PACS: 73.61.-r, 62.50.+p

П.И. Поляков, С.С. Кучеренко

ЗАКОНОМЕРНОСТИ РАСПОЛОЖЕНИЯ КРИТИЧЕСКИХ ЛИНИЙ И ТОЧЕК В ИЗМЕНЕНИЯХ ФАЗОВЫХ ПЕРЕХОДОВ И СВОЙСТВ МАГНИТНЫХ ПОЛУПРОВОДНИКОВ

Донецкий физико-технический институт им. А.А. Галкина НАН Украины 83114, г. Донецк, ул. Р. Люксембург, 72 poljakov@mail.fti.ac.donetsk.ua

Проведен анализ корреляции электропроводности и ферромагнетизма в поли- и монокристаллических манганитах, выделены критические линии и точки. В изменениях структурного фазового перехода ($\Phi\Pi$) и свойств под влиянием P и H выявлена роль термо- и магнитоупругой анизотропий. Определено значение упругоанизотропных деформирующих ($YA\Pi$) напряжений в изменениях структурного $\Phi\Pi$ и свойств до и после него при смене приоритетов влияния H и T.

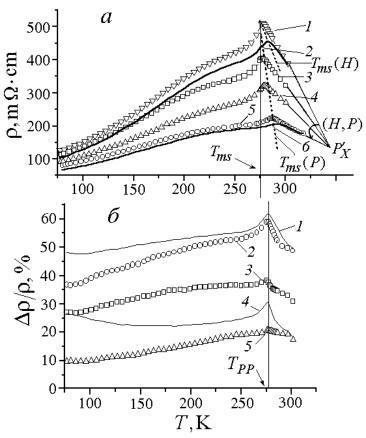
Введение

Разнообразие и переплетение свойств и физических процессов, корреляция электропроводности и магнетизма в манганитах представляют собой интереснейшие явления в физике твердого тела. Им посвящено значительное число работ [1,2] и обзоров [3,4], однако окончательно так и не установлена взаимосвязь магнитных и электрических свойств.

В последние годы наблюдается тенденция изучения резистивности под влиянием не только температур T и магнитного поля H, но и высоких гидрои квазигидростатических давлений P. Получены значимые результаты, обнаружены новые эффекты и закономерности [5–12]. Обобщающий анализ результатов изменения $\Phi\Pi$ и свойств резистивности и магнитострикции магнитных полупроводников под влиянием T-H-P, выявление критических линий, точек и закономерностей их положения в поликристаллическом $La_{0.7}Ca_{0.3}MnO_3$ [8] и монокристаллическом $LaMnO_3$ [13] — основная цель данной работы.

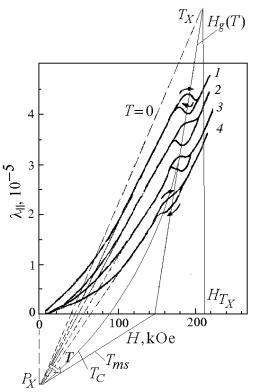
Экспериментальные результаты и их обсуждение

1. В установленном многообразии экспериментальных результатов поликристаллических и пленочных образцов, представленных в работах [10–12], отметим их последовательность. Так, в [10] впервые были обнаружены барои баромагниторезистивный эффекты, проведены оценки соответствия влияния T-H-P на удельное сопротивление поликристаллических образцов, установлена роль термодинамических УАД-механизмов. В работе [11] впервые выявлены «охлаждающий» и «нагревающий» эффекты влияния давления и магнитного поля и их роль в закономерностях изменений зависимостей $T_{ms}(P)$, $T_{ms}(H)$. Найдена закономерность постоянства максимумов магнито-, баро-, и баромагниторезистивного эффектов при одной и той же температуре T_{PP} , совпадающей с температурой ФП T_{ms} . По результатам изменений ФП, резистивных и магнитострикционных свойств, представленных в работе [11], установлена знакопеременность влияния T-H-P на свойства и эффекты в магнитных полупроводниках, определено соответствие зависимости $H_g(T)$ и T_{ms} . По данным магнитострикции выявлены критические точки P_X и T_X . В [12] показана усовершенствованная методика получения высоких гидростатических давлений и представлены датчики давлений до 25 kbar на основе пленочных образцов магнитных полупроводников.


