PACS: 62.50.-p, 64.10.+h, 64.30.+t

Е.В. Зароченцев, Е.П. Троицкая, В.В. Чабаненко

ЭЛЕМЕНТАРНЫЕ КОЛЕБАНИЯ В КРИСТАЛЛАХ ИНЕРТНЫХ ГАЗОВ. 1. МОДЕЛЬ К.Б. ТОЛПЫГО И ФОНОННЫЕ ЧАСТОТЫ В ОСНОВНОМ СОСТОЯНИИ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины 83114, г. Донецк, ул. Р. Люксембург, 72

Статья поступила в редакцию 22 октября 2003 года

В рамках модели К.Б. Толпыго и ее модификаций обсуждаются отдельные электрон-ионные слагаемые энергии кристаллов инертных газов (КИГ). Рассчитываются и сравниваются с экспериментом фононные частоты кристаллов ряда Ne-Xe при T = p = 0. Согласие теории и эксперимента хорошее.

1. Введение

К настоящему времени широкое распространение получили новые методы вычисления фононных (и иных) спектров твердых тел: метод моментов (или цепных дробей) [1], замороженных фононов [2], всевозможные кластерные методы и метод фрагментов (см., напр., [3]), молекулярной динамики и др. (см. обзор [4]). Интерес к фононным методам особенно возрос в последние 2–3 года в связи с развитием техники высоких давлений, поскольку описание сжатого вещества зачастую требует пересмотра основных положений и приближений.

И все-таки, на наш взгляд, прямое последовательное вычисление элементов динамической матрицы наиболее адекватно, поскольку при этом проявляются все приближения, вложенные в модель. Поэтому разработка моделей, пригодных для расчета фононных частот, на сегодня весьма актуальна.

В настоящей работе мы, основываясь главным образом на работах К.Б. Толпыго и наших [5–8], проводили вычисление и сравнение с экспериментом частот при T = 0, выходя за адиабатическое приближение. Заметим, что неадиабатические поправки малы при низких давлениях, когда элементарные спектры энергетически отдалены от электронных спектров.

2. Неадиабатические вклады в динамику решетки

В модели К.Б. Толпыго кристалл рассматривается как совокупность N точечных ионов валентности Z (ядро и внутренние электроны) и оболочек, каждая из которых состоит из Z-валентных электронов, взаимодействующих не только с ионами, но и между собой. Таким образом, волновая функция кристалла есть детерминант $N \times N$, состоящий из детерминантов $Z \times Z$. При этом учтены корреляции внутри валентных электронов отдельного атома. Энергия такой системы имеет вид [6]:

$$E = \sum_{l} \left\{ \frac{1}{2a} (\mathbf{P}^{l})^{2} + \sum_{l'}^{(12)} \left[\frac{\beta(r_{0})}{r_{0}} \left(\mathbf{u}^{l} - \mathbf{u}^{l'} \right) \mathbf{P}^{l} + \frac{1}{r_{0}} \frac{d}{dr} \left(\frac{\beta(r)}{r} \right) \left(\mathbf{P}^{l} \mathbf{r}^{ll'} \right) \left(\mathbf{u}^{l} - \mathbf{u}^{l'} \right) \mathbf{r}^{ll'} \right] + \frac{1}{2} \sum_{l'} \left[\frac{\mathbf{P}^{l} \mathbf{P}^{l'}}{\left| \mathbf{r}^{ll'} \right|^{3}} - 3 \frac{\left(\mathbf{P}^{l} \mathbf{r}^{ll'} \right) \left(\mathbf{P}^{l'} \mathbf{r}^{ll'} \right)}{\left| \mathbf{r}^{ll'} \right|^{5}} \right] + E^{(2)} \right\}.$$
(1)

