NONLINEAR PROBLEMS OF HEAT RADIATING BODY WITH THERMAL THIN COVER

© A.A. Berezovsky, G.N. Komarov, O.G. Nartova

Abstract

We consider a boundary initial problem for heat conductivity with nonlinear boundary condition, which contains time derivative and tangential part of Laplace operator. Existence and uniqueness theorems for positive solutions of mentioned problems are proved.

The determining of temperature field $u(P, t)>0$ of a heat radiating body Ω, partially or fully covered by thin layer ω, reduced to solution of next initial boundary problem for conjugation:

$$
\begin{gather*}
\operatorname{div}(\lambda \operatorname{grad} u)-c \rho u_{t}=-w, \quad P \in \Omega \cup \omega, t>0, \\
u(P, 0)=u_{0}(P), \quad P \in \overline{\Omega \cup \omega}, \\
\lambda \frac{\partial u}{\partial n}+\alpha\left(u-u_{c}\right)=0, \quad P \in S_{1}, t>0, \tag{1}\\
\lambda \frac{\partial u}{\partial n}+\sigma \varepsilon\left(u^{4}-u_{c}^{4}\right)=0, \quad P \in \partial \omega_{+}, t>0, \\
{[u]_{\Phi}=0, \quad\left[\lambda \frac{\partial u}{\partial n}\right]_{\Phi}=0 .}
\end{gather*}
$$

Here $\lambda, c \rho$ are coefficients of heat conductivity, thermal heat capacity and density, that are piecewise constant functions for domains Ω and ω; w is heat source; u_{0} is initial temperature distribution; α is coefficient of heat transfer, u_{c} is temperature of environment, σ Stefan-Boltsman constant, ε is the degree of blackness for covering surface $\partial \omega_{+}$; $S=S_{1} \cup S_{2}$ is a surface that bounded body Ω; the mark [.] means a saltus of value in brackets for transition through surface S_{2}, which can be described by equation $\Phi(P)=0$. In particular, the surface S_{2} can coincide with a whole surface S, and coefficient of heat transfer $\alpha=\infty$.

Analyzing for domain ω differential equation (1) of the problem in normal-tangential form with respect to initial point $P \in \Phi$, we obtain

$$
\begin{gather*}
\frac{\partial}{\partial n}\left(\lambda \frac{\partial u}{\partial n}\right)+\operatorname{div}_{\tau}\left(\lambda \operatorname{grad}_{\tau} u\right)-c \rho u_{t}=-w \tag{2}\\
\xi, \eta, n \in \omega, \quad t>0
\end{gather*}
$$

where

$$
\begin{gather*}
\operatorname{div} \vec{A}=\operatorname{div}_{\tau} \vec{A}_{\tau}+\frac{\partial A_{n}}{\partial n}, \quad \operatorname{grad} \varphi=\operatorname{grad}_{\tau} \varphi+\vec{n} \frac{\partial \varphi}{\partial n} \\
\operatorname{div}_{\tau} \vec{A}_{\tau}=\frac{\partial A_{\xi}}{\partial \xi}+\frac{\partial A_{\eta}}{\partial \eta}, \quad \operatorname{grad}_{\tau} \varphi=\vec{i} \frac{\partial \varphi}{\partial \xi}+\vec{j} \frac{\partial \varphi}{\partial \eta} \tag{3}
\end{gather*}
$$

A_{ξ}, A_{η}, A_{n} are vector \vec{A} components.
If we average equation (2) with respect to covering thickness, with accounting boundary condition on $\partial \omega$, second conjugate condition on S_{2} and identifying average value of temperature \bar{u} with its magnitude on S_{2}, we obtain impedance boundary condition

$$
\begin{gather*}
\left.\lambda_{-} \frac{\partial u}{\partial n}\right|_{\Phi-0}-d \operatorname{div}_{\tau}\left(\lambda_{+} \operatorname{grad}_{\tau} u\right)+c_{+} \rho_{+} d u_{t}+\sigma \varepsilon\left(u^{4}-u_{c}^{4}\right)=d \bar{w}, \tag{4}\\
\xi, \eta, n \in \Phi, t>0
\end{gather*}
$$

where $d=d(\xi, \eta)$ is the thickness of cover; indexes + and - corresponds to body Ω and its covering ω; the dash means averaging across thickness d.

