THE CHARACTERISTIC SYSTEM FOR THE EULER - POISSON'S EQUATIONS

(c) A.V.Belyaev

Abstract

In this paper we investigate the nonlinear system naturally connected with the Euler - Poisson's equations. The solutions of this system may be used for description of the singular points to the Euler - Poisson's equations.

The properties of the solutions of the Euler - Poisson's equations ([1], [2]) depend on the singular points of these solutions. For example, the classical case of the S.Kovalevskaya ([3]) was found on the way of investigation of the single-valued solutions. On another hand it is proved $([4],[5])$ that the branching of the solutions implies the absence of single-valued first integrals.

We hope that complete information about the singular points will permit to get new results in the solid body problems. In this paper we present in detail the first part of the method to reseach the singular points $([6],[7])$. It is solving of the characteristic system naturally appearing from the Euler - Poisson's equations. We emphasize that the conditions of the Euler, Lagrange, Kovalevskaya and Grioli cases appear in this stage of the method and without the investigation of the differential equations.

Let's write the Euler - Poisson's equations in the following form:

$$
\left\{\begin{array}{c}
A \dot{p}=A p \times p+\gamma \times r \tag{1}\\
\dot{\gamma}=\gamma \times p,
\end{array}\right.
$$

here $p=\left(p_{1}, p_{2}, p_{3}\right) \in \mathbf{C}^{3}, \gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right) \in \mathbf{C}^{3}, A p=\left(A_{1} p_{1}, A_{2} p_{2}, A_{3} p_{3}\right), A_{i}>0$, $r=\left(r_{1}, r_{2}, r_{3}\right) \in \mathbf{R}^{3}$.

We use the notation $z(t)=(p(t), \gamma(t))$ too.
Define C-scalar production in $\mathbf{C}^{3}:\langle x, y\rangle=\sum_{i=1}^{3} x_{i} y_{i}$.
Notate $\|z(t)\|=\langle p, \bar{p}\rangle^{1 / 2}+\langle\gamma, \bar{\gamma}\rangle^{1 / 4}$.
We use the circle replacement of indices $\sigma=(1,2,3)$ for writing the sumes or products (for example, $\sum_{\sigma} A_{1} A_{2}=A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{1}, \Pi_{\sigma} A_{1}=A_{1} A_{2} A_{3}$),) and expressions which differ one from another only by the circle replacement of indices ($\dot{\gamma}=\gamma \times p$, can be writed $\left.\dot{\gamma}_{1}=p_{3} \gamma_{2}-p_{2} \gamma_{3}, \sigma\right)$.

Introduce the notations $B_{i j}=A_{i}-A_{j}, C_{i j}=2 A_{i}-A_{j}, D_{i j}=A_{i}+A_{j}$ too.
Let $t_{*} \in \mathbf{C}$ be a singular point of the solution $z(t)$ of the system (1) (i.e. t_{*} is a singular point of the coordinate functions of $z(t))$. Get rid of the branch in t_{*}, if any, by the representation $z(t)=\hat{z}\left(\ln \left(t-t_{*}\right)\right)$, where $\hat{z}(\tau)$ is single-valued function when Re $\tau \rightarrow-\infty$.

The system (1) is transformed into:

$$
\left\{\begin{array}{c}
A \dot{\hat{p}}=e^{\tau}(A \hat{p} \times \hat{p}+\hat{\gamma} \times r) \\
\dot{\hat{\gamma}}=e^{\gamma}(\hat{\gamma} \times \hat{p})
\end{array}\right.
$$

where the derivative is taken by τ.
In order to make the right part of the equation independent of τ we make replacement of variable again, setting $\tilde{p}(\tau)=e^{\tau} \hat{p}(\tau), \tilde{\gamma}(\tau)=e^{2 \tau} \hat{\tau}(\tau)$ and then we have:

$$
\left\{\begin{array}{c}
A \dot{\tilde{p}}=A \tilde{p} \times \tilde{p}+\tilde{\gamma} \times r+A \tilde{p} \tag{2}\\
\tilde{\gamma}=\tilde{\gamma} \times \tilde{p}+2 \tilde{\gamma}
\end{array}\right.
$$

In this case the dependence on between the solutions (1) and (2) is expressed by the corelations

$$
\begin{equation*}
p(t)=\frac{1}{t-t_{*}} \tilde{p}\left(\ln \left(t-t_{*}\right)\right), \quad \gamma(t)=\frac{1}{\left(t-t_{*}\right)^{2}} \tilde{\gamma}\left(\ln \left(t-t_{*}\right)\right) \tag{3}
\end{equation*}
$$

Assertion 1 The solution $p(t), \gamma(t)$ of the system (1) does not have the singularity in the point t_{*}, if and only if the corresponding solution (2) by (3) have the asymptotic behaviour $\widetilde{p}(\tau) \sim \widetilde{p}_{0} e^{\tau}, \tilde{\gamma}(\tau) \sim \tilde{\gamma}_{0} e^{2 \tau}$, when $\operatorname{Re} \tau \rightarrow-\infty$.

Proof. If $\|\tilde{z}(\tau)\|$ isn't separated from zero then we can neglect the quadratic part of (2) in the suitable moment, and the solution $\tilde{z}(\tau)$ turns out to be exponently decreasing: $\tilde{p} \sim p_{0} e^{\tau}, \tilde{\gamma} \sim \gamma_{0} e^{2 \tau}$ if $\operatorname{Re} \tau \rightarrow-\infty$. According to (3) we have $p \sim p_{0}, \gamma \sim \gamma_{0}, t \rightarrow t_{*}$, consequently $(p(t), \gamma(t))$ does not have the singularity in the point t_{*}.

If $\|\tilde{z}(\tau)\|$ is separated from zero when $\operatorname{Re} \tau \rightarrow-\infty$ then according (3) $\|z(t)\| \rightarrow$ $\infty, t \rightarrow t_{*}$

The solution $\tilde{z}(\tau)$ which does not have the asymtotic behaviour $\left(\tilde{p}_{0} e^{\tau}, \tilde{\gamma}_{0} e^{2 \tau}\right)$, Re $\tau \rightarrow-\infty$, are first, the constant solutions and, second, have trajectories entering singular points.

This fact is fundamental: we can completely investigate the singular points of the differential equation but at the same time we cannot say that all singular points of the solution of (1) can be obtained in such a way.

Definition 1 We call the system (the solution of which are singular points of (2))

$$
\left\{\begin{array}{c}
A \tilde{p}^{0} \times \tilde{p}^{0}+\tilde{\gamma}^{0} \times r+A \tilde{p}^{0}=0 \tag{4}\\
\tilde{\gamma}^{0} \times \tilde{p}^{0}+2 \tilde{\gamma}^{0}=0
\end{array}\right.
$$

characteristic (for Euler - Poisson's equations).
Now for convenience we write (p, γ) instead of $\left(\widetilde{p}^{0}, \tilde{\gamma}^{0}\right)$ in this paragraph.