Здесь \mathbf{P}' – дипольный момент электронной оболочки; $\mathbf{p}' = \mathbf{e}\mathbf{u}'$ – дипольный момент иона *l*;

$$E^{(2)} = \sum_{l} \left\{ \sum_{l'}^{(12)} \left[\frac{1}{4} f^{ll'} (\mathbf{u}^{l} - \mathbf{u}^{l'})^2 + \frac{d^{ll'}}{4r_0^2} \left[(\mathbf{u}^{l} - \mathbf{u}^{l'}) \mathbf{r}^{ll'} \right]^2 \right] + \frac{1}{2} \sum_{l'} \left[\frac{3C(\mathbf{u}^{l} - \mathbf{u}^{l'})^2}{|\mathbf{r}^{ll'}|^8} - \frac{24C[(\mathbf{u}^{l} - \mathbf{u}^{l'}) \mathbf{r}^{ll'}]^2}{|\mathbf{r}^{ll'}|^{10}} \right] \right\},$$
(2)

где f'', d'' – первая и вторая производные потенциала V(r) соответственно; C – константа Ван-дер-Ваальса.

В гамильтониане кристалла выделим короткодействующую часть $H_{II'}^{\kappa,g.}$; $\langle 0 |$ – волновая функция кристалла в основном состоянии; $\langle i |$ – волновая функция кристалла, в котором один из атомов возбужден.

В частном случае центральных отталкивающих сил

$$f''' = \frac{1}{r} \frac{\mathrm{d} v(r)}{\mathrm{d} r} \Big|_{r=r_0}; \qquad d''' = \left(\frac{\mathrm{d}^2 v(r)}{\mathrm{d} r^2} - \frac{1}{r} \frac{\mathrm{d} v(r)}{\mathrm{d} r}\right)_{r=r_0}, \tag{3}$$

где

$$\sum_{l'}^{(12)} v(\mathbf{r}^{l} - \mathbf{r}^{l'}) = \sum_{l'} \left\langle 00 \left| \mathcal{H}_{ll'}^{\kappa, \pi} \right| 00 \right\rangle + \alpha (\beta_l)^2 - 2 \sum_{i} \frac{1}{\Delta_i} \left(\sum_{l'} \left\langle 00 \left| \mathcal{H}_{ll'}^{\kappa, \pi} \right| i0 \right\rangle \right)^2$$

обозначает короткодействующее взаимодействие атома l с окружением; $r_0 = a\sqrt{2}$ – расстояние между ближайшими соседями.

Первое и третье слагаемые в (1) описывают взаимодействие электронных

оболочек между собой, а второе слагаемое – электронно-ионное взаимодействие, т.е. представляет неадиабатические слагаемые в низшем порядке по смещению атома \mathbf{u}^{\prime} . Заметим, что такой же порядок величины имеют слагаемые $\mathbf{P}^2 \mathbf{p}^2$, но можно показать, что они приводят к незначительному переопределению амплитуды электрон-фононного взаимодействия β :

$$\beta \sim \langle 00 | H_{II'}^{\kappa. \mathfrak{g}.} | 0i \rangle .$$
⁽⁴⁾

Из выражения (1) хорошо заметно, что энергия связи включает в себя помимо обычных неадиабатические члены (пропорциональные **Pu**). Следовательно, электрон-решеточное взаимодействие в этой модели учитывается членами порядка смещения **u**. Как известно [9], такой же порядок по параметру неадиабатичности имеют слагаемые, пропорциональные \mathbf{u}^2 . Однако можно показать, что эти слагаемые приводят только к незначительному переопределению основных параметров теории. Поступая далее по общеизвестным правилам, мы получаем в прямом пространстве систему уравнений для смещений атомов **u** и электронных степеней свободы. Таким образом, в этом подходе движение электронов учтено непосредственно.

