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Modelling of lattices  
of two-diMensional Quasi-crystals

We propose the method for modelling of quasi-periodic structures based on an algo-
rithm being a geometrical interpretation of the Fibonacci-type numerical sequences. 
The modelling consists in a recurrent multiplication of basis groups of the sites, 
which possess the 10-th, 8-th or 12-th order rotational symmetry. The advantage 
of the proposed method consists in an ability to operate with only two-dimensional 
space coordinates rather than with hypothetical spaces of dimension more than 
three. The correspondence between the method of projection of quasi-periodic lat-
tices and the method of recurrent multiplication of basis-site groups is shown. As 
established, the six-dimensional reciprocal lattice for decagonal quasi-crystals can 
be obtained from orthogonal six-dimensional lattice for icosahedral quasi-crystals 
by changing the scale along one of the basis vectors and prohibiting the projection 
of sites, for which the sum of five indices (corresponding to other basis vectors) 
is not equal to zero. It is shown the sufficiency of using only three indices for de-
scribing diffraction patterns from quasi-crystals with 10-th, 8-th and 12-th order 
symmetry axes. original algorithm enables direct obtaining of information about 
intensity of diffraction reflexes from the quantity of self-overlaps of sites in course 
of construction of reciprocal lattices of quasi-crystals.

Keywords: quasi-periodic structures, Fibonacci sequence, projection method, basis 
vectors, rotation symmetry, reciprocal lattice.

1. introduction

one of actual problems of modern solid-state physics is the description 
of quasi-crystalline materials structure. For the establishment and de-
scription of crystal structures, the experimental and theoretical basis is 
well developed. In the same time, formal extrapolation of laws and 
methods of classical crystallography to quasi-crystalline structures leads 
to significant difficulties. For instance, the usage of three Miller indi-
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ces for denoting of atomic planes (corre-
sponding to the reciprocal quasi-lattice sites) 
leads to the fact that these indices are irra-
tional in most cases. In practice, the using of 
non-integer indices is inconvenient. There-
fore, for the indexing of quasi-crystals planes 
with the symmetry of icosahedron, in paper 
[1], it was proposed the replacement of three 

index symbols with six-index integer index as (h/h' k/k' l/l' ), H = h + h'τ, 
K = k + k'τ, L = l + l'τ, where irrational constant number τ = 2cos (π/5) 
denotes ‘golden ratio’.

Another method of indexing of atomic planes is the result of model-
ling method of icosahedral quasi-crystal structures. It consists in pro-
jecting the six-dimensional hypercube lattice on the three-dimensional 
space [2, 3]. In this method, the six-index designation (n1 n2 n3 n4 n5 n6) 
was proposed for both atomic planes and reciprocal lattice sites, since 
the symmetry of quasi-crystal lattice is identic to corresponding sym-
metry of its reciprocal lattice [4, 5]. In addition, for icosahedral quasi-
crystals, authors commonly use the two-index (N, M)-type designation 
based on the fact that square number of the vector of reciprocal icosa-
hedral quasi-lattice can be presented as [1]

 Q2 = N + Mτ. (1)

one of the differences of quasi-crystals, which have 8-th, 10-th or 
12-th order symmetry axis, from the quasi-crystals with icosahedral 
symmetry is the periodicity in direction of higher order axis. The cor-
responding index associated with this direction always accepts integer 
value and there is no need to replace it with the combination of two 
indices comprising rational and irrational part. The issue is in ambigu-
ity of assignment of base vectors for flat quasi-lattice, which is perpen-
dicular to symmetry axis of the 8-th, 10-th or 12-th order. In many 
papers relating to decagonal quasi-crystals [6–10], there are five-index 
symbols of diffraction reflexes. These symbols include four indices re-
ferring to flat quasi-lattice and one index referring to periodicity direc-
tion. In papers [11, 12], authors used a six-index notation for such 
quasi-crystals. In this case, the five-dimensional index refers to flat 
quasi-lattice. Quite often, e.g., in refs. [3–15], reflexes are simply de-
noted as those related to the quasi-crystalline phase without specifying 
the corresponding indices. The difference in the number of indices is 
caused by the fact that for the basis vectors of flat reciprocal quasi-
lattice are used five vectors, which directed from the pentagon centre to 