After transition to a new time variable and parameters $\tau=\lambda_{-} t / c_{-} \rho_{-}$and $h=$ $\alpha / \lambda_{+}, \beta=\lambda_{-} d / \lambda_{+}, \kappa=\sigma \varepsilon / \lambda_{-}, \gamma=c_{+} \rho_{+} d / c_{-} \rho_{-}$,
$f=\bar{w} / \lambda_{-}, q=\kappa u_{c}^{4}+d \bar{w} / \lambda_{-}$, the problem reduced to canonical form

$$
\begin{gather*}
\Delta u-u_{t}=-f, \quad P \in \Omega, \quad t>0 \\
u(P, 0)=u_{0}(P), \quad P \in \bar{\Omega} \\
\frac{\partial u}{\partial n}+h\left(u-u_{c}\right)=0, \quad P \in S_{1}, t>0 \tag{5}\\
\frac{\partial u}{\partial n}-\beta \Delta_{\tau} u+\gamma u_{t}+\kappa u^{4}=q, \quad P \in S_{2}, t>0
\end{gather*}
$$

where previous notation t is conserved for new variable τ.
Theorem 1. If for any initial data and parameters there is a positive solution of the problem (5) then this solution is unique.

Proof. Let's $u_{1}(P, t)$ and $u_{2}(P, t)$ two different positive solutions of the problem (5). Then we shall obtain next initial boundary problem for difference $u(P, t)=u_{2}(P, t)-$ $u_{1}(P, t)$:

$$
\begin{gather*}
\Delta u-u_{t}=0, \quad P \in \Omega, \quad t>0 \\
u(P, 0)=0, \quad P \in \bar{\Omega} \\
\frac{\partial u}{\partial n}+h u=0, \quad P \in S_{1}, t>0 \tag{6}\\
\frac{\partial u}{\partial n}-\beta \Delta_{\tau} u+\gamma u_{t}+\kappa\left(u_{2}^{4}-u_{1}^{4}\right)=0, \quad P \in S_{2}, t>0 .
\end{gather*}
$$

After multiplying differential equation of the problem (6) by $u(P, t)$ and integration for domain Ω with accounting first Green formula

$$
\int_{\Omega} u \Delta u d v=\int_{S_{1}} u \frac{\partial u}{\partial n} d s+\int_{S_{2}} u \frac{\partial u}{\partial n} d s-\int_{\Omega}(\operatorname{grad} u)^{2} d v
$$

we obtain

$$
\begin{equation*}
\int_{\Omega} u u_{t} d v=\int_{S 1} u \frac{\partial u}{\partial n} d s+\int_{S_{2}} u \frac{\partial u}{\partial n} d s-\int_{\Omega}(\operatorname{grad} u)^{2} d v \tag{7}
\end{equation*}
$$

With accounting boundary conditions integrals on S_{1} and S_{2} can be transform to

$$
\begin{equation*}
\int_{S_{1}} u \frac{\partial u}{\partial n} d s=-h \int_{S_{1}} u^{2} d s \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\int_{S_{2}} u \frac{\partial u}{\partial n} d s=\int_{S_{2}} \beta u \Delta_{\tau} u d s-\int_{S_{2}} \gamma u u_{\tau} d s-\kappa \int_{S_{2}} u\left(u_{2}^{4}-u_{1}^{4}\right) d s . \tag{9}
\end{equation*}
$$

Let's consider the first integral from right side of formula (9). According to a formula of vector analysis

$$
\beta u \Delta_{\tau} u=\operatorname{div}_{\tau}\left(\beta u \operatorname{grad}_{\tau} u\right)-\left(\operatorname{grad}_{\tau} \beta u, \operatorname{grad}_{\tau} u\right)
$$

and Gausse - Ostrogradsky formula it can be transform to next form

$$
\int_{S_{2}} \beta u \Delta_{\tau} u d s=\oint_{L} \beta u \frac{\partial u}{\partial n_{\perp}} d l-\int_{S_{2}} \beta(\operatorname{grad} u)^{2} d s
$$

where \vec{n}_{\perp} is unit vector directed towards normal of curve L.
The integral for contour L is equal zero if

$$
S_{2}=S, \quad \operatorname{mes} S_{1}=0
$$

and if d, and so β, is equal zero on L, i.e. the cover vanished on contour L, as well as for first boundary condition, when $h=\infty$.