Однако в более общем подходе к анализу спектров электронно-ионной системы, например с помощью функций Грина для смещений электронов и фононов, легко получить, что функция Грина смещений сама является функцией искомых частот колебаний. Для нахождения последних понадобятся самосогласованные по искомой частоте решения. Следовательно, в динамической матрице появятся слагаемые, зависящие от искомой частоты и представляющие собой также неадиабатические эффекты. Это происходит особо интенсивно в том случае, когда параметр адиабатичности не мал и электронные и фононные спектры имеют общую область существования. Такого типа эффекты были детально рассмотрены в серии работ [10–12]. Анализ подобных эффектов совершенно необходим при исследовании поведения вещества при большом давлении, когда «перепутывание» спектра неизбежно. В данной статье мы ограничимся случаем p = 0, и поэтому эффекты неадиабатичности рассчитываться не будут.

Проведенный краткий анализ показывает, что подход К.Б. Толпыго эквивалентен общему подходу (например, с помощью функций Грина) до тех пор, пока в нем учитываются только низшие члены по неадиабатичности. Его преимущество заключается в том, что в нем оперируют не с общими буквенными выражениями – все параметры этого гамильтониана могут быть рассчитаны из первых принципов, по крайней мере в случае сильной связи. Недостатком этого подхода является невозможность продлить его для учета высших степеней по электронно-колебательному взаимодействию.

3. Параметры теории и выражения для фононных частот при *p* = 0

В КИГ отсутствуют и ионная, и валентная связи, основную роль играют

эффекты поляризации электронных оболочек, в частности вызванное ими взаимодействие Ван-дер-Ваальса. Установленные в [6] в гармоническом приближении уравнения движения КИГ анализировались в [7], где были получены следующие аналитические выражения для квадратов фононных частот применительно к симметричным направлениям волнового вектора К:

- направление [00ξ]:

$$\Omega_L^2 = 2(H+G)(1-\cos k_z) - \frac{(2h+2g)^2}{A^{-1} - \varphi_{zz}}(1-\cos k_z)^2 + (F+E)2\sin^2 k_z + B\chi_{zz};$$
(5)

~

$$\Omega_L^2 = (G + 2H)(1 - \cos k_z) - \frac{(2h + g)^2}{A^{-1} - \varphi_{zz}} (1 - \cos k_z)^2 + 2F \sin^2 k_z + B\chi_{xx}, \quad (6)$$

где $\mathbf{k} = a\mathbf{K} (a$ – половина ребра куба), $\xi_i = k_i / \pi$;

- направление [ξξξ]:

$$\Omega_L^2 = (4G + 3H + 2E + 6F) \sin^2 k_z - \frac{(4h + 3g)^2}{A^{-1} - 2\varphi_{xy}} \sin^4 k_z + B(\chi_{xx} + 2\chi_{xy});$$
(7)

$$\Omega_T^2 = (G + 3H + 2E + 6F)\sin^2 k_z - \frac{(3h + g)^2}{A^{-1} - 2\varphi_{xy}}\sin^4 k_z + B(\chi_{xx} - \chi_{xy}); \quad (8)$$

- направление [ξξ0]:

$$\Omega_{L}^{2} = (H + 2G + 2E + 4F) \sin^{2} k_{z} + (2H + G)(1 - \cos k_{x}) + B(\chi_{xx} + \chi_{xy}) - \frac{\left[(h + 2g) \sin^{2} k_{x} + (g + 2h)(1 - \cos k_{x})\right]^{2}}{A^{-1} - \varphi_{zz} - \varphi_{xy}};$$
(9)

$$\Omega_{T_1}^2 = (H + 2E + 4F)\sin^2 k_x + (G + 2H)(1 - \cos k_x) + B(\chi_{xx} - \chi_{xy}) - \frac{\left[h\sin^2 k_x + (g + 2h)(1 - \cos k_x)\right]^2}{A^{-1} - \varphi_{zz} + \varphi_{xy}};$$
(10)

$$\Omega_{T_2}^2 = (H + 4F) \sin^2 k_x + 2(G + H)(1 - \cos k_x) + B\chi_{ZZ} - \frac{\left[h \sin^2 k_x + 2(g + h)(1 - \cos k_x)\right]^2}{A^{-1} - \varphi_{ZZ}}.$$
 (11)