Fig. 1. basis vectors of planar quasi-lattice with de-
cagonal symmetry
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its vertices (±q1, ±q2, ±q3, ±q4, ±q5) (Fig. 1). however, considering equa-
tion q1 + q2 + q3 + q4 + q5 = 0, obviously, it can be used only four basic 
vectors. however, the simplification of indexation, which consists in 
reducing of number of used indices, leads to the fact that equivalent 
sites of reciprocal quasi-lattice are differently indexed (Fig. 2).

In addition to the problem with indexing, there is also the problem of 
calculating the diffraction maxima intensity. The main difficulty consists 
in impossibility of assignment of quasi-crystals elementary cell and, con-
sequently, in impossibility of calculating the structural factor. one way of 
solving this problem is to approximate quasi-crystalline structure with 
cubic or other lattices with large parameters [16–19]. however, this meth-
od is not convenient, since in order to increase the correspondence of the 
calculated results to the real one, it is necessary to choose the elementary 
cells of approximant structure with the largest values of lattice parame-
ters. In this case, the number of cell basis elements naturally increases.

Another method for evaluating the intensity of reflexes is based on 
the using of periodic lattice in multi-dimensional, in particular, six-di-
mensional [20] space. 

To solve these problems more correctly, the original method of mod-
elling the quasi-periodic structures, elucidated in papers [21–25], is 
proposed.

2. Decagonal Quasi-Periodic lattices

Since the concept of the quasi-crystal is closely related to the concepts 
such as Fibonacci sequence (elements of which are determined by the 
equation Fn = Fn−1 + Fn−2) and the ‘golden ratio’ (expressed by τ number), 
then, some kind of geometric interpretation of this sequence is sug-
gested for modelling.

For two-dimensional decagonal quasi-lattice, the process of model-
ling can be demonstrated as follows. The group of sites, set by ten basic 
vectors  (±q1, ±q2, ±q3, ±q4, ±q5), is selected for the first element of the 

Fig. 2. The ambi-
guity of the in-
dexing the planar 
decagonal quasi-
lattice sites: (a) 
five indices (left); 
(b) four indices 
(right)
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‘sequence’. let us call this group as 
D1 (Fig. 3, a). 

To simplify the recording, we de-
note these ten vectors as qi, where i-
index varies from 1 to 10. The group 
D2 is obtained by placing the centres 
of additional ten groups D1 in the 
sites of the initial group (Fig. 3, b, 
c). Thus, the group D2 is the set of 
sites given by the set of vectors, {qi}, 
of the previous group, D1, and the 
vectors obtained by the addition of 
vectors, {qi + qj}. Schematically, the 
procedure for obtaining this group 
can be written as D2 = D1 + {qi}D1, 
where the equation {q1}D1 denotes the 
shifting the centre of the group D1 
into corresponding vectors. Then, on 
ends of the vectors (±τq1, ±τq2, ±τq3, 
±τq4, ±τq5) constructed from the cen-
tre of the group D2, the centres of 
the group D1 are placed. As a result, 
we obtain the group of sites D3 (Fig. 
3, d) [21, 22].

For obtaining the group D4 on 
ends of the vectors (±τ2q1, ±τ2q2, ±τ2q3, 
±τ2q4, ±τ2q5) constructed from the 
cen  tre of group D3, ten groups D2 are 
placed (Fig. 4). Generally, to obtain 
the group Dn, we have to put the 
centres of the group Dn−1 at the ends 
of the vectors (±τn–2q1, ±τn–2q2, ±τn–2q3, 
±τn–2q4, ±τn–2q5) constructed from the 
centre of the group Dn−2. 