For these cases

$$
\int_{S_{2}} \beta u \Delta_{\tau} u d s=-\int_{S_{2}} \beta(\operatorname{grad} u)^{2} d s
$$

we can rewrite equation (7) in the form

$$
\begin{align*}
& \frac{d I}{d t}=-\int_{\Omega}(\operatorname{grad} u)^{2} d v-h \int_{S_{1}} u^{2} d s- \\
& \int_{S_{2}} \beta\left(\operatorname{grad}_{\tau} u\right)^{2} d s-\kappa \int_{S_{2}} u\left(u_{2}^{4}-u_{1}^{4}\right) d s \tag{10}
\end{align*}
$$

where

$$
\begin{equation*}
I=\frac{1}{2} \int_{\Omega}\left(u^{2}\right)_{t} d v+\frac{1}{2} \int_{S_{2}} \gamma\left(u^{2}\right)_{t} d s \tag{11}
\end{equation*}
$$

Since

$$
u\left(u_{2}^{4}-u_{1}^{4}\right)=\left(u_{2}-u_{1}\right)^{2}\left(u_{2}^{3}+u_{2}^{2} u_{1}+u_{2} u_{1}^{2}+u_{1}^{3}\right) \geq 0
$$

it is evident that $\frac{d I}{d t} \leq 0$. But since by virtue of initial condition $I=0$ for $t=0$, so $I \leq 0$ for all $t \geq 0$. From the other side according (11) $I \geq 0$. The solution of such contradiction can be find only for $I=0 \Rightarrow u_{2}-u_{1}=0, P \in \Omega \cup S_{2}$, That is the proof of the theorem.

For heat conductivity equation operator the second Green formula takes place

$$
\begin{align*}
& \int_{0}^{\tau+0} \int_{\Omega}\left[v\left(\Delta u-u_{t}\right)-u\left(\Delta v+v_{t}\right)\right] d v_{P} d t= \tag{12}\\
= & \int_{0}^{\tau+0} \oint_{S}\left(v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right) d s_{P} d t-\left.\int_{\Omega} v u\right|_{0} ^{\tau+0} d v_{P} .
\end{align*}
$$

Let's transform the first integral of right side of this equality to the form that contain linear operators of boundary conditions of the problem (5). It is simple to detect that

$$
\begin{gather*}
\int_{0}^{\tau+0} \oint_{S}\left(v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right) d s_{P} d t= \\
\int_{0}^{\tau+0} \int_{S_{1}}\left[v\left(\frac{\partial u}{\partial n}+h u\right)-u\left(\frac{\partial v}{\partial n}+h v\right)\right] d s_{P} d t+ \\
+\int_{0}^{\tau+0} \int_{S_{2}}\left[v\left(\frac{\partial u}{\partial n}-\beta \Delta_{\tau} u+\gamma u_{t}\right)-\right. \tag{13}\\
\left.-u\left(\frac{\partial v}{\partial n}-\beta \Delta_{\tau} v-\gamma v_{t}\right)\right] d s_{P} d t- \\
-\left.\int_{S_{2}} \gamma v u\right|_{0} ^{\tau+0} d s_{P}+\int_{0}^{\tau+0} \oint_{L} \beta\left(v \frac{\partial u}{\partial n_{\perp}}-u \frac{\partial v}{\partial n_{\perp}}\right) d l_{P} d t .
\end{gather*}
$$

Further on we restrict in studying Dirichlet conditions on S_{1}, for $h=\infty$. The second Green formula can be transform to

$$
\begin{align*}
& \int_{0}^{\tau+0} \int_{\Omega}\left[v\left(\Delta u-u_{t}\right)-u\left(\Delta v+v_{t}\right)\right] d v_{P} d t=\int_{0}^{\tau+0} \int_{S_{1}}\left(v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right) d s_{P} d t+ \\
& +\int_{0}^{\tau+0} \int_{S_{2}}\left[v\left(\frac{\partial u}{\partial n}-\beta \Delta_{\tau} u+\gamma u_{t}\right)-u\left(\frac{\partial v}{\partial n}-\beta \Delta_{\tau} v-\gamma v_{t}\right)\right] d s_{P} d t- \tag{14}\\
& -\int_{\Omega} v u u_{0}^{\tau+0} d v_{P}-\left.\int_{S_{2}} \gamma v u\right|_{0} ^{\tau+0} d s_{P}+\int_{0}^{\tau+0} \oint_{L} \beta\left(v \frac{\partial u}{\partial n_{\perp}}-u \frac{\partial v}{\partial n_{\perp}}\right) d l_{P} d t
\end{align*}
$$