Assertion 2 If all A_{i} are different, $r_{1} r_{2} r_{3} \neq 0$, then characteristic system is equivalent to two systems

$$
\begin{gather*}
\left\{\begin{array}{c}
A p \times p+A p=0 \\
\gamma=0
\end{array}\right. \tag{5}\\
\left\{\begin{array}{c}
\langle A p, A p\rangle=-\langle A p, r\rangle^{2}\langle p, r\rangle^{-2} \\
\langle A p, p\rangle=-2\langle A p, r\rangle\langle p, r\rangle^{-1} \\
\langle p, p\rangle=-4 \\
\gamma=-(A p \times p)\langle p, r\rangle^{-1}, p \times \gamma \neq-2 \gamma .
\end{array}\right. \tag{6}
\end{gather*}
$$

Proof. Necessity. Let's obtain the following relations from (4):

$$
\begin{gathered}
0=\langle\gamma \times p, \gamma\rangle+2\langle\gamma, \gamma\rangle=2\langle\gamma, \gamma\rangle, \\
0=\langle\gamma \times p, p\rangle+2\langle\gamma, p\rangle=2\langle\gamma, p\rangle \\
0=\langle A p \times p, \gamma\rangle+\langle\gamma \times r, \gamma\rangle+\langle A p, \gamma\rangle=\langle p \times \gamma, A p\rangle+\langle A p, \gamma\rangle=3\langle A p, \gamma\rangle,
\end{gathered}
$$

then we see that vectors $A p, p, \gamma$ are linearly dependent.
If p and $A p$ are proportional then two from three coordinates of p (or $A p$) are equal to zero. In this case we should have $\gamma \times r+A p=0 \Rightarrow\langle A p, r\rangle=0$, but it is impossible because all coordinates of r are not equal to zero by condition. So, $\gamma=\nu_{1} A p+\nu_{2} p$; multiply this equivalence by $A p$ and p.

$$
\left\{\begin{array}{c}
\nu_{1}\langle A p, A p\rangle+\nu_{2}\langle A p, p\rangle=0 \\
\nu_{1}\langle A p, p\rangle+\nu_{2}\langle p, p\rangle=0
\end{array}\right.
$$

Now we have $\nu_{1}=\nu_{2}=0$ and the system (5) is true; or we have $\langle A p, A p\rangle\langle p, p\rangle=$ $\langle A p, p\rangle^{2}$, where $\langle p, p\rangle=-4,(0, \pm \sqrt{-\langle p, p\rangle}$ is eigenvalue of the eigenvector γ of the linear transformation $\xi \rightarrow p \times \xi$)

On the one hand we have $\langle\gamma, p\rangle=\langle\gamma, A p\rangle=0$, therefore $\gamma=\nu A p \times p$. On the other hand we have $p \times \gamma=2 \gamma$ and $\gamma=\nu_{1} A p+\nu_{2} p$, thus, $\nu=-\frac{\nu_{1}}{2}$ and $A p \times p=-2 A p-\frac{\nu_{2}}{\nu_{1}} p$ ($\nu_{1} \neq 0$, because in other case $\gamma=0$).

Substitute $A p \times p$ in (4) by this presentation expression and multiply by $\nu_{1} r$. We obtain the relation

$$
-\nu_{1}\langle A p, r\rangle-2 \nu_{2}\langle p, r\rangle=0
$$

Add to the obtained equation

$$
\nu_{1}\langle A p, p\rangle+\nu_{2}\langle p, p\rangle=0,
$$

then we get

$$
-2\langle A p, r\rangle=\langle p, r\rangle\langle A p, p\rangle .
$$

At last multiply the first equation of characteristic system by p having γ as linear combination of $A p p$. It will give

$$
\nu_{1}\langle p \times A p, r\rangle+\langle A p, p\rangle=0
$$

or by substitution $p \times A p$ from (4) we have

$$
\nu_{1}\langle A p, r\rangle+\langle A p, p\rangle=0
$$

Now it is evident that $\nu_{1}=2\langle p, r\rangle^{-1}$, and $\gamma=-(A p \times p)\langle p, r\rangle^{-1}$. Note that $\langle p, r\rangle \neq$ 0 because in other case $\langle A p, r\rangle=0$, and then $r \times \gamma=0$ and $\langle\gamma, \gamma\rangle \neq 0$ that is the contradiction to the condition.

Sufficiency. If p, γ is the solution of the system (5) then p, γ is the solution of (4) too.
Now let p, γ be the solution of the system (6). Then vector $\xi_{0}=\langle p, p\rangle A p-\langle A p, p\rangle p$ is normal to p and $A p$ which are not proportional (because of $\gamma=-(A p \times p)\langle p, r\rangle^{-1} \neq 0$). The vectors $\xi_{0}, p \times \xi_{0}$ are proportional to γ and, therefore, ξ_{0}, γ are eigenvectors of the linear transformation $\xi_{0} \rightarrow p \times \xi_{0}$, namely, $p \times \xi_{0}=2 \xi_{0}, p \times \gamma=2 \gamma$. Using the expression for ξ_{0} in the last equation we have

$$
\begin{gathered}
A p \times p=-2 p-\frac{1}{2}\langle A p, p\rangle p \Rightarrow \\
\langle A p \times p+\gamma \times r+A p, r\rangle=-\langle A p, r\rangle-\frac{1}{2}\langle A p, p\rangle\langle p, r\rangle=0 .
\end{gathered}
$$

It is evident that $\langle A p \times p+\gamma \times r+A p, \gamma\rangle=0$.
We want to prove that $\langle A p \times p+\gamma \times r+A p, p\rangle=0$. This equality is equivalent to

$$
\begin{gathered}
\langle\gamma \times r, p\rangle+\langle A p, p\rangle=0 \\
2\langle\gamma, r\rangle+\langle A p, p\rangle=0
\end{gathered}
$$

but $\gamma=-(A p \times p)\langle p, r\rangle^{-1}$, therefore,

$$
-2\langle A p \times p, r\rangle+\langle A p, p\rangle\langle p, r\rangle=-2\langle A p \times p, r\rangle-2\langle A p, r\rangle=0
$$

So if the vectors r, γ, p are linear independent then the assertion is proved.
Let $\langle p \times \gamma, r\rangle=2\langle\gamma, r\rangle=0$; then this condition is equivalent to $\langle A p \times p, r\rangle=0$ or $\langle A p, r\rangle=0$.