The total algorithm for model-
ling the decagonal quasi-crystalline 

lattice can be written in the form of recursive expression Dn = Dn−1 + 
+ {τn–2qi}Dn−2. Starting with the third group of sites, it is possible  
to implement two more versions of recursive algorithm: Dn = Dn−2 + 
+ {τn–2qi}Dn−1 and Dn = Dn−1 + {τn–2qi}Dn−1.

Therefore, we denote the algorithm Dn = Dn−1 + {τn–2qi}Dn−2 as al-
gorithm no. 1, Dn = Dn−2 + {τn–2qi}Dn−1 as algorithm no. 2, and Dn = Dn−1 + 
+ {τn–2qi}Dn−1 as algorithm no. 3.

Fig. 4. Group of sites D4 constructed 
according to algorithm no. 1

Fig. 3. The process of generation of 
quasi-lattice sites: (a) initial group of 
sites, (b) displacement of additional 
initial group of sites along one of the 
basis vectors, (c) group of sites D2, (d) 
group of sites D3
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Table 1. Characteristics of Dn groups constructed according to three algorithms

Group

Algorithm

1 2 3

Dn = Dn−1 + {τn−2qi}Dn−2 Dn = Dn−2 + {τn−2qi}Dn−1 Dn = Dn−1 + {τn−2qi}Dn−1

Vectors  
of group

Group 
radius

Group vectors
Group 
radius

Group vectors
Group 
radius

D1 {qi} 1 {qi} 1 {qi} 1

D2 {qi}, {qi + qj} 2 {qi}, {qi + qj} 2 {qi},{qi + qj} 2

D3 {qi}, {qi + qj}, 
{τqi + qj}

τ + 1 {qi}, 
{τqi + qj + qk},

τ + 2 {qi}, {qi + qj}, {τqi + qj}, 
{τqi + qj + qk}

τ + 2

D4 {qi}, {qi + qj}, 
{τqi + qj},  
{τ2qi + qj}, 
{τ2qi + qj + qk}

τ + 3 {qi}, {qi + qj}, 
{τ2qi + qj}, 
{τ2qi + τqj + 
+ qk + ql}

2τ + 3 {qi}, {qi + qj}, {τqi + qj}, 
{τqi + qj + qk}, 
{τ2qi + qi}, {τ2qi + qi + qk}, 
{τ2qi + τqi + qj}, 
{τ2qi + τqi + qj + qk}

2τ + 3

D5 {qi}, {qi + qj}, 
{τqi + qj}, 
{τ2qi + qj},  
{τ2qi + qj + qk}, 
{τ3qi + qj},  
{τ3qi + qj + qk}, 
{τ3qi + τqj + qk}

3τ + 2 {qi},  
{τqi + qj +  qk}, 
{τ3qi + qj}, 
{τ3qi + qj + qk}, 
{τ3qi + τ2qj + qk}, 
{τ3qi + τ2qj +  
+ τqk + ql + qm}

4τ + 4 {qi}, {qi + qj}, {τqi + qj}, 
{τqi + qj + qk}, 
{τ2qi + qi}, 
{τ2qi + qj + qk}, 
{τ2qi + τqj + qk}, 
{τ2qi + τqj + qk + ql}, 
{τ3qi + qj},  
{τ3qi + qj + qk},  
{τ3qi + τqj + qk}, 
{τ3qi + τqj + qk + ql}, 
{τ3qi + τ2qj + qk}, 
{τ3qi + τ2qj + qk + ql}, 
{τ3qi + τ2qj + τqk + ql}, 
{τ3qi + τ2qj + τqk + ql + qm}

4τ + 4

It is known [3, 5, 9] that reciprocal for decagonal quasi-crys-
talline lattice is also decagonal quasi-periodic lattice. Therefore, 
obtained models can be compared with electron diffraction pat-
terns of real decagonal quasi-crystals having selected certain scale. 
In fact, these electron  diffraction patterns represent the section 
of three-dimensional recip rocal lattice.