2. В подтверждение универсальности методологии анализа [9–11] параметры оценок влияния T–H–P на удельное сопротивление в образцах $La_{0.7}Ca_{0.3}MnO_3$, рассматриваемых в работе [9], составляют 5.1 K–2.42 kOe–1 kbar.

Поскольку в магнитных полупроводниках наблюдаемое линейное смещение зависимостей $T_{ms}(H)$ и $T_{ms}(P)$ под влиянием T-H-P является закономерностью упругих напряжений, оценим соответствие влияния T-H-P на ФП по удельному сопротивлению поликристаллического образца $La_{0.7}Ca_{0.3}MnO_3$ (рис. 1,a): магнитное поле величиной 2.42 kOe изменяет температуры T_{ms} на такую же величину, как и приложенное гидростатическое давление в 1 kbar.

В данном образце максимумы баро-, магнито- и баромагниторезистивного эффектов (рис. 1, δ), как и в работах [10,11], соответствуют температуре T_{PP} , совпадающей с температурой ФП T_{ms} . Из этого следует, что основным фактором, формирующим ФП, являются термоУАД-напряжения, а магнито- и бароУАД-напряжения реализуют «охлаждающий» и «нагревающий» эффекты.


Используя метод аппроксимации, выделим критическую точку $P'_{X'}$ (рис. 1,a) на пересечении продолжений зависимостей удельного сопротивления от температуры при различных H и P. Эти же закономерности можно было бы выявить и в работах [5-7] на температурных зависимостях удельного сопротивления при различных H и P, что не противоречит логике эксперимента.

3. Выявлены оценки соответствия влияния T и H (5.1 K и ~2.5 kOe) и уточнены положения критических линий и точек в магнитострикционных зависимостях LaMnO₃ (рис. 2), показанные в работе [11]. Эти оценки позволяют связать изменения T_{ms} в свойствах температурных зависимостей удельного сопротивления (рис. 1) с изменениями $H_g(T)$ в магнитострикционных свойствах (рис. 2) и установить соответствие критических линий и точек, показанных на рис. 1, параметрам $T_{ms}(H)$, $T_{ms}(P)$, P'_{X_i} , T_{ms} , а на рис. 2 – T_C , T_{ms} , H_{T_X} , P_X , T_X .

Рис. 1. Температурная зависимость удельного сопротивления (*a*) и магнито-, баро-, баромагниторезистивного эффектов (*б*) поликристаллического образца $\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3$ под влиянием магнитного поля и гидростатического давления: *a*: I-P=0, H=0; 2-P=0, H=8 kOe; 3-P=6 kbar, H=0; 4-P=12 kbar, H=0; 5-P=17 kbar, H=0; 6-P=17 kbar, H=8 kOe; 6:I-P=17 kbar, H=8 kOe; 1:I-P=17 kbar, 1:I-P=18 kOe; 1:I-P=18 kbar, 1:I-P=1

- 4. В настоящее время отсутствует последовательный анализ явлений, реализуемых в критических линиях и точках. Аналитические методы изучения изменений параметров и свойств, являющихся признаками критических точек как в физически доступной, так и недоступной областях, являются недостающим звеном в цепи научных изысканий (в то время как экспериментальное обнаружение изменений намагниченности, магнитной восприимчивости, резистивных свойств, в той или иной степени проявляющихся в критических точках с различной степенью точности, отражает простоту классификаций). Анализ признаков и общности приведенных результатов позволяет установить истинную особенность термодинамических процессов в общей задаче изучения механизмов, реализующих физические закономерности непосредственно при исследовании многообразия критических линий и точек (явлений).
- 5. Обобщим на примере зависимостей изменения удельного сопротивления магнитных полупроводников методы построения критических линий и точек в изменениях $\Phi\Pi$ и свойств резистивности (рис. 1,a):

Рис. 2. Полевая зависимость продольной магнитострикции монокристалла $LaMnO_3$ [13]

 $T_{ms}(H), T_{ms}(P)$ — зависимость изменения ФП под влиянием H и P;

 P'_{X} — критическая точка пересечения изменений зависимостей удельного сопротивления от температуры под влиянием P и H;

 $T_{ms} = T_{PP}$ – температура реализации ФП совпадает с максимумами зависимостей баро-, магнито-, баромагниторезистивного эффектов (рис. 1).

