\|_{0}\left(g, \bar{p}_{0}\right)_{0}\right\}$. In the case 1) the solution has an appearance:

$$
\left\{\begin{array}{r}
\left(g, \tilde{y}_{0}\right)_{0}=\left(y_{0}-z, g\right)_{0} \operatorname{ch}\left(\left(\nu^{-1 / 2}\|g\|_{0} \times\right.\right. \tag{15}\\
\times(T-t))\left(\operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0} T\right)\right)^{-1} \\
\left(g, \bar{p}_{0}\right)_{0}=\nu^{1 / 2}\|g\|_{0}^{-1}\left(y_{0}-z, g\right)_{0} \times \\
\times \operatorname{sh}\left(\nu^{-1 / 2}\|g\|_{0}(T-t)\right) \times \times\left(\operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0} T\right)\right)^{-1}
\end{array}\right.
$$

on condition that initial data satisfy the inclusion

$$
\begin{equation*}
\left\{\left(y_{0}-z, g\right)_{0}, \nu^{1 / 2}\|g\|_{0}^{-1}\left(y_{0}-z, g\right)_{0} \operatorname{th}\left(\nu^{-1 / 2}\|g\|_{0} T\right)\right\} \in P_{1} \tag{16}
\end{equation*}
$$

In the case 2) systems (12)-(13) have the solution in $0 \leq t \leq \tau_{0}$ (τ_{0} is the moments of descent of control from limitation)

$$
\left\{\begin{array}{r}
\left(g, \tilde{y}_{0}\right)=\mp \xi\|g\|_{0}^{2} t+\left(g, y_{0}-z\right)_{0} \tag{17}\\
\left(g, \bar{p}_{0}\right)= \pm \xi\left(\nu-1 / 2\|g\|_{0}^{2}\left[\tau_{0}^{2}-t^{2}\right]\right)+\left(g, y_{0}-z_{0}\right)_{0}\left(\tau_{0}-t\right)
\end{array}\right.
$$

On the segment $t \in\left(\tau_{0}, T\right]$ system (14) has the solution

$$
\left\{\begin{align*}
\left(g, \tilde{y}_{0}\right)_{0}= & \pm \xi \nu^{1 / 2}
\end{align*} \begin{array}{rl}
& g \|_{0} \operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0}(T-t)\right) \times \tag{18}\\
& \times\left(\operatorname{sh}\left(\nu^{-1 / 2}\|g\|_{0}\left(T-\tau_{0}\right)\right)\right)^{-1} \\
\left(g, \bar{p}_{0}\right)_{0}= \pm \xi \nu s h\left(\nu^{-1 / 2}\|g\|_{0} \times\right. \\
\times(T-t))\left(\operatorname{sh}\left(\nu^{-1 / 2}\|g\|_{0}\left(T-\tau_{0}\right)\right)\right)^{-1}
\end{array}\right.
$$

Let's regard futher for definition that the condition

$$
\begin{array}{r}
\left\{\left(y_{0}-z, g\right)_{0}, \xi\left(\nu-1 / 2\|g\|_{0}^{2} \tau_{0}^{2}\right)+\left(g, y_{0}-z\right)_{0} \tau_{0}\right\} \in P_{2} \bigcap \tag{19}\\
\left\{\left(g, \bar{p}_{0}\right)_{0}>\nu \xi, \nu^{-1 / 2}\|g\|_{0}\left(g, \bar{p}_{0}\right)_{0} \leq\left(g, \tilde{y}_{0}\right)_{0}<\infty\right\},
\end{array}
$$

which guarantees uniqueness of the solution of equation

$$
\begin{equation*}
-\xi\|g\|_{0}\left(\nu^{1 / 2} \operatorname{cth}\left(\nu^{-1 / 2}\|g\|_{0}\left(T-\tau_{0}\right)\right)+\|g\|_{0} \tau_{0}\right)=\left(g, y_{0}-z\right)_{0}, \tag{20}
\end{equation*}
$$

is fulfilled. Thus in case 1) the couple ($\bar{y}_{0}(x, t), \bar{p}_{0}(x, t)$) is fined from (11). In particular,

$$
\begin{array}{r}
\bar{y}_{0}(x, t)=y_{0}(x)-g(x)\|g\|_{0}^{-2}\left(y_{0}-z, g\right)_{0}\left(\operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0} T\right)-\right. \tag{21}\\
\left.-\operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0}(T-t)\right)\right)\left(\operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0} T\right)\right)^{-1} .
\end{array}
$$