Let's introduce Green function $G(P, Q ; t-\tau)$, as a solution of next initial boundary problem:

$$
\begin{gather*}
\Delta_{P} G+G_{t}=-\delta(P-Q) \delta(t-\tau), \quad P, Q \in \Omega, t>0 \\
G(P, Q ; t-\tau)=0, \quad t>\tau P, Q \in \Omega \cup S \\
G(P, Q ; t-\tau)=0, \quad P \in S_{1}, Q \in \Omega \tag{15}\\
\frac{\partial G}{\partial n_{P}}-\beta \Delta_{\tau P} G-\gamma G_{t}=0, \quad P \in S_{2}, Q \in \Omega
\end{gather*}
$$

where $\delta(P-Q) \delta(t-\tau)$ is Dirack delta-function for points $P=Q$ and moment $t=\tau$.
By using Green formula (14) and introduced Green function the solution of initial boundary problem (5) can be transform to solution of nonlinear integral equation of least dimension.

$$
\begin{gather*}
u(Q, \tau)=u_{l}(Q, \tau)-\kappa \int_{0}^{\tau} \int_{S_{2}} G(P, Q ; t-\tau) u^{4}(P, t) d s_{P} d t \tag{16}\\
Q \in S_{2}, \quad \tau>0
\end{gather*}
$$

where

$$
u_{l}(Q, \tau)=\left(\left(G(P, Q ; 0-\tau), u_{0}(P)\right)\right)+\int_{0}^{\tau} \int_{\Omega} G(P, Q ; t-\tau) f(P, t) d v_{P} d t+
$$

$$
\begin{align*}
& +\int_{0}^{\tau} \int_{S_{2}} u_{c}(P, t) \frac{\partial G}{\partial n_{P}} d s_{P} d t+\kappa \int_{0}^{\tau} \int_{S_{2}} G(P, Q ; t-\tau) q(P, t) d s_{P} d t+ \tag{17}\\
& \quad+\int_{0}^{\tau} \oint_{L} u_{c}(P, t) \frac{\partial G}{\partial n_{\perp}} d l_{P} d t, \quad Q \in \Omega \cup S, \tau>0
\end{align*}
$$

and double brackets denote scalar product

$$
\begin{equation*}
((u, v))=\int_{\Omega} u(P) v(P) d v_{P}+\int_{S_{2}} \gamma u(P) v(P) d s_{P} \tag{18}
\end{equation*}
$$

which generate norm

$$
\begin{equation*}
\langle\langle u\rangle\rangle^{2}=\int_{\Omega} u^{2} d v_{P}+\int_{S_{2}} \gamma u^{2}(P) d s_{P} . \tag{19}
\end{equation*}
$$

The temperature field in body Ω is determined as quadrature (16) with using solution of integral equation (16) when $Q \in \Omega \cup S$. Let's note that equation (16) is the equation of least dimension, because we should determine only temperature of the surface S_{2}. It presents a nonlinear integral equation of Hammershtain type with respect to spatial variable and Volterra type for time $[1,2]$. The solution of such equation can be obtained by successive approximation method. At that next theorem will take place.

Theorem 2. If Green function $G(P, Q ; t-\tau) \geq 0$ and the solution of corresponding linear problem $u_{l}(P, t) \geq 0$ is such, that

$$
\begin{gather*}
\int_{0}^{T} d \tau \int_{0}^{\tau} d t \int_{S_{2}} d s_{P} \int_{S_{2}} G_{2}(P, Q ; t-\tau) d s_{Q}<\infty \tag{20}\\
\int_{0}^{T} d t \int_{S_{2}} u_{l}^{8}(P, t) d s_{P}<\infty \\
u_{l}(Q, \tau) \geq \kappa \int_{0}^{\tau} d t \int_{S_{2}} G(P, Q ; t-\tau) u_{l}^{4}(P, t) d s_{P} \tag{21}
\end{gather*}
$$

for main domain $0 \leq t \leq \tau \leq T ; P, Q \in S_{2}$, then the positive solution of integral equation (16) exists and is unique.