In this case $\langle A p, A p\rangle=\langle A p, p\rangle=0$, consequently $A p \times \gamma=0 \Rightarrow A p \times p=-2 A p$. The vector r equals to linear combination of p and $A p$. Let $r=\mu_{1} A p+\mu_{2} p$, $\mu_{2} \neq 0$. Then

$$
\begin{gathered}
A p \times p+\gamma \times r+A p=0 \Leftarrow \gamma \times r=A p \Leftarrow 2\langle p, r\rangle^{-1} A p \times\left(\mu_{1} A p+\mu_{2} p\right)=A p \Leftarrow \\
\frac{2 \mu_{2} A p \times p}{\mu_{2}\langle p, p\rangle}=A p
\end{gathered}
$$

So the assertion is proved.
Assertion 3 The solution of the system (5) is as follows:
) $p=0$;
) (if all A_{i} are different)

$$
p_{1}=\sqrt{\frac{A_{2} A_{3}}{B_{12} B_{31}}}, \sigma,
$$

here if $\left(p_{1}, p_{2}, p_{3}\right)$ is solution of (5) then other solutions are

$$
\left(-p_{1},-p_{2}, p_{3}\right),\left(-p_{1}, p_{2},-p_{3}\right),\left(p_{1},-p_{2},-p_{3}\right) .
$$

Proof. The solution $z=0$ is evident. The other solutions we find by transformation the system $\langle A p, p\rangle=\langle A p, A p\rangle=0$ to a non-homogeneous one.

Assertion 4 The solution of the system (6) (all A_{i} are different, $r_{1} r_{2} r_{3} \neq 0$) may be found if the solution of the equation

$$
\begin{equation*}
\sum_{\sigma} r_{1}\left(A_{1}-\alpha\right) \sqrt{\left(2 A_{2}-\alpha\right)\left(2 A_{3}-\alpha\right) B_{23}}=0 \tag{7}
\end{equation*}
$$

or the equation of the 8th power

$$
\begin{gather*}
\sum_{\sigma}\left[r_{1}^{4} B_{23}^{2}\left(A_{1}-\alpha\right)^{4}\left(2 A_{2}-\alpha\right)^{2}\left(2 A_{3}-\alpha\right)^{2}-\right. \\
\left.2 r_{2}^{2} r_{3}^{2} B_{12} B_{31}\left(A_{2}-\alpha\right)^{2}\left(A_{3}-\alpha\right)^{2}\left(2 A_{1}-\alpha\right) \prod_{\sigma}\left(2 A_{1}-\alpha\right)\right]=0 . \tag{8}
\end{gather*}
$$

is known.
Proof. Let $\alpha=\langle A p, r\rangle\langle p, r\rangle^{-1}$. Then the system (6) has the form

$$
\left\{\begin{array}{r}
\langle A p, A p\rangle=-\alpha^{2} \\
\langle A p, p\rangle=-2 \alpha \\
\langle p, p\rangle=-4
\end{array}\right.
$$

This system is linear as to p_{i}^{2}. Its solution is

$$
\begin{equation*}
p_{1}^{2}=\frac{\left(2 A_{2}-\alpha\right)\left(2 A_{3}-\alpha\right)}{B_{12} B_{31}}, \sigma \tag{9}
\end{equation*}
$$

Let's recall what is α. We obtain the equation

$$
\sum_{\sigma} A_{1} r_{1} \sqrt{\frac{\left(2 A_{2}-\alpha\right)\left(2 A_{3}-\alpha\right)}{B_{12} B_{31}}}=\alpha \sum_{\sigma} r_{1} \sqrt{\frac{\left(2 A_{2}-\alpha\right)\left(2 A_{3}-\alpha\right)}{B_{12} B_{31}}},
$$

which equals to (7).
To receive the polynomial by α we use the identity

$$
\left(\sum_{\sigma} a_{1}\right) \prod_{\sigma}\left(a_{1}-a_{2}-a_{3}\right)=\sum_{\sigma}\left(a_{1}^{4}-2 a_{2}^{2} a_{3}^{2}\right) .
$$

Now we propose another method for solving the characteristic system which gives a number of impotant relations.

Assertion 5 The solutions z of the characteristic system satisfy the following relations

$$
\left\{\begin{array}{r}
\mathcal{H}=\frac{1}{2}\langle A p, p\rangle+\langle\gamma, r\rangle=0 \\
\mathcal{M}=\langle A p, \gamma\rangle=0 \\
\mathcal{T}=\langle\gamma, \gamma\rangle=0 \\
\mathcal{D}=\langle p, \gamma\rangle=0 \\
\mathcal{E}=\sum_{\sigma}\left[r_{1} B_{23} \gamma_{2} \gamma_{3}\left(C_{21} B_{31} \gamma_{3}^{2}-C_{31} B_{12} \gamma_{2}^{2}\right)\right]=0
\end{array}\right.
$$

the last relation takes place if is not true

$$
\mathcal{E}_{0}=\langle A \gamma, \gamma\rangle=0 .
$$

Proof. The relations $\mathcal{T}=0, \mathcal{M}=0, \mathcal{D}=0$ were obtained in the proof of the assertion 2 .

$$
0=\langle A p \times p+\gamma \times r+A p, p\rangle=2 \mathcal{H} .
$$

Lets prove the last relation. Note that

$$
\begin{equation*}
p=\frac{2 A \gamma \times \gamma}{\langle A \gamma, \gamma\rangle}, \quad \text { if }\langle A \gamma, \gamma\rangle \neq 0 \tag{10}
\end{equation*}
$$

Indeed, it is clear that $p=\lambda A \gamma \times \gamma$ because $A \gamma$ and γ are not proportional and $\langle p, \gamma\rangle=\langle p, A \gamma\rangle=0$. Moreover, $-4=\langle p, p\rangle=\lambda\langle p, A \gamma \times \gamma\rangle=-2 \lambda\langle A \gamma, \gamma\rangle$.

Substitute p in (4)

$$
\frac{4 \gamma_{1} \prod_{\sigma}\left(B_{12} \gamma_{3}\right)}{\langle A \gamma, \gamma\rangle^{2}}+r_{3} \gamma_{2}-r_{2} \gamma_{3}+\frac{2 A_{1} B_{23} \gamma_{2} \gamma_{3}}{\langle A \gamma, \gamma\rangle}=0, \sigma .
$$

Then by multiplying these equations by r_{1}, σ and adding them we obtain the relation which is equivalent the relation $\mathcal{E}=0$.

$$
\begin{equation*}
4 \prod_{\sigma}\left(B_{12} \gamma_{3}\right) \sum_{\sigma}\left(\gamma_{1} r_{1}\right)+2 \sum_{\sigma}\left(A_{1} B_{23} r_{1} \gamma_{2} \gamma_{3}\right) \sum_{\sigma}\left(A_{1} \gamma_{1}^{2}\right)=0 . \tag{11}
\end{equation*}
$$