The question about choice of domain $\bar{\Omega}_{0}$ is solved this way. Let $\tilde{\Omega}_{0}$ be a set from Ω, which satisfies the condition $y_{0}(x)>\psi(x)$ and suppose that for any $x \in \tilde{\Omega}_{0}$ the inequality

$$
\begin{equation*}
\bar{y}_{0}(x, T)>\psi(x) \tag{22}
\end{equation*}
$$

is fulfilled, at that the function $\operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0} T\right)-\operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0}(T-t)\right)$ increases monotonically. Systems (9)-(11) are the conditions of optimality in the optimal control problem: find $\bar{u}_{0}(t) \in U$ such that

$$
\begin{gathered}
I_{0}(v)=\frac{1}{2} \int_{0}^{T}\left(\int_{\bar{\Omega}_{0}}\left(\bar{y}_{0}(x, t)-z(x)\right)^{2} d x+\right. \\
\left.\quad+\nu v^{2}(t)\right) d t \rightarrow \min
\end{gathered}
$$

by bounds

$$
\dot{\bar{y}}_{0}(x, t)=g(x) v(t), \bar{y}_{0}(x, 0)=y_{0}(x) .
$$

Let $\tilde{\tilde{\Omega}}_{0}$ be a system of expanded sets which belong to Ω and contain $\tilde{\Omega}_{0}$ (boundaries of the indicated sets have the properties of the boundary $\partial \Omega$). Then $\bar{\Omega}_{0}$ is the solution of the optimization problem

$$
\begin{array}{r}
\frac{1}{2} \int_{0}^{T}\left(\int_{\tilde{\Omega}_{0}}\left(\bar{y}_{0}(x, t)-z(x)\right)^{2} d x+\int_{\Omega / \tilde{\tilde{\Omega}}_{0}}(\psi(x)-z(x))^{2} d x+\right. \tag{23}\\
\left.+\nu\left(\int_{\tilde{\Omega}_{0}} g(x) \bar{p}_{0}(x, t)\right)^{2}\right) d t \rightarrow \min
\end{array}
$$

by bound (16),(22), $\bar{y}_{0}(x, t)$ is given by the representation (21) and scalar products $(\cdot, \cdot)_{0}$ are calculated by $\tilde{\Omega}_{0}$ in all terms.

In case 2) the solution of (9),(11), continuous for $t \in[0, T]$ and smooth for $x \in \bar{\Omega}_{0}$, is given by the couple $\left(\bar{y}_{0}(x, t), \bar{p}_{0}(x, t)\right)$. In particular, for $t \in\left[0, \tau_{0}\right]$

$$
\bar{y}_{0}(x, t)=-\xi g(x) t+y_{0}(x),
$$

for $t \in\left(\tau_{0}, T\right]$

$$
\begin{gather*}
\bar{y}_{0}(x, t)=-\xi g(x) \tau_{0}+y_{0}(x)+\xi \nu^{1 / 2}\|g\|_{0}^{-1} \times \\
\times g(x)\left(\operatorname{sh}\left(\nu^{-1 / 2}\|g\|_{0}\left(T-\tau_{0}\right)\right)\right)^{-1}\left(\operatorname { c h } \left(\nu^{-1 / 2} \times\right.\right. \tag{24}\\
\left.\left.\times\|g\|_{0}(T-t)\right)-\operatorname{ch}\left(\nu^{-1 / 2}\|g\|_{0}\left(T-\tau_{0}\right)\right)\right) .
\end{gather*}
$$

The question about choice of domain Ω_{0} is solved by analogy with preceding case with next changes: the function (23) is minimized by bounds (19),(20),(22) and $\bar{y}_{0}(x, t)$ is given by representation (24). Let's supplement the solutions ($\left.\bar{y}_{0}(x, t), \bar{p}_{0}(x, t)\right)$ on $\partial \bar{\Omega}_{0}$ by following boundary layer functions $\tilde{y}_{0}(\bar{t}, s, t), \tilde{p}_{0}(\bar{t}, s, t)[5,7]$.