The quasi-lattice model constructed according to the first algo-
rithm is in a good agreement with the electron diffraction pattern, 
which was obtained in [26] for the Al–Ni–Co alloy with a decago-
nal structure (Fig. 5, a, b). however, the coincidence of model 
sites is observed only for reflexes with high and medium intensity. 
Some of the same low-intensity reflexes according to specified al-
gorithm are not generated. Using the algorithm no. 2 eliminates 
this problem (Fig. 5, c).
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Using the algorithm no. 3 also leads to similar result. Some 
characteristics of sites groups constructed by three specified algo-
rithms are given in Table 1, from which it is evident that the 
groups constructed according to the algorithm Dn = Dn−1 + τn–2qi Dn−1 
(algorithm no. 3) include also those groups, which are constructed 
according to the two another algorithms.

It should be noted that starting from a group D3 the last sub-
sets of vectors in algorithms nos. 2 and 3 (Table 1) contain all 
other ‘preceding’ subsets of corresponding algorithm. For exam-
ple, the subset of {τqi + qj + qk} vectors (D3 group) contains {qi + qj} 
and {τqi + qj} vectors. It can be easy verified, if to consider some 
properties of basic vectors, particularly that qi + qj +1 = –τqi + 3. At 
the same time, the last element in groups constructed according to 
the first proposed algorithm, in the general case, does not contain 
all subsets. For example, {τ3qi + qj + qk} subset in D5 group does not 
contain {qi} vectors. It follows from the fact that |τ3qi – τqi – qi| > 
> |qi|. Thus, the quasi-lattices constructed according to the second 
and to the third algorithms are identical with each other and Dn 
group is reduced to the set of sites given by {qi1 + qi2 + τqi3 + 
+ τ2qi4 +...+ τn –1qin} vectors.

2.1. Relation between Decagonal and Icosahedral  
Quasi-Lattices; Indexing of Diffraction Reflexes

Writing five unit basis vectors (Fig. 1) in a form

 1

1

2

 τ
= + τ γ 

q i j , ( )2

1
0 2

2
= + τ

τ
q i j , 

3

1

2

 τ
= + 

τ γ 
q i j , 

 
 

2
4

1 1

2

 
= τ  τ γ 

+i jq , 2
5

1 1

2

 
= + τ 

τ γ 
iq j , 

(2)

Fig. 5. overlaying the model groups of lattice sites on electron diffraction pattern 
of real decagonal Al–Ni–Co quasicrystal [26] (a), where the sites are constructed via 
the algorithms nos. 1 (b) and 2 (c)
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where 1 2γ = τ + , then, we can show that, in a case of plain decagonal 
quasi-lattice, the equation for square distance between the random site 
and origin of coordinates (Q = n1q1 + n2q2 + n3q3 + n4q4 + n5q5 ) can be 
reduced to the form:

|Q|2 = (n1
2 + n2

2 + n3
2 + n4

2 + n5
2 − n1n2 − n2n3 − n3n4 − n4n5 − n5n1) +

+ (n1n2 + n2n3 + n3n4 + n4n5 + n5n1 − n1n3 − n2n4 − n3n5 − n4n1 − n5n2) τ. (3)

Using denotations

N* = n1
2 + n2

2 + n3
2 + n4

2 + n5
2 − n1n2 − n2n3 − n3n4 − n4n5 − n5n1,

M* = n1n2 + n2n3 + n3n4 + n4n5 + n5n1 − n1n3 − n2n4 − n3n5 − n4n1 − n5n2, (4)

it can be derived the equation, which is similar by the form to obtained 
in ref. [1] for icosahedral quasi-crystals:

 |Q|2 = N* + M*τ. (5)

Identical form of eqs. (1) and (5) is due to the relation between 
icosahedral and decagonal lattices. To prove this statement, let us use 
the method of projection and select six orthogonal vectors in the recip-
rocal six-dimensional space, which the general view was reported in 
ref. [1]:

 u1 = [τ  1  0  1  τ−  0], 

 u2 = [0  τ   1  0  1  τ−], 

 u3 = [1
−
   0  τ    τ   0  1], 

 u4 = [0  τ−  1  0  1
−
  τ−], 

(6)

 u5 = [τ   1−  0  1  τ   0], 

 u6 = [1   0  τ   τ−  0  1], 

let us consider the first triple and the second one of components for 
each vector as the Cartesian coordinates of reciprocal spaces: physical 
(XYZ) and ‘perpendicular’ (X′Y′Z′) ones. The vectors (6) determine six 
vertices of icosahedron both in physical and ‘perpendicular’ spaces. 
Thus, the projection of six-dimensional periodic structure constructed 
on the set of vectors (6) specifies the reciprocal icosahedral lattice. Us-
ing rotation matrix of the form