Следует отметить, что все критические линии и точки являются закономерностью химического состава, связей и симметрийных особенностей структуры.

Рассмотрим критические линии и точки в изменениях магнитострикции под влиянием магнитного поля и температуры (рис. 2):

 $H_g(T)$ — критическая линия изменений поля гистерезиса;

 P'_{X} — точка пересечения аппроксимированных линейных полевых зависимостей магнитост-

рикции; она связывает динамику изменения свойств со структурой образца;

 T_X — критическая точка пересечения построенной зависимости $H_g(T)$ и изменения магнитострикции при T=0;

 T_C – температура Кюри, соответствующая критической точке пересечения кривой $H_g(T)$ с осью изменений H на магнитострикционной зависимости. Точка T_C фиксирует структурный ФП при равенстве термо- и магнитоупругой анизотропий.

Выделенные критические точки P_X , P'_X , T_X и линия $H_g(T)$, приведенные на рис. 2, обращают внимание на значительные изменения магнитострикции после $\Phi\Pi$. Резкий рост наклона зависимостей при повышении температуры и магнитного поля определяет изменения характера намагниченности до и после $\Phi\Pi$, что является закономерностью термоУАД-напряжений, а магнито УАД-напряжения в структуре реализуют «охлаждающий», «нагревающий» эффекты в изменениях $\Phi\Pi$ и свойств магнитного полупроводника.

6. Анализ выделенных критических линий и точек в исследуемых системах выявляет еще одну важную закономерность — знакопеременность и компенсирующие соответствия механизмов упругих и магнитоупругих свойств и анизотропий в изменениях $\Phi\Pi$ и свойств под влиянием H и T.

Особенности изменения удельного сопротивления (рис. 1,a) связаны с приоритетом термоУАД-напряжений, где упругая анизотропия реализует скачок проводимости в области структурного фазового перехода ме-

талл—полупроводник при температуре T_{ms} и напряженности магнитного поля H=0. Влияние магнитного поля проявляется в свойствах и изменениях зависимости $T_{ms}(H)$ через «охлаждающий» эффект.

Изменения магнитострикции под воздействием «нагревающего» эффекта магнитного поля (рис. 2) показывают приоритет магнитоУАД-напряжений, а свойства магнитоупругой анизотропии при T=0 реализуют ФП в критической точке T_X при $H_X(T=0)$. Последующее влияние конкурирующего механизма термоУАД-напряжений проявляется в изменениях параметра гистерезиса. Это есть закономерность различия термо- и магнитоупругих анизотропий на зависимости $H_g(T)$ — смещение полей гистерезиса от температуры.

Наиболее важный результат — это знакопеременность приоритетов влияния H и T в изменениях структурного $\Phi\Pi$ и свойств. Из приведенных ранее оценок соответствия изменений H и T, отнесенных к параметрам давления, можно установить следующую закономерность. Линейность и нелинейность критических линий зависимостей $T_{ms}(H)$, $H_g(T)$, а также изменения параметров гистерезиса объясняются сменой приоритетов конкурирующего влияния H и T, а критическая точка T_C есть следствие положения структурного $\Phi\Pi$ при равенстве упругой и магнитоупругой анизотропий.

Проведенный анализ устанавливает и логически объясняет роль УАДнапряжений в формировании и изменении ФП и свойств, а также связь этих механизмов через критические линии и точки с особенностями состава и симметрии структуры исследуемых классов веществ. Это позволяет объяснить любые изменения свойств как под влиянием давления, температуры и магнитного поля, так и при варьировании параметрами состава и структуры в многокомпонентных системах через связь критических точек T_X и P_X , T_{ms} , T_C и линий $T_{ms}(H)$, $H_g(T)$.

Заключение

Анализ результатов экспериментальных исследований резистивных свойств в массивном поликристаллическом $La_{0.7}Ca_{0.3}MnO_3$ и свойств магнитострикции в монокристалле $LaMnO_3$ позволил установить:

- соответствия влияния T—H—P на свойства резистивности, и T—H на свойства магнитострикции;
- закономерности изменения $T_{ms}(H)$ и $H_g(T)$ и роль «охлаждающего», «нагревающего» эффектов;
- знакопеременность в изменении приоритетов влияния T и H, проявляющегося в линейной и нелинейной зависимостях критических линий $T_{ms}(H)$ и $H_g(T)$ и критической точки T_C результата компенсирующего равенства термо-, магнитоупругих анизотропий;
- роль и значение критических точек P_X , T_X и P'_X и соответствий в изменениях свойств под влиянием температуры и магнитного поля.