Then we obtain

$$
\begin{gathered}
\sum_{\sigma}\left[2 B_{12} B_{23} B_{31} \gamma_{2} \gamma_{3}\left(-\gamma_{2}^{2}-\gamma_{3}^{2}\right)+A_{1} B_{23} \gamma_{2} \gamma_{3}\left(-B_{12} \gamma_{2}^{2}+B_{31} \gamma_{3}^{2}\right)\right] r_{1}=0 \\
\sum_{\sigma} r_{1} B_{23} \gamma_{2} \gamma_{3}\left[\left(A_{1} B_{31}-2 B_{12} B_{31}\right) \gamma_{3}^{2}-\left(A_{1} B_{12}+2 B_{12} B_{31}\right) \gamma_{2}^{2}\right]=0 \\
\sum_{\sigma} r_{1} B_{23} \gamma_{2} \gamma_{3}\left(C_{21} B_{31} \gamma_{3}^{2}-C_{31} B_{12} \gamma_{2}^{2}\right)=0
\end{gathered}
$$

So, we have the following method for solving the characteristic system: at first to find the vector $\lambda \gamma,(\lambda \in \mathbf{C})$, as the solution of the system

$$
\left\{\begin{array}{r}
\sum_{\sigma} \gamma_{1}^{2}=0 \tag{12}\\
\sum_{\sigma} r_{1} B_{23} \gamma_{2} \gamma_{3}\left(C_{21} B_{31} \gamma_{3}^{2}-C_{31} B_{12} \gamma_{2}^{2}\right)=0
\end{array}\right.
$$

then to find p,

$$
p=\frac{2 A \gamma \times \gamma}{\langle A \gamma, \gamma\rangle}
$$

and, finally, to find γ, using any non-homogeneous relation of the characteristic system.
Remark 1 By condition $r_{3}=0$ the characteristic system (4) has symmetry

$$
\begin{equation*}
S_{3}:\left(p_{1}, p_{2}, p_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right) \longleftrightarrow\left(-p_{1},-p_{2}, p_{3}, \gamma_{1}, \gamma_{2},-\gamma_{3}\right) . \tag{13}
\end{equation*}
$$

Theorem 1 The characteristic system (4) has following solutions
0) $(p, \gamma)=0$;

1) by condition $\prod_{\sigma} B_{12} \neq 0$

$$
\gamma_{1}=0, p_{1}=\sqrt{\frac{A_{2} A_{3}}{B_{12} B_{31}}}, \sigma
$$

here, if $\left(p_{1}, p_{2}, p_{3}\right)$ is the solution of (5) then the other solutions are

$$
\left(-p_{1},-p_{2}, p_{3}\right),\left(-p_{1}, p_{2},-p_{3}\right),\left(p_{1},-p_{2},-p_{3}\right),
$$

moreover,
a) by condition $\prod_{\sigma} r_{1} \neq 0$, there are 8 solutions (taking into account the multiplisity of the roots) which can be obtained (see (6), (8), (9)) if we know the roots of the polinomial (8);
b) by condition $r_{3}=0, r_{1} r_{2} \neq 0$, there are 2 solutions lying on the axes of symmetry S_{3} (see (13))

$$
\begin{equation*}
p_{1}=p_{2}=\gamma_{3}=0, p_{3}= \pm 2 i, \gamma_{1}=\frac{2 A_{3}}{r_{1} \pm i r_{2}}, \gamma_{2}= \pm \frac{2 A_{3} i}{r_{1} \pm i r_{2}} \tag{14}
\end{equation*}
$$

b_{1}) on condition $r_{1}^{2} B_{23}=r_{2}^{2} B_{31}$ (Grioli's case), there is a pair os the $S_{3}-$ symmetric solutions

$$
\begin{gathered}
p_{1}=\frac{\mp 2 A_{2} i}{D_{12} B_{12}} \sqrt{A_{1}^{2} \frac{B_{23}}{B_{31}}+A_{2}^{2}}, p_{2}=\frac{\mp 2 A_{1} i}{D_{12} B_{12}} \sqrt{A_{1}^{2}+A_{2}^{2} \frac{B_{31}}{B_{23}}}, p_{3}=\frac{2 A_{1} A_{2}}{D_{12} \sqrt{B_{23} B_{31}}}, \\
\gamma_{1}=\frac{2 A_{1}^{2} A_{2}}{D_{12}^{2} r_{1}}, \gamma_{2}=\frac{2 A_{1} A_{2}^{2}}{D_{12}^{2} r_{2}}, \gamma_{3}=\frac{ \pm 2 A_{1} A_{2} i}{D_{12}^{2} r_{1}} \sqrt{A_{1}+A_{2}^{2} \frac{B_{31}}{B_{23}}}
\end{gathered}
$$

b_{2}) by condition $r_{1}^{2} B_{23} \neq r_{2}^{2} B_{31}$ there are 3 pairs S_{3} - symmetric solutions which can be obtained as follows: we find the roots $\frac{\gamma_{1}}{\gamma_{2}}$ of the polinomial of the 3rd power

$$
r_{2} B_{31} \frac{\gamma_{1}}{\gamma_{2}}\left(A_{2} B_{31} \frac{\gamma_{1}^{2}}{\gamma_{2}^{2}}-C_{12} B_{23}\right)+r_{1} B_{23}\left(C_{21} B_{31} \frac{\gamma_{1}^{2}}{\gamma_{2}^{2}}-A_{1} B_{23}\right)=0,
$$

and then we use the relations

$$
\frac{\gamma_{2}}{\gamma_{3}}=\sqrt{1-\frac{\gamma_{1}^{2}}{\gamma_{2}^{2}}}, p=\frac{2 A \gamma \times \gamma}{\langle A \gamma, \gamma\rangle}, \gamma=\frac{-A p \times p}{\langle p, r\rangle} ;
$$

c) by condition $r_{2}=r_{3}=0, r_{1} \neq 0$ there are 4 solutions lying on the axises of S_{2}, S_{3} - symmetries (see (13))

$$
\begin{align*}
& p_{1}=p_{2}=\gamma_{3}=0, p_{3}= \pm 2 i, \gamma_{1}=\frac{2 A_{3}}{r_{1}}, \gamma_{2}= \pm \frac{2 A_{3} i}{r_{1}} \tag{15}\\
& p_{1}=p_{3}=\gamma_{2}=0, p_{2}= \pm 2 i, \gamma_{1}=\frac{2 A_{2}}{r_{1}}, \gamma_{3}=\mp \frac{2 A_{2} i}{r_{1}} \tag{16}
\end{align*}
$$