For proving this theorem let's apply method of successive approximations

$$
\begin{gather*}
u_{n}(Q, \tau)=u_{l}(Q, \tau)-\kappa \int_{0}^{\tau} \int_{S_{2}} G(P, Q ; t-\tau) u_{n-1}^{4}(P, t) d s_{P} d t \\
n=1,2, \ldots \tag{22}\\
u_{0}(Q, \tau)=u_{l}(Q, \tau)
\end{gather*}
$$

By virtue of (21) it is evident that

$$
\begin{gather*}
0 \leq u_{1}(Q, \tau) \leq u_{3}(Q, \tau) \leq \ldots \leq u_{2 n+1}(Q, \tau) \leq \ldots \leq u(Q, \tau) \tag{23}\\
u_{2}(Q, \tau) \geq u_{4}(Q, \tau) \geq \ldots \geq u_{2 n}(Q, \tau) \geq \ldots \geq u(Q, \tau)
\end{gather*}
$$

Accounting (20) we obtain

$$
\begin{align*}
& \left|u_{1}(Q, \tau)-u_{0}(Q, \tau)\right|= \\
& =\kappa\left|\int_{0}^{\tau} \int_{S_{2}} G(P, Q ; t-\tau) u_{l}^{4}(P, t) d s_{P} d t\right| \leq n(Q, \tau) \tag{24}\\
& \leq\left|\int_{0}^{\tau} \int_{S_{2}} R(P, Q ; t, \tau)\right| u_{n}(P, t)-u_{n-1}(P, \tau)\left|d s_{P} d t\right|
\end{align*}
$$

where $n(P, \tau) \quad R(P, Q ; t-\tau)=\kappa\left[u_{n}^{3}(Q, \tau)+u_{n}^{2}(Q, \tau) u_{n-1}(Q, \tau)+u_{n}(Q ; \tau) u_{n-1}^{2}(Q, \tau)+\right.$ $\left.u_{n-1}^{3}(Q, \tau)\right] G(P, Q ; t-\tau)$ are positive square integrable functions

$$
\begin{align*}
& \int_{0}^{T} d \tau \int_{S_{2}} n^{2}(Q ; \tau) d s_{Q} \leq N^{2}, \quad N^{2}=\mathrm{const} \tag{26}\\
& \int_{0}^{T} d \tau \int_{0}^{\tau} d t \int_{S_{2}} d s_{P} \int_{S_{2}} R^{2}(P, Q ; t, \tau) d s_{Q}= \\
& =\int_{0}^{T} d \tau \int_{S_{2}} A^{2}(Q, \tau) d s_{Q} \leq A^{2}, \quad A^{2}=\mathrm{const} \tag{27}
\end{align*}
$$

From obtained inequalities (24)-(27) and Cauchi-Bunyakovsky inequality we get

$$
\begin{gathered}
{\left[u_{n+1}(Q, \tau)-u_{0}(Q, \tau)\right]^{2} \leq} \\
\leq A^{2} \int_{0}^{\tau} \int_{S_{2}}\left[u_{n}(P, t)-u_{n-1}(P, t)\right]^{2} d s_{P} d t
\end{gathered}
$$

The sequential substitutions lead to inequality

$$
\begin{equation*}
\left[u_{n+1}(Q, \tau)-u_{n}(Q, \tau)\right]^{2} \leq N^{2} A^{2}(Q, \tau) F_{n-1}(\tau) \tag{28}
\end{equation*}
$$

where

$$
\begin{gathered}
F_{n}(\tau)=\int_{0}^{\tau} d t \int_{S_{2}} A^{2}(P, t) F_{n-1}(t) d s_{P}, \quad n=2,3, \ldots \\
F_{1}(\tau)=\int_{0}^{\tau} d t \int_{S_{2}} A^{2}(P, t) d s_{P} \leq A^{2}
\end{gathered}
$$

Based on method of mathematical induction we can show that

$$
\begin{equation*}
F_{n}(\tau)=\frac{F_{1}^{n}(\tau)}{n!}, \quad n=1,2, \ldots \tag{29}
\end{equation*}
$$

then from (28) and (29) we get inequality

$$
\begin{equation*}
\left|u_{n+1}(Q, \tau)-u_{n}(Q, \tau)\right| \leq N A(Q, \tau) \frac{A^{n-1}}{\sqrt{(n-1)!}}, \quad n=1,2, \ldots \tag{30}
\end{equation*}
$$

which provide absolute convergence of functional series

$$
\begin{gather*}
U(Q, \tau)= \\
u_{1}(Q, \tau)+\left[u_{2}(Q, \tau)-u_{1}(Q, \tau)\right]+\left[u_{3}(Q, \tau)-u_{2}(Q, \tau)\right]+\ldots \tag{31}
\end{gather*}
$$

which n-th partial sum is equal to $u_{n}(Q, \tau)$.
Indeed, series (31) according estimation (30) can be majorized by convergent series beginning from the second term

$$
N A(Q, \tau) \sum_{n=1}^{\infty} \frac{A^{n-1}}{\sqrt{(n-1)!}}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} u_{n}(Q, \tau)=U(Q, \tau) .
$$