Здесь φ_{ij} и χ_{ij} – решеточные суммы, зависящие от **К** и приведенные в [13] и [7] соответственно; A – поляризуемость атома, отнесенная к a^3 и свя-

занная с диэлектрической проницаемостью формулой Клаузиуса–Моссотти; G, H, E, F – силовые параметры короткодействия между первыми и вторыми соседями соответственно, причем H и F представляют собой поперечные коэффициенты упругости; B – константа сил Ван-дер-Ваальса, отнесенная к (1/6) e^2a^5 ; g и h – параметры электрон-ионного взаимодействия (обменнодипольных сил, см. [6–8]).

Следуя работе [7], приведем некоторые оценки для параметров теории B, G, H, E, F, g, h.

Прежде всего установим, где это возможно, знаки параметров B, H, G, F, E, g, h и примерное соотношение между их величинами.

Из значения сил Ван-дер-Ваальса и из соотношения H + 2F = -0.301123B [7,8] следует, что B > 0 и H + 2F < 0. Кроме того, поскольку H и F определяются короткодействующими силами, но соответствуют первым и вторым соседям, следует ожидать, что H >> F, поэтому H < 0.

Параметры G и E также одной природы, но определены для первых и вторых соседей, поэтому естественно считать G >> E. С другой стороны, условие положительности частот (5)-(11) и модулей упругости показывает, что G всегда должно быть положительно. Более того, из (5)-(11) видно, что условие $\Omega^2 > 0$ эквивалентно условию $G \ge |H|$ или еще более жесткому G >> |H|. Это вытекает из того, что параметр H пропорционален первой, а G - второй производной от быстро изменяющейся энергии короткодействующих сил $V^{K.d.}(r)$ при $r = a\sqrt{2}$. Знаки F и E установить трудно, однако если учесть, что они выражаются через такие же производные от $v^{K, A}(r)$, только при r = 2a, и предположить, что $V^{K, d}(r)$ монотонно убывает, то должно быть F < 0, E > 0. Для определения знаков параметров g, h заметим, что согласно [6] (см. выражение для энергии (20), содержащее член $\beta' P'$) энергия возрастает, если поляризуемость *l*-го узла увеличивает его перекрытие с соседями. Для этого необходимо, чтобы соблюдалось условие h > 0, и так как $\beta'(r)$ убывает с расстоянием, то g < 0, причем |g| >> h. В табл. 1 приведены параметры энергии (1) при p = 0, с помощью которых осуществлялись все дальнейшие вычисления [7,8]. Зависимость параметров энергии от давления будет исследована в другой работе.

4. Фононные частоты

Рассчитаны фононные частоты $\omega_{\lambda}(\mathbf{k})$ всего ряда КИГ с параметрами из табл. 1. На рис. приведены $\omega_{\lambda}(\mathbf{k})$ кристаллов Ne, Ar, Kr и Xe.

Как видно из рисунка и табл. 2, различие в моделях сказывается в основном на границах зоны Бриллюэна. В случае Ne хорошо заметно

Рис. Фононные дисперсионные кривые для КИГ. Сплошная, штриховая и пунктирная линии – расчеты соответственно для МЗ, М2, М4. Экспериментальные данные: a – Ne: светлые значки – при 4.7 К [14], темные – 5 К [15]; δ – Ar: светлые значки – при 4 К [111] и [110] из [16], [100] – из [17], темные – из [18]; ϵ – Kr – из [19]; ϵ – Xe – из [20]