and the $4 S_{2}, S_{3}$-symmetric solutions

$$
\begin{gathered}
p_{1}=\frac{\sqrt{C_{21} B_{31}} \sqrt{C_{31} B_{12}}}{B_{12} B_{31}}, p_{2}=\frac{\sqrt{A_{1} B_{23}} \sqrt{C_{31} B_{12}}}{B_{12} B_{23}}, p_{3}=\frac{\sqrt{C_{21} B_{31}} \sqrt{A_{1} B_{23}}}{B_{23} B_{31}}, \\
\gamma_{1}=\frac{A_{1}}{r_{1}}, \gamma_{2}=\frac{A_{1} \sqrt{C_{21} B_{31}}}{r_{1} \sqrt{A_{1} B_{23}}}, \gamma_{3}=\frac{A_{1} \sqrt{C_{31} B_{12}}}{r_{1} \sqrt{A_{1} B_{23}}}
\end{gathered}
$$

here the signs $\sqrt{C_{21} B_{31}}, \sqrt{C_{31} B_{12}}, \sqrt{A_{1} B_{23}}$ are taken freely but equally in all the formulas;
d) by condition $r=0$ (Euler's case), other solutions are absent;
2) by condition $A_{1}=A_{2}, r_{2}=0$,
a) by condition $r_{1} \neq 0$

$$
p_{1}=p_{3}=\gamma_{2}=0, p_{2}= \pm 2 i, \gamma_{1}=\frac{ \pm 2 A_{1} i}{r_{3} \pm i r_{1}}, \gamma_{3}=\frac{ \pm 2 A_{1}}{r_{3} \pm i r_{1}}
$$

a_{1}) by condition $C_{31} \neq 0$

$$
\begin{equation*}
p_{1}=\mp \frac{2 A_{3} r_{3} i}{C_{31} r_{1}}, p_{2}=\frac{2 A_{3} r_{3}}{C_{31} r_{1}}, p_{3}= \pm 2 i, \gamma_{1}=\frac{2 A_{3}}{r_{1}}, \gamma_{2}= \pm \frac{2 A_{3} i}{r_{1}}, \gamma_{3}=0 ; \tag{17}
\end{equation*}
$$

a_{2}) by condition $C_{31}=0$
$\left.a_{2.1}\right)$ by condition $r_{3} \neq 0$, other solutions are absent;
$a_{2.2}$) by condition $r_{3}=0$ (Kovalevskaya's case), an one-parameter set of the
points

$$
\begin{equation*}
\gamma_{1}=\frac{A_{1}}{r_{1}}, \gamma_{2}= \pm \frac{A_{1} i}{r_{1}}, \gamma_{3}=0, p_{3}= \pm 2 i, p_{2}= \pm p_{1} i \tag{18}
\end{equation*}
$$

b) by condition $r_{1}=0, r_{3} \neq 0$ (Lagrange's case), an one-parameter set of the points

$$
\gamma_{3}=\frac{2 A_{1}}{r_{3}}, p_{3}=0, p_{2}=\frac{\gamma_{1} r_{3}}{A_{1}}, p_{1}=-\frac{\gamma_{2} r_{3}}{A_{1}}, \gamma_{1}^{2}+\gamma_{2}^{2}=-4 \frac{A_{1}^{2}}{r_{3}^{2}}
$$

c) by condition $r=0$ (confluent Euler's case) any solutions are absent. (the above mentioned cases see in [1], [2]).

Proof. 1. Is respected to assertion 3.

1. The coefficient at α^{8} in (8) equals

$$
\sum_{\sigma}\left(r_{1}^{4} B_{23}^{2}-2 r_{2}^{2} r_{3}^{2} B_{12} B_{31}\right)=\left(\sum_{\sigma} r_{1} \sqrt{B}_{23}\right) \prod_{\sigma}\left(r_{1} \sqrt{B}_{23}-r_{2} \sqrt{B}_{31}-r_{3} \sqrt{B_{12}}\right) .
$$

This coefficient isn't equal to zero because all A_{i} are different and $r_{1} r_{2} r_{3} \neq 0$. Hence there exist exactly 8 roots of the equation (8). Suppose that these roots are different. Every root α_{0} corresponds to 4 pairs $(p,-p)$ of the representation (9). But only one pair satisfies the condition $\alpha_{0}\langle p, r\rangle=\langle A p, r\rangle$.

In fact, if $p_{i}=0$ for some i, then by (9) $p_{j}=0$ for some another j and then $A p, p$ are proportional. According to proof of assertion 2 it is impossible if $r_{1} r_{2} r_{3} \neq 0$. So all p_{i} are not equal to zero.

The left part of (8) we can represent in the form (preliminary fixing the branches for the expressions $\left.\sqrt{\left(2 A_{1}-\alpha\right)\left(2 A_{2}-\alpha\right) B_{12}}, \sigma\right)$

$$
\begin{align*}
& \mathcal{P}_{8}(\alpha)=\left(\sum _ { \sigma } r _ { 1 } (A _ { 1 } - \alpha) \sqrt { (2 A _ { 2 } - \alpha) (2 A _ { 3 } - \alpha) B _ { 2 3 } } \prod _ { \sigma } \left[r_{1}\left(A_{1}-\alpha\right) \sqrt{\left(2 A_{2}-\alpha\right)\left(2 A_{3}-\alpha\right) B_{23}}\right.\right. \\
& \left.\quad-r_{2}\left(A_{2}-\alpha\right) \sqrt{\left(2 A_{3}-\alpha\right)\left(2 A_{1}-\alpha\right) B_{31}}-r_{3}\left(A_{3}-\alpha\right) \sqrt{\left(2 A_{1}-\alpha\right)\left(2 A_{2}-\alpha\right) B_{12}}\right] \tag{19}
\end{align*}
$$

Since $p_{i} \neq 0$ then $\mathcal{P}_{8}(\alpha)_{\alpha=\alpha_{0}}^{\prime} \neq 0$ if and only if only one factor of (19) equals to zero, when $\alpha=\alpha_{0}$. But we supposed that all roots of (8) are different, hence only one pair $(-p, p)$ satisfies the condition $\alpha_{0}\langle p, r\rangle=\langle A p, r\rangle$.

The condition $p \times \gamma=2 \gamma$ determines the only one possible p. So there exists one to one correspondence between roots of the polynomial $\mathcal{P}_{8}(\alpha)$ and roots of the characteristic systems.