We can show that limit function gives solution of integral equation (16). Indeed, assuming

$$
\begin{equation*}
U(Q, \tau)=u_{n}(Q, \tau)+R_{n}(Q, \tau), \tag{32}
\end{equation*}
$$

we transform (22) to a form

$$
\begin{gather*}
U(Q, \tau)-u_{l}(Q, \tau)+ \\
+\kappa \int_{0}^{\tau} \int_{S_{2}} G(P, Q ; t-\tau) U^{4}(P, t) d s_{P} d t=R_{n}(Q, \tau)- \tag{33}\\
-\kappa \int_{0}^{\tau} \int_{S_{2}} G(P, Q ; t-\tau)\left[u_{n-1}^{4}(P, t)-U^{4}(P, t)\right] d s_{P} d t
\end{gather*}
$$

By majorizing right side of (33) with accounting obtained estimations and CaochiBunyakovsky inequality we get

$$
\begin{gather*}
\int_{0}^{T} \int_{S_{2}}\left\{U(Q, \tau)-u_{l}(Q, \tau)+\right. \\
\left.+\kappa \int_{0}^{\tau} \int_{S_{2}} G(P, Q ; t-\tau) U^{4}(P, t) d s_{P} d t\right\} d s_{Q} d \tau \leq \tag{34}\\
\leq 2 \int_{0}^{T} \int_{S_{2}}\left[R_{n}^{2}(Q, \tau)+A^{2} R_{n-1}^{2}(Q, \tau)\right] d s_{Q} d \tau .
\end{gather*}
$$

With proceeding limit transition for $n \rightarrow \infty$, we get that integral from left side of (34) is equal zero, as

$$
\left|R_{n}(Q, \tau)\right| \leq N A(Q, \tau) \sum_{m=n+1}^{\infty} \frac{A^{m}}{\sqrt{m!}}
$$

Therefore, limit function $U(Q, \tau)$ satisfy integral equation (16).
Let's show that obtained solution $U(Q, \tau)=u(Q, \tau)$ is unique. Indeed for difference of two solutions $U(Q, \tau)=u^{*}(Q, \tau)$ we have

$$
\left[u(Q, \tau)-u^{*}(Q, \tau)\right]^{2}=\left\{\kappa \int_{0 S_{2}}^{\tau} \int^{\tau} G(P, Q ; t-\tau)\left[u^{* 4}(P, t)-u^{4}(P, t)\right] d s_{P} d t\right\}^{2} \leq
$$

$$
\begin{aligned}
& \leq \int_{0}^{\tau} \int_{S_{2}} R^{2}(P, Q ; t, \tau) d s_{P} d t \int_{0}^{\tau} \int_{S_{2}}\left[u(P, t)-u^{*}(P, t)\right]^{2} d s_{P} d t \leq \\
& \leq A^{2}(Q, \tau) \int_{0}^{\tau} \int_{S_{2}}\left[u(P, t)-u^{*}(P, t)\right]^{2} d s_{P} d t=k^{2} A^{2}(Q, \tau)
\end{aligned}
$$

Let's fulfill sequential substitutions in last inequality and account (29). We get

$$
\int_{0}^{\tau} \int_{S_{2}}\left[u(P, t)-u^{*}(P, t)\right]^{2} d s_{P} d t \leq \frac{k^{2}}{n!} \int_{0}^{\tau} \int_{S_{2}} A^{2}(P, t) d s_{P} d t \leq \frac{\left(k A^{n}\right)^{2}}{n!}
$$

Hence for $n \rightarrow \infty$ we get $u^{*}(Q, \tau)=u(Q, \tau)$, that accomplish the proof of Theorem 2 .

References

1. Threcomi F. Integral equations. - Moscow: Inostr. Liter., 1960. - 299p.
2. Berezovsky A.A. Nonlinear boundary problems of heat radiating body. - Kiev: Naukova Dumka, 1968. - 166p.

Institute of Mathematics,
Ukrainian National Academy of Sciences,
Tereshchenkivska, 3, Kyiv, 252602 Ukraine.

