THE APPLICATION OF THE INTERSECT INDEX TO QUASILINEAR EIGENFUNCTION PROBLEMS

© YA.M.DYMARSKY

First time the intersect index was applied to non-linear problems in L. Lusternick's research. This direction is investigating at voronezh school now [1,2]. Small eigenfunctions and its global branches was considered by the intersect index in [3-5].

1. Definitions. We are interested in eigenvalues (e.v.) $\lambda \in \mathbf{R}$ and eigenfunctions (e.f.) $u \in W_2^1(\Omega)$ of the quasilinear problem

$$\Delta u + p(u, grad(u), x)u + \lambda u = 0, \quad u|_{\partial\Omega} = 0$$
(1)

$$u \in S_R^{\infty} = \{ u : \int_{\Omega} u^2 = R^2 \} \quad (R > 0),$$
 (2)

where $W_2^k(\Omega)$ is Sobolev's space with norm $\|\cdot\|_k$, $\Omega \subset \mathbf{R}^n$ is a bounded domain with smooth boundary $\partial\Omega$, $x \in \overline{\Omega}$, Δ is Laplas operator, p is a continue function. For simplicity of a priori estimates we have to suppose m < p(u, y, x) < M $((u, y, x) \in \mathbf{R}^{n+1} \times \overline{\Omega})$.

The pair (λ, u) which satisfy (1),(2) is called *normalised solution* (n.s.). If (λ^*, u^*) is a n.s. then λ^* is an e.v. of the linear problem

$$\Delta u + q(x)u + \lambda u = 0, \quad u|_{\partial\Omega} = 0, \tag{3}$$

where

$$q(x) = p(u^*(x), grad(u^*(x)), x).$$
(4)

The e.f. u^* is among eigenfunctions of the problem (3),(4) certainly. The linear problem (3),(4) is symmetric that is why $\lambda \in \mathbf{R}$. Eigenvalues of (3) form the nondecreasing sequence $\lambda_0 < \lambda_1 \leq \lambda_2 \leq ...; \ \lambda_n \to \infty$.

D e f. 1. The n.s. $(\overline{\lambda^*}, u^*)$ of the problem (1),(2) is named the simple (*n*-multiple), if λ^* is simple (*n*-multiple) for the linear problem (3),(4). (The multiplicity of e.v. is finite always.)

D e f. 2. The n.s. (λ^*, u^*) of the problem (1),(2) and its elements have such number which the e.v. λ^* has as a eigenvalue of the linear problem (3),(4).

We need a priori estimates of normalised solutions which have bounded numbers.

L e m m a 1. Eigenvalues λ with number n of the problem (1),(2) satisfy estimates $\lambda_n - M < \lambda < \lambda_n + m$ where λ_n is the e.v. with number n of the problem (3) with $q(x) \equiv 0$.

L e m m a 2. Normalised solutions (λ, u) with number n of the problem (1), (2) satisfy the estimate $|\lambda| + ||u||_2 < C$ where the constant C depends on R, n, m, M only. The problem (1) is equal to the operator equation

$$u + (\lambda + M)A(u)u = 0, \tag{5}$$

due to lemma 1 where A is a continue mapping from $W_2^1(\Omega)$ to Banach space L of linear symmetric compact operators.

We consider the family of linear equations

$$u + (\lambda + M)Bu = 0. \tag{6}$$

An operator $B \in L$ is the parameter of the family. Let $T_R^{\infty} = \{(B, u) \in L \times S_R^{\infty} : u \text{ is an } e.f. \text{ of the problem (6)}\}$. The set T_R^{∞} is a smooth Banach manifold with model space L [6]. The manifold T_R^{∞} is stratificated by numbers and multiplicity of its eigenfunctions: $T_R^{\infty}(n,l) = \{(B,u) \in T_R^{\infty} : u \text{ is an } e.f. \text{ of (6) with } e.v. \lambda, \text{ moreover } \lambda_{n-1}(B) < \lambda = \lambda_n(B) = \dots = \lambda_{n+l-1}(B) < \lambda_{n+l}(B)\}$. Thus $T_R^{\infty} = \bigcup_{n,l \in N} T_R^{\infty}(n,l)$. According to [7] it's possible to prove that $T_R^{\infty}(n,l)$ is the smooth submanifold of T_R^{∞} end $codim T_R^{\infty}(n,l) = (l-1)l/2$. Notice $codim T_R^{\infty}(n,1) = 0$, $codim T_R^{\infty}(n,2) = 1$. We give those number end multiplicity to a point $(B, u) \in T_R^{\infty}$ which the e.f. u has.

We examine the mapping

$$Gr_A: S_R^{\infty} \longrightarrow L \times S_R^{\infty}, \quad Gr_A(u) = (A(u), u),$$
(7)

which is important for us.