Suppose now that the polynomial $\mathcal{P}_{8}(\alpha)$ has the multiple root. Remined the definition of the multiplicity of the root α_{0} : it is number of the roots α_{0}^{\prime} of the polynomial $\mathcal{P}_{8}(\alpha)+\epsilon$ $(\epsilon \approx 0)$ near the α_{0}. Thus it is sufficiently to prove the correspondence between roots of (6) and (8) in generel case but it is already done.
1.b. Lemma. Let $\prod_{\sigma} B_{12} \neq 0$. Then all solutions $(p, \gamma), \gamma \neq 0$ of the characteristic system have following form:

$$
p=\frac{2 A \gamma^{\prime} \times \gamma^{\prime}}{\left\langle A \gamma^{\prime}, \gamma^{\prime}\right\rangle}, \gamma=\lambda \gamma^{\prime},
$$

where γ^{\prime} - is a root of the system (12) such that $\left\langle A \gamma^{\prime}, \gamma^{\prime}\right\rangle \neq 0, \lambda$ - is some constant.
Proof of lemma. Let (p, γ) be a solution of the characteristic system. We want to prove that $\langle A \gamma, \gamma\rangle \neq 0$,

Indeed, if $\langle\gamma, \gamma\rangle=0$, then $A \gamma \times \gamma \neq 0$. But in this case p is proportional to γ because $\langle\gamma, \gamma\rangle=\langle A \gamma, \gamma\rangle=0=\langle\gamma, p\rangle=\langle A \gamma, p\rangle$, consequently, $2 \gamma=p \times \gamma=0$. We have contradiction with the condition $\gamma \neq 0$, hence $\langle A \gamma, \gamma\rangle \neq 0$.

So, if (p, γ) is a root of the characteristic system, $\gamma \neq 0$ then (γ, p) satisfy (12) and (10).

Let now that γ^{\prime} be a solution of (12) and $\left\langle A \gamma^{\prime}, \gamma^{\prime}\right\rangle \neq 0$. We take

$$
p=\frac{2 A \gamma^{\prime} \times \gamma^{\prime}}{\left\langle A \gamma^{\prime}, \gamma^{\prime}\right\rangle} .
$$

Second equation of the system (12) can be represented in the form

$$
\langle A p \times p, r\rangle+\langle A p, r\rangle=0
$$

or

$$
\left\langle A p \times p+\gamma^{\prime} \times r+A p, r\right\rangle=0
$$

We have too

$$
\left\langle A p \times p+\gamma^{\prime} \times r+A p, \gamma^{\prime}\right\rangle=0
$$

because $A p \times p$ is propotional γ^{\prime}. The vectors r, γ^{\prime} are non-proportional therefor

$$
A p \times p+\gamma^{\prime} \times r+A p=\mu \gamma^{\prime} \times r
$$

and taking $\lambda=1-\mu$, we get

$$
A p \times p+\lambda \gamma^{\prime} \times r+A p=0
$$

Second equation of the characteristic system is satisfied by $\left(p, \lambda \gamma^{\prime}\right)$:

$$
\begin{gathered}
p \times \lambda \gamma^{\prime}=\frac{2 A \gamma^{\prime} \times \gamma^{\prime}}{\left\langle A \gamma^{\prime}, \gamma^{\prime}\right\rangle} \times \lambda \gamma^{\prime}= \\
\frac{\lambda}{\left\langle A \gamma^{\prime}, \gamma^{\prime}\right\rangle}\left[\left\langle 2 A \gamma^{\prime}, \gamma^{\prime}\right\rangle \gamma^{\prime}-2\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle A \gamma^{\prime}\right]=2 \lambda \gamma^{\prime} .
\end{gathered}
$$

The lemma is proved.
So let $\prod_{\sigma} B_{12} \neq 0, r_{1} r_{2} \neq 0, r_{3}=0$. In this case (12) has the form (if we substitute $\left.\gamma_{3}^{2}=-\gamma_{1}^{2}-\gamma_{2}^{2}\right):$

$$
\left\{\begin{array}{c}
r_{1} B_{23} \gamma_{2} \gamma_{3}\left(C_{21} B_{31} \gamma_{1}^{2}-A_{1} B_{23} \gamma_{2}^{2}\right)-r_{2} B_{31} \gamma_{3} \gamma_{1}\left(C_{12} B_{23} \gamma_{2}^{2}-A_{2} B_{31} \gamma_{1}^{2}\right)=0 \tag{20}\\
\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}=0
\end{array}\right.
$$

We see the root $\gamma_{3}=0$, hence $\gamma=\lambda(1, \pm i, 0)$ and by (10) $p_{1}=p_{2}=0, p_{3}= \pm 2 i$.
Then we have $2 A_{3}=-\frac{1}{2}\langle A p, p\rangle=\langle\gamma, r\rangle=\lambda\left(r_{1} \pm i r_{2}\right)$, and

$$
\gamma_{1}=\frac{2 A_{3}}{r_{1} \pm i r_{2}}, \gamma_{2}=\frac{ \pm 2 A_{3} i}{r_{1} \pm i r_{2}}, \gamma_{3}=0
$$

Let now $\gamma_{3} \neq 0$.
$\left.1 \mathrm{~b}_{1}\right)\langle A \gamma, \gamma\rangle=0$ is realized for some root γ of system (12). Then $\langle\gamma, r\rangle=0$ (see (11)) and $r_{1}^{2} B_{23}=r_{2}^{2} B_{31}$.

In this case $\gamma_{1} r_{1}+\gamma_{2} r_{2}=\gamma_{1} r_{2} B_{31}+\gamma_{2} r_{1} B_{23}$. must devide first equation of system (20). As a result we get

$$
\begin{gathered}
r_{2} A_{2} B_{31}^{2} \gamma_{1}^{3}+r_{1} B_{23} B_{31} C_{21} \gamma_{1}^{2} \gamma_{2}-r_{2} B_{23} B_{31} C_{12} \gamma_{1} \gamma_{2}^{2}-r_{1} A_{1} B_{23}^{2} \gamma_{2}^{3}= \\
\left(B_{31} r_{2} \gamma_{1}+B_{23} r_{1} \gamma_{2}\right)^{2}\left(A_{2} r_{2} B_{31} \gamma_{1}-A_{1} r_{1} B_{23} \gamma_{2}\right) r_{2}^{-2} B_{31}^{-1} .
\end{gathered}
$$

So, according the lemma, by condition $\left\langle A \gamma^{\prime}, \gamma^{\prime}\right\rangle \neq 0$ the unique solution of (12) (within proportionality) is

$$
\begin{gathered}
\gamma^{\prime}=\left(A_{1} B_{23} r_{1}, A_{2} B_{31} r_{2}, \pm i r_{1} \sqrt{\left(A_{1}^{2} B_{23}+A_{2}^{2} B_{31}\right) B_{23}}\right), \\
p_{1}= \pm \frac{2 B_{23} A_{2} B_{31} r_{1} r_{2} i \sqrt{\left(A_{1}^{2} B_{23}+A_{2}^{2} B_{31}\right) B_{23}}}{B_{23} B_{31}\left(-A_{1}^{2} B_{23} r_{1}^{2}+A_{2}^{2} B_{31} r_{2}^{2}\right)}=\mp \frac{2 A_{2} i}{\left(A_{1}+A_{2}\right) B_{12}} \sqrt{A_{1}^{2} \frac{B_{23}}{B_{31}}+A_{2}^{2}}, \\
p_{2}= \pm \frac{2 B_{31} A_{1} B_{23} r_{1}^{2} i \sqrt{\left(A_{1}^{2} B_{23}+A_{2}^{2} B_{31}\right) B_{23}}}{B_{23} B_{31}\left(-A_{1}^{2} B_{23} r_{1}^{2}+A_{2}^{2} B_{31} r_{2}^{2}\right)}=\mp \frac{2 A_{1} i}{\left(A_{1}+A_{2}\right) B_{12}} \sqrt{A_{1}^{2}+A_{2}^{2} \frac{B_{31}}{B_{23}}}, \\
p_{3}=\frac{2 A_{1} A_{2} B_{12} B_{23} B_{31} r_{1} r_{2}}{B_{23} B_{31}\left(-A_{1}^{2} B_{23} r_{1}^{2}+A_{2}^{2} B_{31} r_{2}^{2}\right)}=\frac{2 A_{1} A_{2}}{\left(A_{1}+A_{2}\right) \sqrt{B_{23} B_{31}}} .
\end{gathered}
$$

