THE APPLICATION OF THE INTERSECT INDEX TO QUASILINEAR EIGENFUNCTION PROBLEMS

(C) Ya.M.DYMARSKY

First time the intersect index was applied to non-linear problems in L. Lusternick's research. This direction is investigating at voronezh school now [1,2]. Small eigenfunctions and its global branches was considered by the intersect index in [3-5].

1. Definitions. We are interested in eigenvalues (e.v.) $\lambda \in \mathbf{R}$ and eigenfunctions (e.f.) $u \in W_{2}^{1}(\Omega)$ of the quasilinear problem

$$
\begin{gather*}
\Delta u+p(u, \operatorname{grad}(u), x) u+\lambda u=0,\left.\quad u\right|_{\partial \Omega}=0 \tag{1}\\
u \in S_{R}^{\infty}=\left\{u: \int_{\Omega} u^{2}=R^{2}\right\} \quad(R>0), \tag{2}
\end{gather*}
$$

where $W_{2}^{k}(\Omega)$ is Sobolev's space with norm $\|\cdot\|_{k}, \Omega \subset \mathbf{R}^{n}$ is a bounded domain with smooth boundary $\partial \Omega, x \in \bar{\Omega}, \Delta$ is Laplas operator, p is a continue function. For simplicity of a priori estimates we have to suppose $m<p(u, y, x)<M \quad((u, y, x) \in$ $\left.\mathbf{R}^{n+1} \times \bar{\Omega}\right)$.

The pair (λ, u) which satisfy (1),(2) is called normalised solution (n.s.). If $\left(\lambda^{*}, u^{*}\right)$ is a n.s. then λ^{*} is an e.v. of the linear problem

$$
\begin{equation*}
\Delta u+q(x) u+\lambda u=0,\left.\quad u\right|_{\partial \Omega}=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
q(x)=p\left(u^{*}(x), \operatorname{grad}\left(u^{*}(x)\right), x\right) . \tag{4}
\end{equation*}
$$

The e.f. u^{*} is among eigenfunctions of the problem (3),(4) certainly. The linear problem (3),(4) is symmetric that is why $\lambda \in \mathbf{R}$. Eigenvalues of (3) form the nondecreasing sequence $\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots ; \lambda_{n} \rightarrow \infty$.

D e f. 1. The n.s. $\left(\lambda^{*}, u^{*}\right)$ of the problem (1),(2) is named the simple (n-multiple) , if λ^{*} is simple (n-multiple) for the linear problem (3),(4). (The multiplicity of e.v. is finite always.)

D e f. 2. The n.s. $\left(\lambda^{*}, u^{*}\right)$ of the problem (1),(2) and its elements have such number which the e.v. λ^{*} has as a eigenvalue of the linear problem (3),(4).

We need a priori estimates of normalised solutions which have bounded numbers.
L e m m a 1. Eigenvalues λ with number n of the problem (1),(2) satisfy estimates $\lambda_{n}-M<\lambda<\lambda_{n}+m$ where λ_{n} is the e.v. with number n of the problem (3) with $q(x) \equiv 0$.

Lem m a 2. Normalised solutions (λ, u) with number n of the problem (1),(2) satisfy the estimate $|\lambda|+\|u\|_{2}<C$ where the constant C depends on R, n, m, M only.

The problem (1) is equal to the operator equation

$$
\begin{equation*}
u+(\lambda+M) A(u) u=0 \tag{5}
\end{equation*}
$$

due to lemma 1 where A is a continue mapping from $W_{2}^{1}(\Omega)$ to Banach space L of linear symmetric compact operators.

We consider the family of linear equations

$$
\begin{equation*}
u+(\lambda+M) B u=0 . \tag{6}
\end{equation*}
$$

An operator $B \in L$ is the parameter of the family. Let $T_{R}^{\infty}=\left\{(B, u) \in L \times S_{R}^{\infty}\right.$: u is an e.f. of the problem (6)\}. The set T_{R}^{∞} is a smooth Banach manifold with model space L [6]. The manifold T_{R}^{∞} is stratificated by numbers and multiplicity of its eigenfunctions: $T_{R}^{\infty}(n, l)=\left\{(B, u) \in T_{R}^{\infty}: u\right.$ is an e.f. of (6) with e.v. λ, moreover $\left.\lambda_{n-1}(B)<\lambda=\lambda_{n}(B)=\ldots=\lambda_{n+l-1}(B)<\lambda_{n+l}(B)\right\}$. Thus $T_{R}^{\infty}=\bigcup_{n, l \in N} T_{R}^{\infty}(n, l)$. According to [7] it's possible to prove that $T_{R}^{\infty}(n, l)$ is the smooth submanifold of T_{R}^{∞} end $\operatorname{codim} T_{R}^{\infty}(n, l)=(l-1) l / 2$. Notice $\operatorname{codim} T_{R}^{\infty}(n, 1)=0, \operatorname{codim} T_{R}^{\infty}(n, 2)=1$. We give those number end multiplicity to a point $(B, u) \in T_{R}^{\infty}$ which the e.f. u has.