Физика и техника высоких давлений 2003, том 13, № 4

Таблица 1

	-	-			-			
Кристалл	Мо- дель	h	g	Н	G	F	Ε	В
Ne	M1	3.0	-9.0	-1.28	9.7	-0.1	0.2	5.3
(T = 4.7 K,	M2	-	_	-1.28	8.8	-0.13	1.00	4.25
<i>a</i> = 2.231 Å)	M3	-	_	-1.03	8.84	_	_	4.27
	M4	_	_	-1.15	8.73	-0.13	1.00	4.69
Ar ³⁶	M1	8.0	-24.0	-4.7	46.0	-1.35	4.3	27.5
(T = 4 K,	M2	_	_	-4.70	38.00	-0.03	0.42	15.61
<i>a</i> = 2.6555 Å)	M3	_	_	-4.44	36.13	-0.03	0.42	16.12
Kr	M1	9.5	-28.5	-1.0	70.0	-1.4	4.5	40.0
(T = 79 K,	M2	_	_	-6.70	55.00	-0.004	0.32	22.25
<i>a</i> = 2.86 Å)	M3	_	_	-6.73	55.19	-0.004	0.32	23.41
Xe	M1	8.3	-26.3	-7.4	73.6	-0.05	0.47	26.00
(T = 10 K,	M2	_	_	-9.70	82.00	-0.13	0.49	23.21
<i>a</i> = 3.063 Å)	M3	-	_	-9.69	81.98	-0.13	0.49	33.16

Параметры теории для кристаллов Ne, Ar, Kr и Xe в различных моделях

Примечание. Все величины даны умноженными на 10². В моделях К.Б. Толпыго М1 [7] и М2 [8] не учитываются нулевые колебания в отличие от М3 и М4. Потенциал отталкивания М4 содержит члены всех высших порядков по интегралам перекрытия, М3 – лишь квадратичные.

Таблица 2

Относительный вклад β-нулевых колебаний в частоты на границах зоны Бриллюэна (%)

Кристалл	Направление	β		
	распространения	мода Т	мода L	
Ne	[100]	-2.0	3.0	
	[111]	-1.0	5.0	
Ar	[100]	1.5	2.2	
	[111]	3.6	3.4	
Kr	[100]	0.7	1.1	
	[111]	0.2	1.2	
Xe	[100]	0.6	0.6	
	[111]	0.5	0.9	

(табл. 2), что учет нулевых колебаний (с потенциалом $v^{\kappa.d.} \sim S^2$ M3) сравнительно сильно повлиял на значения $\omega_{\lambda}(\mathbf{k})$. Включение же высших порядков по *S* в $v^{\kappa.d.}$ (M4) лишь слегка переопределило $\omega_{\lambda}(\mathbf{k})$, рассчитанные в M3. Вышесказанное полностью относится к Ar, Kr и Xe.

Близость теоретических фононных кривых к экспериментальным [14-20]

указывает не только на адекватность моделей, но и на слабость проявления ангармонизмов (нулевых колебаний) в КИГ при p = 0. И хотя для Ne B_{11}^{zp} и B_{33}^{zp} [21] вносят вклады в упругие постоянные соответственно 15 и 20%, первая и вторая производные (*H* и *G*) потенциала $v^{\kappa, \mu}$ и производная *B* потенциала притяжения при значениях параметров *A*, β и *C*, найденных по статическим свойствам, близки к *H*, *G* и *B*, вычисленным по экспериментальным фононным кривым [22]. Расчеты показывают нечувствительность $\omega_{\lambda}(\mathbf{k})$ к различиям M2–M4 (см. табл. 1, 2).

5. Обсуждение

Таким образом, в тщательном рассмотрении нуждаются только вклады нулевых колебаний и теплового расширения. Последние были проанализированы в [23]. Обсудим роль нулевых колебаний. Они играют существенную количественную роль в формировании свойств лишь Ne (см. табл. 3). При этом более всего они влияют на энергию связи и упругие постоянные B_{33} и B_{11} . В Ar нулевые колебания не столь значительны, но их вклад в энергию связи и упругую постоянную B_{33} следует учитывать. Свойства Kr и Xe при T = 0 почти целиком определяются статической решеткой. Заметим, что относительная малость величины B_{44}^{zp} для всего ряда кристаллов – следствие сильной компенсации положительного вклада четверных ангармонизмов отрицательным вкладом тройных (см. [29]).