By assertion 2 the solution of characteristic system satisfies (5) or (6) if $A p$ and p are non-proportional. Hence $\langle\gamma, r\rangle=-\frac{1}{2}\langle A p, p\rangle=\alpha$, where α is root of (7)

$$
\begin{gathered}
r_{1}\left(A_{1}-\alpha\right) \sqrt{\left(2 A_{2}-\alpha\right)\left(2 A_{3}-\alpha\right) B_{23}}=-r_{2}\left(A_{2}-\alpha\right) \sqrt{\left(2 A_{3}-\alpha\right)\left(2 A_{1}-\alpha\right) B_{31}} \Leftrightarrow \\
\stackrel{\alpha \neq 2 A_{3}}{\Longleftrightarrow} r_{1}^{2}\left(A_{1}-\alpha\right)^{2}\left(2 A_{2}-\alpha\right) B_{23}=r_{2}^{2}\left(A_{2}-\alpha\right)^{2}\left(2 A_{1}-\alpha\right) B_{31} \Leftrightarrow \\
\Leftrightarrow \alpha=\frac{2 A_{1} A_{2}}{A_{1}+A_{2}}
\end{gathered}
$$

The root $\alpha=2 A_{3}$ corresponds to the solution (14), consequently $\alpha=2 A_{1} A_{2}\left(A_{1}+\right.$ $\left.A_{2}\right)^{-1}$ corresponds to the solution which we consider now. Lt $\gamma=\lambda \gamma^{\prime}$.

$$
2 A_{1} A_{2}\left(A_{1}+A_{2}\right)^{-1}=\lambda\left\langle\gamma^{\prime}, r\right\rangle=\lambda\left(A_{1} B_{23} r_{1}^{2}+A_{2} B_{31} r_{2}^{2}\right) \Rightarrow \lambda=\frac{2 A_{1} A_{2}}{\left(A_{1}+A_{2}\right)^{2} r_{1}^{2} B_{23}}
$$

consequently,

$$
\gamma_{1}=\frac{2 A_{1}^{2} A_{2}}{\left(A_{1}+A_{2}\right)^{2} r_{1}}, \gamma_{2}=\frac{2 A_{1} A_{2}^{2}}{\left(A_{1}+A_{2}\right)^{2} r_{2}}, \gamma_{3}= \pm \frac{2 A_{1} A_{2}}{\left(A_{1}+A_{2}\right)^{2} r_{1}} \sqrt{A_{1}^{2}+A_{2}^{2} \frac{B_{31}}{B_{23}}},
$$

$1 b_{2}$. It follows from the lemma.

1c. Two solutions of (12) are evident:

$$
\begin{gathered}
\gamma_{3}=0 \Rightarrow \gamma=\lambda(1, \pm i, 0) \Rightarrow p_{1}=p_{2}=0, p_{3}= \pm 2 i \Rightarrow \lambda r_{1}=-\frac{1}{2}\langle A p, p\rangle=2 A_{3} \Rightarrow \\
\gamma_{1}=\frac{2 A_{3}}{r_{1}}, \gamma_{2}= \pm \frac{2 A_{3} i}{r_{1}}, \gamma_{3}=0 \\
\gamma_{2}=0 \Rightarrow \gamma=\lambda(1,0, \pm i) \Rightarrow p_{1}=p_{3}=0, p_{2}= \pm 2 i \Rightarrow \lambda r_{1}=-\frac{1}{2}\langle A p, p\rangle=2 A_{2} \Rightarrow \\
\gamma_{1}=\frac{2 A_{2}}{r_{1}}, \gamma_{3}= \pm \frac{2 A_{2} i}{r_{1}}, \gamma_{2}=0
\end{gathered}
$$

Moreover, $C_{21} B_{31} \gamma_{3}^{2}-C_{31} B_{12} \gamma_{2}^{2}=0($ see (12)) \Rightarrow

$$
\gamma=\lambda\left(\sqrt{A_{1} B_{23}}, \sqrt{C_{21} B_{31}}, \sqrt{C_{31} B_{12}}\right)
$$

; and we see that

$$
\begin{gathered}
\langle A \gamma, \gamma\rangle=\lambda^{2}\left(A_{1}^{2} B_{23}+A_{2} B_{23} C_{21}+A_{3} B_{12} C_{31}\right)=-2 \lambda^{2} \prod_{\sigma} B_{12} . \\
p_{1}=\frac{\sqrt{C_{21} B_{31}} \sqrt{C_{31} B_{12}}}{-B_{12} B_{31}}, p_{2}=\frac{\sqrt{A_{1} B_{23}} \sqrt{C_{31} B_{12}}}{-B_{12} B_{23}}, p_{3}=\frac{\sqrt{C_{21} B_{31}} \sqrt{A_{1} B_{23}}}{-B_{23} B_{31}}
\end{gathered}
$$

From equation (7) we get $\langle\gamma, r\rangle=\alpha=A_{1}$ (roots $\alpha=2 A_{2}, \alpha=2 A_{3}$ are correspond to solutions (15), (16) of the characteristic system).

So, $\lambda \sqrt{A_{1} B_{23}} r_{1}=A_{1}$, consequently,

$$
\gamma_{1}=\frac{A_{1}}{r_{1}}, \gamma_{2}=\frac{A_{1} \sqrt{C_{21} B_{31}}}{r_{1} \sqrt{A_{1} B_{23}}}, \gamma_{3}=\frac{A_{1} \sqrt{C_{31} B_{12}}}{r_{1} \sqrt{A_{1} B_{23}}}
$$

1d. It follows from asseertion 3.
2. If $A_{1}=A_{2}=A_{3}$ then we can choose $r_{1}=r_{2}=0$, and then we have confluent case of $\operatorname{Euler}\left(r_{3}=0\right)$ or special case of Lagrange $\left(r_{3} \neq 0\right)$, (see lower).