The orem 1. A function u is an e.f. of the equation (6) only in the case $Gr_A(u) \in T_R^{\infty}$. The number of solution (λ, u) and its multiplicity are defined by the index (n,l) of stratum $T_R^{\infty}(n,l)$: $Gr_A(u) = (A(u), u) \in T_R^{\infty}(n,l) \subset T_R^{\infty}$.

D e f. 3. A mapping A is called *n*-typical if the image of the mapping (7) doesn't intersect stratums $T_R^{\infty}(n,l)$ where the multiplicity $l \geq 2$. Other words solutions with number n are simple.

We will show that simple solutions can be obtained by the intersect index.

2. Intersect index. At first we consider the finite dimensional problem

$$v + \gamma K(v)v = 0, \quad v \in S^{k-1},\tag{8}$$

which is analogous to the problem (5); K is a continue mapping from S^{k-1} to the space L^k of real symmetric k-dimensional matrixes. Definitions 1-3 have the sense in the problem (8). Manifolds T^k , $T^k(n,l)$, the mapping Gr_K are determined by analogy with T_R^{∞} , $T_R^{\infty}(n,l)$, Gr_A accordingly. Theorem 1 is true in case of the problem (8). L e m m a 3. The set of n-typical mappings K is opened and dense in the space of continue mappings from S^{k-1} to L^k .

Since $\dim T^k = \dim L^k$ for any $n \leq k$ and an *n*-typical mapping K is determined the orientated intersect index $\chi(\overline{T}^k(n, 1), Gr_K) = \chi(n, K)$ ($\overline{T}^k(n, 1)$) is the closure of the stratum $T^k(n, 1)$). If the index isn't equal to zero then the equation (8) has a n.s. with number n. The calculation of the index is a difficult problem due to the manifold $\overline{T}^k(n,1)$ has the boundary.

Let $\{u_0, u_1, ...\}$ be the set of eigenfunctions of some operator $B \in L$. Let $\mathbf{R}^k \subset$ $W_2^1(\Omega)$ (k=1,2...) be the finite dimensional subspace which is generated by the basis $\{u_0, u_1, ..., u_{k-1}\}$. Let P^k be the orthogonal projection on \mathbf{R}^k . We replace the problem (5), (2) by the approximate equation

$$v + (\lambda + M)P^k A(v)v = 0, \quad v \in S^{k-1},$$
(9)

which has type of (8). If a mapping A is n-typical than the mapping P^kA is n-typical for any big k too. Therefore the index $\chi(n, P^kA)$ is determined for any big k.

T h e o r e m 2. Index $\chi(n, P^k A)$ has not change for any big k.

D e f. 4. Let L be a *n*-typical mapping. We determine that the orientated intersect index $\chi(\overline{T}_R^{\infty}(n,1), Gr_A) = \chi(n, P^k A)$, where k is big enough. If the index isn't equal to zero then the problem (5),(2) has a n.s. with number n.

If the index isn't equal to zero then the problem (5),(2) has a n.s. with number n. Moreover, the solution is the limit $(k \to \infty)$ of solutions of equations (9) due to a priory estimates (lemma 2).

The intersect index is an invariant of a homotopy in the class of n-typical mappings. In our opinion a control of n-typeness isn't easy. For small eigenfunctions n-typeness are checked in a finite dimensional kernel of the linear problem

$$\Delta u + p(0, 0, x)u + \lambda^* u = 0, \quad u|_{\partial\Omega} = 0, \tag{10}$$

where λ^* is the e.v. of the problem (10) [3,4].

References

- Borisovich Yu.G., Zvyagin V.G., Sapronov Yu.I., Non-linear Fredholm mappings, Uspehi Matem. Nauk 32 (1977), no. 4, 3-52.
- Borisovich Yu.G., Kunakovskaya O.V., Intersection theory methods, Stochastic and global analysis. Voronezh. (1997).
- Dymarsky Ya.M., On typical bifurcations in a class of operator equations, Russian Acad. Sci. Dokl. Math. 50 (1995), no. 2, 446-449.
- Dymarsky Ya.M., On branches of small solutions of some operator equations, Ukr. Math. Jour. 48 (1996), no. 7, 901-909.
- Dymarsky Ya.M., Unbounded branches of solutions of some boundary-value problems, Ukr. Math. Jour. 48 (1996), no. 9, 1194-1199.
- 6. Uhlenbeck K., Generic properties of eigenfunctions, Amer. Jour. Math. 98 (1976), no. 4, 1059-1078.
- Fujiwara D., Tanikawa M., Yukita Sh., The spectrum of the Laplacian, Proc. Japan Acad. 54, Ser. A (1978), no. 4, 87-91.