Для построения потенциала Ne необходимо рассмотрение парных слагаемых высших степеней по S, в то время как для остальных кристаллов достаточен учет членов ~ S^2 . Это объясняется тем, что потенциал короткодействия $V^{k.q.}$, состоящий из большого количества как положительных, так и отрицательных слагаемых,

$$\boldsymbol{V}^{\mathrm{K}.\mathrm{D}.} = \boldsymbol{V}^{\mathrm{K}.\mathrm{D}.}_{+} + \boldsymbol{V}^{\mathrm{K}.\mathrm{D}.}_{-},$$

для кристаллов Ar, Kr и Xe составляет 40–50% от $V_{+}^{K.d.}$. В то же время для Ne отношение $v_{+}^{K.d.}/v_{+}^{K.d.}$ составляет 20–25%.

Таким образом, для кристаллов Ar, Kr и Xe слагаемые высших степеней *S* являются малыми поправками, тогда как для потенциала Ne их вклад сравним с членами ~ *S*².

Таблица 3

Крис- талл	E _{coh}	E ^{zp}	<i>B</i> ₁₁	B ₄₄	B ₃₃	Мо- дель
	7 1 5 1	2 431	10 731	9 142	4 594	M4
Ne	7 2 3 8	2.684	11 44	9.29	5 19	M3
	7 351		11.50	9.40	3.16	M2[24]
	7.172	2.071	5.10	6.10	2.50	[25.26]
	_	2.45	_	_		[27]
						Экспе-
	7.172	_	10.97±0.17	9.29±0.19	3.94±0.19	римент
						[15,25]
Ar	29.42	2.860	27.06	21.61	9.91	M3
	29.48	_	29.69	23.67	9.04	M2[24]
	29.48	2.80	23.1	19.9	7.6	[25,26]
	29.48	2.68	22.8	18.4	9.7	[25,26]
	_	2.98	_	_	_	[27]
						Экспе-
	29.44	_	26.7	22.8	10.0	римент
						[15,25]
Kr	43.47	2.297	33.54	26.53	11.34	M3
	42.48	_	34.14	27.17	10.46	M2[24]
	42.48	2.240	30.1	25.0	9.5	[25,26]
	42.48	2.141	29.9	23.2	12.0	[25,26]
	_	2.31	_	_	_	[27]
						Экспе-
	42.63	-	36.1±0.6	26.8 ± 0.3	11.5±0.6	римент
						[19,25]
	61.57	2.014	37.33	29.46	12.31	M3
Xe	60.28	_	37.74	29.94	11.71	M2[24]
	61.03	2.001	35.1	28.8	10.85	[25,26]
	61.03	1.916	35.0	26.8	13.6	[25,26]
	—	1.96	_	_	_	[27]
		_	36.4	29.5	12.2	Экспе-
	61.03					римент
						[28,20]

Энергии связи *E*_{coh} и нулевых колебаний *E^{zp}* (a.u./atom) и упругие постоянные *B_{ik}* (10⁸ Ра) КИГ при *p* = 0, *T* = 0

1. В.И. Пересада, ЖЭТФ **53**, 605 (1967).

2. M.T. Yin, M.L. Cohen, Solid State Commun. 43, 391 (1982).

3. И.В. Абаренков, И.М. Антонова, В.Г. Барьяхтар, В.Л. Булатов, Е.В. Зароченцев, в

Физика и техника высоких давлений 2003, том 13, № 4

кн.: Методы вычислительной физики в теории твердого тела. Электронная структура идеальных и дефектных кристаллов, Наукова думка, Киев (1991).