So, $A_{1}=A_{2} \neq A_{3}, r_{1} \neq 0, r_{3} \neq 0$ and wee can choose $r_{2}=0$.
Since $\langle A p, \gamma\rangle=\langle p, \gamma\rangle=0, A_{1}=A_{2} \neq A_{3}$, then $p_{3} \gamma_{3}=0$.
Let at first $p_{3}=0, \gamma_{3} \neq 0$, then $\langle A \gamma, \gamma\rangle \neq 0$ and from (12) we get $r_{1} B_{23} \gamma_{2} C_{21} B_{31}=$ $0 \Rightarrow \gamma_{2}=0$.

From the relation $p_{1} \gamma_{3}-p_{3} \gamma_{1}+2 \gamma_{1}=0$ we get $p_{1}=0$. Consequently, $(\langle p, p\rangle=-4) p_{2}=$ $\pm 2 i$.

From the characteristic system we get $\gamma_{1} / \gamma_{3}=p_{2} / p 2= \pm i$.
The solutions $\left(p, \lambda \gamma^{\prime}\right), \gamma^{\prime}=(\pm i, 0,1)$ which we have within λ satisfy the condition $\gamma \times p=2 \gamma$.

The condition $A p \times p+\gamma \times r+A p=0 \Leftrightarrow \gamma \times r+A p=0$ is true if $\lambda=2 A_{1}\left(r_{3} \pm i r_{1}\right)^{-1}$.
Now we see the case $\gamma_{3}=0 \Rightarrow \lambda(1, \pm i, 0)$. Since $p_{3} \gamma_{2}-p_{2} \gamma_{3}+2 \gamma_{1}=0$, then $p_{3}= \pm 2 i$; moreover from $p_{2} \gamma_{1}-p_{1} \gamma_{2}+2 \gamma_{3}=0$ we obtain $p_{1} / p_{2}=\gamma_{1} / \gamma_{2}=\mp i$.

The condition $p \times \gamma=2 \gamma$ is equivalent (in this case) to the condition $\gamma_{1}=\lambda, \gamma_{2}=$ $\pm \lambda i, \gamma_{3}=0, p_{1}=\mu, p_{2}= \pm \mu i, p_{3}= \pm 2 i$, and the condition $A p \times p+\gamma \times r+A p=0-$ is equivalent to

$$
\left\{\begin{array}{c}
-2 \mu B_{23} \pm \lambda i r_{3}+\mu A_{1}=0 \\
\pm 2 \mu i B_{31}-\lambda r_{3} \pm \mu A_{2} i=0 \\
\mp \lambda r_{1} i \pm 2 A_{3} i=0
\end{array} \Leftrightarrow\right.
$$

$\Leftrightarrow \lambda=2 A_{3} / r_{1}, \mu C_{31} \pm \lambda i r_{3}=0$.
$2 a_{1}$. We get the root (17).
$2 \mathrm{a}_{21}$. Because $C_{31}=0$ the other solutions are absent;
$2 \mathrm{a}_{22} . C_{31}=0, r_{3}=0$, hence μ is an arbitrary constant and we get (18).
2 b . The characteristic system in the case $r_{1}=r_{2}=0, r_{3} \neq 0$ has the form

$$
\left\{\begin{array}{c}
B_{23} p_{2} p_{3}+r_{3} \gamma_{2}+A_{1} p_{1}=0 \\
B_{31} p_{1} p_{3}-r_{3} \gamma_{1}+A_{2} p_{2}=0 \\
A_{3} p_{3}=0 \\
\gamma \times p+2 \gamma=0
\end{array}\right.
$$

or equivalent

$$
\left\{\begin{array}{c}
p_{1}=-A_{1}^{-1} \gamma_{2} r_{3}, p_{2}=-A_{1}^{-1} \gamma_{1} r_{3}, p_{3}=0 \\
-A_{1}^{-1} r_{3} \gamma_{1} \gamma_{3}=2 \gamma_{1}=0 \\
-A_{1}^{-1} r_{3} \gamma_{2} \gamma_{3}=2 \gamma_{2}=0 \\
A_{1}^{-1} r_{3} \gamma_{1}^{2}+A_{1}^{-1} r_{3} \gamma_{2}^{2}+2 \gamma_{3}=0
\end{array}\right.
$$

Then we obtain $\gamma_{1}=\gamma_{2}=0 \Leftrightarrow(p, \gamma)=0$, or

$$
\left\{\begin{array}{c}
\gamma_{3}=2 A_{1} r_{3}^{-1} \\
\gamma_{1}^{2}+\gamma_{2}^{2}=-4 A_{1}^{2} r_{3}^{-2}
\end{array}\right.
$$

2c. The characteristic system in the case $r=0$ has the form

$$
\left\{\begin{array}{c}
B_{23} p_{2} p_{3}+A_{1} p_{1}=0 \\
B_{31} p_{1} p_{3}+A_{2} p_{2}=0 \\
B_{12} p_{1} p_{2}+A_{3} p_{3}=0 \\
\gamma \times p+2 \gamma=0
\end{array}\right.
$$

Since $B_{12}=0$, then $p_{3}=0$, and $p_{1}=p_{2}=0,2 \gamma=-\gamma \times p=0$.
The theorem is proved.

References

[1] Yu.A.Arkhangel'skiĭ. "Analytic dynamics of solids", Nauka, Moscow, 1977.
[2] G.V.Gorr, L.V.Kudryashova, L.A.Stepanova. "The classical problems of the dynamics of solids". Naukova dumka, Kiev, 1978.
[3] S.V.Kovalevskaya. The scientific works.- M.: Akad. Nayk, 1948.
[4] V.V.Kozlov. The absence of the one-valued integrals and the branching of the solutions in the dynamics of solids// Prikl. Math. i Mech.- 1978.- T. 42, No 3.P. 400-406.
[5] S.L.Zigleen. The branching of the solutions and the absence of the first integrals in Hamiltonian mechanics// Funktsional. Anal i Prilogen.- 1983.- 17, No 1.- P. 8-23.
[6] A.V.Belyaev. The singular points of the solutions of Euler - Poisson's equations// Dokl. Akad. Nauk Ukr. SSR.- 1989.- T. 5.- P. 3-6.
[7] A.V.Belyaev. "On the classification of the singular points of the solutions to the Euler-Poisson's equations" // New Developments in Analysis series. Voronezh University Press, (1993), 3-22.
[8] A.V.Belyaev. On the motions of an n-dimentional rigid body with symmetry group $S o(k) \otimes S o(n-k)$ in a field with a linear potential. Invariants of the coadjoiint representattion of some Lie algebras// Dokl. AN SSSR.- 282,No 5.-P.1038-1041.

A.V.Belyaev
Dept. of Social policy
Donetsk Institute of market and social policy,
bulv. Pushkina, 32
Donetsk 340050 ,
E-mail: smith01chat.ru