Thereby the solution of (6)-(7) is constructed completely, i.e. zeroth components of decomposition (5) are fined.

ASSUMPTION 3. Suppose the problem's data such that the moment of the control switching $\tau_{0} \in(0, T)$ exists and $\partial \bar{\Omega}_{0}=\partial \Omega$

Let τ be a moment of the control descent from the bound of the initial problem. Let's to find it in the form of an asymptotic series

$$
\tau=\sum_{j=0}^{\infty} \epsilon^{j} \tau_{j} .
$$

The algorithm of the specification of the control switching moment is constructed in [4].
THEOREM. Let's suppose that the assumptions 1-3 are true and (19) takes place. Then the next inequalities hold

$$
\begin{gathered}
\left\|\operatorname{grad}\left(y-y^{(N)}\right)\right\|_{L_{2}(Q)}+\left\|\operatorname{grad}\left(p-p^{(N)}\right)\right\|_{L_{2}(Q)} \leq C \epsilon^{N}, \\
\left\|y-y^{(N)}\right\|_{L_{2}(Q)}+\left\|p-p^{(N)}\right\|_{L_{2}(Q)} \leq C \epsilon^{N+1} \\
\left\|u-u^{(N)}\right\|_{L_{2}(0, T)} \leq C \epsilon^{N+1},\left|I(u)-I\left(u^{(N)}\right)\right| \leq C \epsilon^{2(N+1)},
\end{gathered}
$$

where

$$
\begin{gathered}
\tau^{N}=\sum_{i=0}^{N} \epsilon^{i} \tau_{i}, y^{(N)}(x, t)=\sum_{j=0}^{N}\left(\bar{y}_{j}(x, t)+\tilde{y}_{j}(\bar{t}, s, t)\right) \epsilon^{j}, \\
p^{(N)}(x, t)=\sum_{j=0}^{N}\left(\bar{p}_{j}(x, t)+\tilde{p}_{j}(\bar{t}, s, t)\right) \epsilon^{j}, \\
u^{(N)}(t)=\left\{\begin{array}{r}
-\xi, \quad 0 \leq t \leq \tau^{N}, \\
-\nu^{-1}\left(g, p^{(N)}(., t)\right), \tau^{N} \leq t \leq T
\end{array}\right.
\end{gathered}
$$

References

1. Barbu V., Optimal control Of variation inequalities, Pitman, London, 1984.
2. Barbu V., Analysis and control of nonlinear infinite dimensional systems, Academic Presspubl, Ins, 1993.
3. Boltyansky V.G., Mathematical methods of optimal control, Nauka, Moscow.
4. Kapustyan V. Y., Asymptotics of locally boundedcontrol in optimal parabolic problems., Ukr. math. J. 48,N1, (1996), 50-56..
5. Kapustyan V. Y., Asymptotics of control in optimal singular pertyrbated parabolic problems. Global bounds on control., Docl. AN (Russia), 333, N4, (1993), 428-431..
6. Nazarov S. A., Asymptotic solution of variation inequalittes for linear operator with small parameter by senior derivatives., Izv. AN USSR. Series of math., 54, N4, (1990), 754-773..
7. Vasil'eva A. B. and Butuzov V. F., Asymptotic methods in singular perturbations theory., Vysshaya Shkola, Moscow., 1990.

8 - a / 43, Pisargevsky str.,
320005, Dnepropetrovsk, Ukraine.