 

0 0 0 0

0 1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 1 0

0 0 0 0

γτ γ 
 
 
 γ γτ
 

γ γτ 
 
  γτ γ 

, (7)
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the system (10) can be converted in a manner that vector u6 is projected 
only onto Z and Z′ axis, while projections of the rest of five vectors on 
XOY and X′OY′ planes specifies the vertices of regular pentagon: 

 

2
1

2
2

3

2
4

2
5

6

[  1         ],

[         1 ],

[2  0   2  0 ],

[         1 ],

[  1         ],

[0   0  1/  0  0  1/ ].

= γτ γτ γ τ γτ

= γ τ γτ γτ γτ

= γτ γτ γτ γτ

= γ τ γτ γτ γτ

= γτ γτ γ τ γτ

= γ γ

u

u

u

u

u

u

 (8)

The set of vectors (8) remains orthogonal, and next statement is 
correct for both the (8) and (6) vectors: 

 1 2 3 4 5 6| | | | | | | | | | | | 2( 2)= = = = = = τ +u u u u u u . (9)

linear combination of the first five vectors (8)

 
q1

* = (u1 − u3), q2
* = (u2 − u4), q3

* = (u3 − u5), 

 q4
* = (u4 − u1), q5

* = (u5 − u2) 
(10)

represents five vectors in reciprocal six-dimensional space, which pro-
jections onto physical and ‘perpendicular’ spaces are coplanar between 
each other:

 

*
1

*
2

*
3

* 2
4

* 2
5

[ /  1  0  1/     0],

[ 0  2  0  0    2   0],

[ /  1  0  1/      0],

[1/   0  1/   1/  0],

[1/   0  1/   1 /  0].

= τ γ γτ τ

= τ

= τ γ γτ τ

= γ τ γ τ

= γ τ γ τ

q

q

q

q

q

 (11)

Comparing eqs. (2) and (11), we can write

 =
τ

*
1 1

1

2
q q , =

τ
*

2 2

1

2
q q , =

τ
*

3 3

1

2
q q , =

τ
*

4 4

1

2
q q , =

τ
q *

5 5

1

2
q ; (12)

here, qi
*|| are projections of qi

* vectors onto reciprocal space.
Thus, the basis vectors {qi} of reciprocal decagonal quasi-lattice in 

physical space are expressed through the similar basis vectors of re-
ciprocal icosahedral lattice. Using equations (12), it is possible to ob - 
tain the relations between (N*, M*) and (N, M), which appear in eqs. (1) 
and (5):

 N* + M*τ = 1/(2τ)2 (N + Mτ), N = 4/(N* + M*), M = 4/(N* + 2M*). (13)
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let complement the system (11) with sixth vector and divide all vectors 
by 2τ:

 

6 2
1
6
2
6 2
3
6 2
4
6 2
5

6
6

[1/2 1/2 0 1/2 1/2 0],

[0 1 0 0 1/ 0],

[1/2 1/2 0 1/2 1/2 0],

[1/2 /2 0 1/2 1/2 0],

[1/2 /2 0 1/2 1/2 0],

[0 0 / 2 0 0 / 2 ].

