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First time the intersect index was applied to non-linear problems in L. Lusternick’s
research. This direction is investigating at voronezh school now [1,2]. Small eigenfunc-
tions and its global branches was considered by the intersect index in [3-5].

1. Definitions. We are interested in eigenvalues (e.v.) λ ∈ R and eigenfunctions
(e.f.) u ∈ W 1

2 (Ω) of the quasilinear problem

∆u + p(u, grad(u), x)u + λu = 0, u|∂Ω= 0 (1)

u ∈ S∞R = {u :
∫

Ω

u2 = R2} (R > 0), (2)

where W k
2 (Ω) is Sobolev’s space with norm ‖ · ‖k, Ω ⊂ Rn is a bounded domain with

smooth boundary ∂Ω, x ∈ Ω, ∆ is Laplas operator, p is a continue function. For
simplicity of a priori estimates we have to suppose m < p(u, y, x) < M ((u, y, x) ∈
Rn+1 × Ω).

The pair (λ, u) which satisfy (1),(2) is called normalised solution (n.s.). If (λ∗, u∗)
is a n.s. then λ∗ is an e.v. of the linear problem

∆u + q(x)u + λu = 0, u|∂Ω= 0, (3)

where
q(x) = p(u∗(x), grad(u∗(x)), x). (4)

The e.f. u∗ is among eigenfunctions of the problem (3),(4) certainly. The linear prob-
lem (3),(4) is symmetric that is why λ ∈ R. Eigenvalues of (3) form the nondecreasing
sequence λ0 < λ1 ≤ λ2 ≤ ...; λn →∞.

D e f. 1. The n.s. (λ∗, u∗) of the problem (1),(2) is named the simple (n-multiple)
, if λ∗ is simple (n-multiple) for the linear problem (3),(4). (The multiplicity of e.v. is
finite always.)

D e f. 2. The n.s. (λ∗, u∗) of the problem (1),(2) and its elements have such number
which the e.v. λ∗ has as a eigenvalue of the linear problem (3),(4).

We need a priori estimates of normalised solutions which have bounded numbers.
L e m m a 1. Eigenvalues λ with number n of the problem (1),(2) satisfy estimates

λn − M < λ < λn + m where λn is the e.v. with number n of the problem (3) with
q(x) ≡ 0.

L e m m a 2. Normalised solutions (λ, u) with number n of the problem (1),(2) satisfy
the estimate |λ | +‖u‖2 < C where the constant C depends on R, n, m, M only.



The problem (1) is equal to the operator equation

u + (λ + M)A(u)u = 0, (5)

due to lemma 1 where A is a continue mapping from W 1
2 (Ω) to Banach space L of linear

symmetric compact operators.
We consider the family of linear equations

u + (λ + M)Bu = 0. (6)

An operator B ∈ L is the parameter of the family. Let T∞R = {(B, u) ∈ L × S∞R :
u is an e.f. of the problem (6)}. The set T∞R is a smooth Banach manifold with
model space L [6]. The manifold T∞R is stratificated by numbers and multiplicity of its
eigenfunctions: T∞R (n, l) = {(B, u) ∈ T∞R : u is an e.f. of (6) with e.v. λ, moreover
λn−1(B) < λ = λn(B) = ... = λn+l−1(B) < λn+l(B)}. Thus T∞R =

⋃
n,l∈N T∞R (n, l).

According to [7] it’s possible to prove that T∞R (n, l) is the smooth submanifold of T∞R
end codimT∞R (n, l) = (l − 1)l/2. Notice codimT∞R (n, 1) = 0, codimT∞R (n, 2) = 1. We
give those number end multiplicity to a point (B, u) ∈ T∞R which the e.f. u has.

We examine the mapping

GrA : S∞R −→ L× S∞R , GrA(u) = (A(u), u), (7)

which is important for us.
T h e o r e m 1. A function u is an e.f. of the equation (6) only in the case

GrA(u) ∈ T∞R . The number of solution (λ, u) and its multiplicity are defined by the
index (n, l) of stratum T∞R (n, l): GrA(u) = (A(u), u) ∈ T∞R (n, l) ⊂ T∞R .

D e f. 3. A mapping A is called n-typical if the image of the mapping (7) doesn’t
intersect stratums T∞R (n, l) where the multiplicity l ≥ 2. Other words solutions with
number n are simple.

We will show that simple solutions can be obtained by the intersect index.
2. Intersect index. At first we consider the finite dimensional problem

v + γK(v)v = 0, v ∈ Sk−1, (8)

which is analogous to the problem (5); K is a continue mapping from Sk−1 to the
space Lk of real symmetric k-dimensional matrixes. Definitions 1-3 have the sense in
the problem (8). Manifolds T k, T k(n, l), the mapping GrK are determined by analogy
with T∞R , T∞R (n, l), GrA accordingly. Theorem 1 is true in case of the problem (8).

L e m m a 3.The set of n-typical mappings K is opened and dense in the space of
continue mappings from Sk−1 to Lk.

Since dimT k = dimLk for any n ≤ k and an n-typical mapping K is determined
the orientated intersect index χ(T

k
(n, 1), GrK) = χ(n,K) (T

k
(n, 1) is the closure of

the stratum T k(n, 1)). If the index isn’t equal to zero then the equation (8) has a n.s.
with number n. The calculation of the index is a difficult problem due to the manifold
T

k
(n, 1) has the boundary.
Let {u0, u1, ...} be the set of eigenfunctions of some operator B ∈ L. Let Rk ⊂

W 1
2 (Ω) (k = 1, 2...) be the finite dimensional subspace which is generated by the basis



{u0, u1, ..., uk−1}. Let P k be the orthogonal projection on Rk. We replace the problem
(5),(2) by the approximate equation

v + (λ + M)P kA(v)v = 0, v ∈ Sk−1, (9)

which has type of (8). If a mapping A is n-typical than the mapping P kA is n-typical
for any big k too. Therefore the index χ(n, P kA) is determined for any big k.

T h e o r e m 2. Index χ(n, P kA) has not change for any big k.
D e f. 4. Let L be a n-typical mapping. We determine that the orientated intersect

index χ(T
∞
R (n, 1), GrA) = χ(n, P kA), where k is big enough.

If the index isn’t equal to zero then the problem (5),(2) has a n.s. with number n.
Moreover, the solution is the limit (k →∞) of solutions of equations (9) due to a priory
estimates (lemma 2).

The intersect index is an invariant of a homotopy in the class of n-typical mappings.
In our opinion a control of n-typeness isn’t easy. For small eigenfunctions n-typeness
are checked in a finite dimensional kernel of the linear problem

∆u + p(0, 0, x)u + λ∗u = 0, u|∂Ω= 0, (10)

where λ∗ is the e.v. of the problem (10) [3,4].
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