Из этого следует, что знакопеременность влияния T и H объясняет изменения резистивных свойств, закономерность поведения критической точки T_{ms} и динамику критической линии $T_{ms}(H)$ как приоритет термоУАД-напряжений. Изменения же магнитных свойств, динамика критической ли-

нии $H_g(T)$ и точки T_C трактуются как смена приоритетов влияния магнитного поля через механизмы магнитоупругих стрикций. Температура T_C есть закономерность соответствующего равенства термо- и магнитоупругих анизотропий. Параметр T_{PP} остается постоянной температурой структурного $\Phi\Pi$ и является основополагающим фактором разделения свойств.

Авторы выражают искреннюю благодарность Н.П. Бойко за интерес, внимание и помощь в работе.

- 1. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950).
- 2. J.H. Van Santen, G.H. Jonker, Physica 16, 599 (1950).
- 3. В.М. Локтев, Ю.Г. Погорелов, ФНТ **26**, 231 (2000).
- 4. *C.N.R. Rao, B. Raveau*, Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, World Scientific (1999), p. 345.
- 5. M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
- 6. V. Moshnyaga, S. Klimm, E. Gommert, R. Tidecks, S. Horn, K. Samwer, J. Appl. Phys. 88, 5305 (2000).
- 7. I.V. Medvedeva, K. Bärner, G.H. Rao, N. Hamad, Yu.S. Bersnev, J.R. Sun, Physica B292, 250 (2000).
- 8. С.С. Кучеренко, В.И. Михайлов, В.П. Пащенко, П.И. Поляков, В.А. Штаба, В.П. Дьяконов, Письма в ЖТФ **27**, вып. 15, 38 (2001).
- 9. С.С. Кучеренко, В.П. Пащенко, П.И. Поляков, С.И. Харцев, В.А. Штаба, Письма в ЖТФ **27**, вып. 11, 24 (2001).
- 10. P.I. Polyakov, S.S. Kucherenko, JMMM **248**, 396 (2002).
- 11. П.И. Поляков, С.С. Кучеренко, ФНТ 28, 1041 (2002).
- 12. P.I. Polyakov, V.P. Pashchenko, S.S. Kucherenko, Defect and Diffusion Forum **208–209**, 307 (2002).
- 13. А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьева, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.М. Балбашов, ФТТ **42**, 1077 (2000).

P.I. Polyakov, S.S. Kucherenko

REGULARITIES IN THE LOCATION OF CRITICAL LINES AND POINTS IN CHANGES OF PHASE TRANSITIONS AND PROPERTIES OF MAGNETIC SEMICONDUCTORS

A correlation of electric conduction and ferromagnetism in poly- and single-crystalline manganites has been analyzed and critical lines and points have been localized. The role of thermo- and magnetoelastic anisotropies in changes of structural phase transition and properties under the influence of P and H has been revealed. A significance of elastically anisotropic deforming stresses in changes of PT and properties before and after the transition with changes in priority of H and T effects has been determined.

Физика и техника высоких давлений 2003, том 13, № 1

Fig. 1. Temperature dependence of resistivity (a) and magneto-, baro- baromagnetoresistive effects (δ) for polycrystalline La_{0.7}Ca_{0.3}MnO₃ specimen under the influence of magnetic field and hydrostatic pressure: a: I - P = 0, $\dot{I} = 0$; 2 - P = 0; H = 8 kOe; 3 - P = 6 kbar, H = 0; 4 - P = 12 kbar, $\dot{I} = 0$; 5 - D = 17 kbar, $\dot{I} = 0$; 6 - D = 17 kbar, $\dot{I} = 8$ kOe; δ : I - P = 17 kbar, $\dot{I} = 8$ kOe; I - P = 17 kbar, I = 8 kOe; I - P = 17 kbar, I = 8 kOe; I - P = 18 kOe; I - P = 18

Fig. 2. Field dependence of longitudinal magnetostriction for LaMnO₃ single crystal [13]