= γ τ γτ
= τ
= γ τ γτ
= γτ τ γτ τ
= γτ τ γτ τ

= λ γτ λ γτ

q
q
q
q
q

q

 (14)

establishment of dimensionless coefficient λ for vector u6 is equiva-
lent to the substitution of the six-dimensional cubic lattice by the or-
thogonal non-cubic one. It is necessary to note that

 6 6 6 6 6
1 2 3 4 5 3= = = = = − τq q q q q , *

6 3= λ − τq . (15)

According to (10) and (14), the indices of random site of reciprocal 
decagonal lattice (n1 n2 n3 n4 n5 n6) can be expressed through the indices 
of reciprocal icosahedral (non-cubic) lattice (k1 k2 k3 k4 k5 k6) by next 
equation:

 

1 1

2 2

3 3

4 4

5 5

6 6

1 0 0 1 0 0

0 1 0 0 1 0

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 0 0 1

n k

n k

n k

n k

n k

n k

     
     
     
     

=     
     
     
              

. (16)

It can be easily shown that the sum of the first five indices ki derived 
from eq. (16) is equal to zero. 

Thus, the reciprocal decagonal lattice can be constructed by the pro-
jection of six-dimensional orthogonal non-cubic lattice (which corre-
sponds to distorted icosahedral lattice) onto the physical space. Addi-
tionally, it is necessary to prohibit the projection of sites, in which the 
sum of the first five indices is not equal to zero. 

Considering (14), eqs. (3) and (5) can be written as

|Q|2 = (n1
2 + n2

2 + n3
2 + n4

2 + n5
2 − n1n2 − n2n3 − n3n4 − n4n5 − n5n1) +

 + (n1n2 + n2n3 + n3n4 + n4n5 + n5n1 − n1n3 − n2n4 − 

 − n3n5 − n4n1 − n5n2) τ + λ2n, (17)

 |Q2| = N* + M*τ + λ2L2, (18)

where N = n6.
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Table 2. Site indices of the flat decagonal quasi-lattice based  
on five base vectors and corresponding indices N* and M*.  
The relation between the value of the parameter τN* − M*  
and the self-overlapping quantity in the model group D6

No. (n1 n2 n3 n4 n5) N* M* |Q| τN* − M* Quantity of self- 
overlaps of sites

1 (1 1
−
 1 0 0) 5 −3 2 − τ 11.09 131

2 (1 0 1 0 0) 2 −1 τ − 1 4.24 538

3 (1 1
−
 0 1 1

−
) 7 −4 7 4− τ 15.33 24

4 (1 0 0 0 0) 1 0 1 1.62 850

5 (1 1
−
 0 0 0) 3 −1 3 − τ 5.85 424

6 (2 0 2 0 0) 8 −4 2τ − 2 16.94 5

7 (2 0 1 0 0) 5 −2 5 2− τ 10.09 167

8 (2 0 1 0 1) 4 −1 4 − τ 7.47 287

9 (1 1 0 0 0) 1 1 τ 0.62 1033

10 (2 1
−
 1 0 1) 8 −3 8 3− τ 15.94 14

11 (1 0 1
−
 0 0) 2 1 2 + τ 2.24 764

12 (2 1
−
 0 0 0) 7 −2 7 2− τ 13.33 57

13 (2 0 0 0 0) 4 0 2 6.47 347

14 (1 1 1
−
 0 0) 3 1 3 + τ 3.85 514

15 (1 1 1
−
 0 1

−
) 5 0 5 8.09 259

16 (2 0 1
−
 1 0) 7 −1 7 − τ 12.33 76

17 (2 1 0 0 0) 3 2 3 2+ τ 2.85 615

18 (2 0 1
−
 0 1

−
) 8 −1 8 − τ 13.94 41

19 (1 1 0 1
−
 0) 2 3 τ + 1 0.24 1018

20 (2 0 1 1
−
 1
−
) 9 −1 9 − τ 15.56 15

21 (2 1 0 0 1
−
) 6 1 6 + τ 8.71 216

22 (2 0 0 1
−
 0) 5 2 5 2+ τ 6.09 338

23 (2 1
−
 1
− 0 0 ) 7 1 7 + τ 10.33 150

24 (3 0 0 0 0) 9 0 3 14.56 27

25 (1 1 0 1
−
 1
−
) 3 4 3 4+ τ 0.85 944

26 (2 1
−
 0 1

− 1) 8 1 8 + τ 11.94 80

27 (2 1 1
−
 0 0) 5 3 5 3+ τ 5.09 405

28 (2 2 0 0 0) 4 4 2τ 2.47 623
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Proceeding from the above, it can be proposed quadratic form for 
decagonal lattice:

 
* * 2 2 * * 2

2 2 2 2

1 1
, .