We examine the mapping

$$
\begin{equation*}
G r_{A}: S_{R}^{\infty} \longrightarrow L \times S_{R}^{\infty}, \quad G r_{A}(u)=(A(u), u), \tag{7}
\end{equation*}
$$

which is important for us.
T h e orem 1. A function u is an e.f. of the equation (6) only in the case $G r_{A}(u) \in T_{R}^{\infty}$. The number of solution (λ, u) and its multiplicity are defined by the index (n, l) of stratum $T_{R}^{\infty}(n, l): G r_{A}(u)=(A(u), u) \in T_{R}^{\infty}(n, l) \subset T_{R}^{\infty}$.

D e f. 3. A mapping A is called n-typical if the image of the mapping (7) doesn't intersect stratums $T_{R}^{\infty}(n, l)$ where the multiplicity $l \geq 2$. Other words solutions with number n are simple.

We will show that simple solutions can be obtained by the intersect index.
2. Intersect index. At first we consider the finite dimensional problem

$$
\begin{equation*}
v+\gamma K(v) v=0, \quad v \in S^{k-1} \tag{8}
\end{equation*}
$$

which is analogous to the problem (5); K is a continue mapping from S^{k-1} to the space L^{k} of real symmetric k-dimensional matrixes. Definitions 1-3 have the sense in the problem (8). Manifolds $T^{k}, T^{k}(n, l)$, the mapping $G r_{K}$ are determined by analogy with $T_{R}^{\infty}, T_{R}^{\infty}(n, l), G r_{A}$ accordingly. Theorem 1 is true in case of the problem (8).

Lem m a 3.The set of n-typical mappings K is opened and dense in the space of continue mappings from S^{k-1} to L^{k}.

Since $\operatorname{dim} T^{k}=\operatorname{dim} L^{k}$ for any $n \leq k$ and an n-typical mapping K is determined the orientated intersect index $\chi\left(\bar{T}^{k}(n, 1), G r_{K}\right)=\chi(n, K) \quad\left(\bar{T}^{k}(n, 1)\right.$ is the closure of the stratum $\left.T^{k}(n, 1)\right)$. If the index isn't equal to zero then the equation (8) has a n.s. with number n. The calculation of the index is a difficult problem due to the manifold $\bar{T}^{k}(n, 1)$ has the boundary.

Let $\left\{u_{0}, u_{1}, \ldots\right\}$ be the set of eigenfunctions of some operator $B \in L$. Let $\mathbf{R}^{k} \subset$ $W_{2}^{1}(\Omega) \quad(k=1,2 \ldots)$ be the finite dimensional subspace which is generated by the basis
$\left\{u_{0}, u_{1}, \ldots, u_{k-1}\right\}$. Let P^{k} be the orthogonal projection on \mathbf{R}^{k}. We replace the problem (5),(2) by the approximate equation

$$
\begin{equation*}
v+(\lambda+M) P^{k} A(v) v=0, \quad v \in S^{k-1} \tag{9}
\end{equation*}
$$

which has type of (8). If a mapping A is n-typical than the mapping $P^{k} A$ is n-typical for any big k too. Therefore the index $\chi\left(n, P^{k} A\right)$ is determined for any big k.

Theor em 2. Index $\chi\left(n, P^{k} A\right)$ has not change for any big k.
D e f. 4. Let L be a n-typical mapping. We determine that the orientated intersect index $\chi\left(\bar{T}_{R}^{\infty}(n, 1), G r_{A}\right)=\chi\left(n, P^{k} A\right)$, where k is big enough.

If the index isn't equal to zero then the problem (5),(2) has a n.s. with number n. Moreover, the solution is the limit $(k \rightarrow \infty)$ of solutions of equations (9) due to a priory estimates (lemma 2).

The intersect index is an invariant of a homotopy in the class of n-typical mappings. In our opinion a control of n-typeness isn't easy. For small eigenfunctions n-typeness are checked in a finite dimensional kernel of the linear problem

$$
\begin{equation*}
\Delta u+p(0,0, x) u+\lambda^{*} u=0,\left.\quad u\right|_{\partial \Omega}=0, \tag{10}
\end{equation*}
$$

where λ^{*} is the e.v. of the problem (10) [3,4].

References

1. Borisovich Yu.G., Zvyagin V.G., Sapronov Yu.I., Non-linear Fredholm mappings, Uspehi Matem. Nauk 32 (1977), no. 4, 3-52.
2. Borisovich Yu.G., Kunakovskaya O.V., Intersection theory methods, Stochastic and global analysis. Voronezh. (1997).
3. Dymarsky Ya.M., On typical bifurcations in a class of operator equations, Russian Acad. Sci. Dokl. Math. 50 (1995), no. 2, 446-449.
4. Dymarsky Ya.M., On branches of small solutions of some operator equations, Ukr. Math. Jour. 48 (1996), no. 7, 901-909.
5. Dymarsky Ya.M., Unbounded branches of solutions of some boundary-value problems, Ukr. Math. Jour. 48 (1996), no. 9, 1194-1199.
6. Uhlenbeck K., Generic properties of eigenfunctions, Amer. Jour. Math. 98 (1976), no. 4, 1059-1078.
7. Fujiwara D., Tanikawa M., Yukita Sh., The spectrum of the Laplacian, Proc. Japan Acad. 54, Ser. A (1978), no. 4, 87-91.