- 4. S. Baroni, S. de Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
- 5. К.Б. Толпыго, ЖЭТФ 20, 497 (1950).
- 6. К.Б. Толпыго, Е.П. Троицкая, ФТТ 13, 1135 (1971).
- 7. М.А. Белоголовский, К.Б. Толпыго, Е.П. Троицкая, ФТТ 13, 2109 (1971).
- 8. Е.П. Троицкая, Автореф. дисс. ... д-ра физ.-мат. наук, Киев (1987).
- 9. V.G. Bar'akhtar, E.V. Zarochentsev, E.P. Troitskaya, Theory of adiabatic potential and atomic properties of simple metals, Gordon&Breach, London (1999).
- 10. И.Е. Драгунов, Е.В. Зароченцев, С.М. Орел, ФММ 67, 837 (1989).
- 11. И.Е. Драгунов, Е.В. Зароченцев, С.М. Орел, ФТТ 31, № 11, 314 (1989).
- 12. И.Е. Драгунов, Автореф. дисс. ... канд. физ.-мат. наук, Донецк (1992).
- 13. К.Б. Толпыго, И.Г. Заславская, УФЖ 1, 226 (1956).
- 14. J.A. Leake, W.B. Daniels, J. Skalyo, Jr., B.C. Frazer, G. Shirane, Phys. Rev. 181, 1251 (1969).
- 15. J. Skalyo, Jr., V.J. Minkiewicz, G. Shirane, W.B. Daniels, Phys. Rev. B6, 4766 (1972).
- 16. D.N. Batchelder, M.F. Collins, B.C.G. Haywood, G.R. Sidey, J. Phys. C3, 249 (1970).
- 17. D.N. Batchelder, B.C.G. Haywood, D.H. Saunderson, J. Phys. C4, 910 (1971).
- 18. H. Egger, M. Gsänger, E. Lüscher, B. Dorner, Phys. Lett. A28, 433 (1968).
- 19. J. Skalyo, Jr., Y.I. Endoh, G. Shirane, Phys. Rev. B9, 1797 (1974).
- 20. N.A. Lurie, G. Shirane, J. Skalyo, Jr., Phys. Rev. B9, 5300 (1974).
- 21. Е.В. Зароченцев, Е.П. Троицкая, В.В. Чабаненко, ФТВД 12, ¹2, 13 (2002).
- 22. К.Б. Толпыго, Е.П. Троицкая, ФТТ 14, 2867 (1972).
- 23. Е.В. Зароченцев, Е.П. Троицкая, В.В. Чабаненко, ФТВД 12, № 3, 7 (2002).
- 24. В.Л. Дорман, Е.В. Зароченцев, Е.П. Троицкая, ФНТ 8, 94 (1982).
- 25. J.W. Leech, J.A. Reissland, J. Phys. C3, 975 (1970).
- 26. Д.А. Рейсленд, Физика фононов, Мир, Москва (1975).
- 27. G.L. Pollack, Rev. Mod. Phys. 36, 748 (1964).
- 28. S.D. Dobbs, G.C. Jones, Rep. Prog. Phys. 20, 516 (1957).
- 29. V.G. Vaks, E.V. Zarochentsev, S.P. Kravchuk, V.P. Safronov, J. Phys. F8, 725 (1978).

E.V. Zarochentsev, E.P. Troitskaya, V.V. Chabanenko

ELEMENTARY OSCILLATIONS IN THE INERT-GAS CRYSTALS. 1. K.B. TOLPYGO'S MODEL AND PHONON FREQUENCES IN THE GROUND STATE

Some electron-ion summands of the energy of inert-gas crystals (IGC) are discussed within the framework of K.B. Tolpygo's model and its modifications. The phonon frequences of crystals from the Ne–Xe series are calculated for T = p = 0 and compared with the experiment. There is a good agreement between theory and experiment.

Fig. The phonon dispersion curves for IGC. Solid, dashed and dotted lines – calculations for M3, M2, M4, respectively. Experimental data: a – Ne: open characters – for 4.7 K [14]; shaded – 5 K [15]; δ – Ar: open characters – for 4 K [111] and [110] from [16], [100] – from [17], shaded – from [18]; e – Kr – from [19]; e – Xe – from [20]