N M L N M L c

ad a a c

+ τ + λ + τ
= = + =

λ
 (19)

Using equations (4) and (18), it is possible to proceed from the six-
indexes’ notation (n1 n2 n3 n4 n5 n6) to the three-indexes’ one (NML), 
which is more convenient in the case of indexing the XrD-patterns of 
polycrystalline samples. The values of N and M for the plain quasi-lat-
tice are presented in Table 2 in ascending order of |Q|. equation (19) is 
formally identical to quadratic form for tetragonal lattice.

2.2. Intensity of Diffraction Reflexes

In paper [1], it has been shown that, for icosahedral quasi-crystals, the 
intensity of diffraction reflexes is determined by the value of τ (τN − M) 
that is the distance between the site of hyper-lattice and its correspond-
ing projection onto physical space. Moreover, the intensity increases 
with decreasing of this distance. In our case of two-dimensional decago-
nal quasi-lattice, the distance from the site of six-dimensional lattice to 
physical space is determined by modulus of vector:

 Q⊥ = n1q1
⊥ + n2q2

⊥ + n3q3
⊥ + n4q4

⊥ + n5q5
⊥, (20)

where qi
⊥ are projections of six-dimensional vectors (14) onto ‘perpen-

dicular’ space. Using the set of eqs. (14), it can be shown that the 
square value of Q⊥ modulus can be expressed through the same param-
eters N* and M*, which determine the square value of vector modulus in 
physical space (5):
 |Q⊥|

2 = τ–3(N*τ + M*). (21)

Therewith, the square value of six-dimensional vector modulus is equal to1.5

 |Q6|2 = |Q|2 + |Q⊥|
2 (3 − τ) (N* + M*). (22)

It occurs multiple overlapping 
of sites during modelling the two-
dimensional decagonal lattice ac-
cording to definite algorithm since 
various combinations of basis vec-
tors can lead to the same result. 

Fig. 6. Correlation between the intensity 
of reflexes on electron diffraction pattern 
from decagonal Al–Ni–Co quasicrystal 
[26] and the quantity of self-overlaps of 
sites at the construction of the quasi-lat-
tice according to algorithm no. 3 (group of 
sites D6)
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Computer analysis of constructed lattices allowed indicating distinct 
correlation between the value of (N*τ − M*) parameter, experimental 
intensity of reflexes and the number of overlaps (Fig. 6, Table 2). The 
revealed correlation evidences for correctness of the selection of six-di-
mensional lattice basis vectors (14) that is in agreement with the data 
of paper [1] for icosahedral lattice. The selection of alternative basis, 
which projection onto the physical space also determines the vectors (6), 
may interrupt this correlation. For example, in paper [27], it has been 
proposed orthogonal basis in five-dimensional space:

 

5
1 0 0 0 0

5
2 1 1 3 3

5
3 2 2 1 1

5
4 3 3 4 4

5
5 4 4 2 2

[ 1/ 2],

[ 1/ 2],

[ 1/ 2],

[ 1/ 2],

[ 1/ 2],

c s c s

c s c s

c s c s

c s c s

c s c s

=

=

=

=

=

q

q

q

q

q

 (23)

where cr = cos (2r π/5), sr = sin (2r π/5), and the first two vectors compo-
nents are referred to the physical space, while the rest ones are referred 
to ‘perpendicular’ space. In this case, correlation between the distance 
from the site of five-dimensional lattice to physical space and the inten-
sity has not been observed. 

Comparing systems (14) and (23), we can propose the criterion for 
selection of decagonal-lattice basis vectors in the space with dimension-
ality, which is higher than 3: the sum of five basis vectors has to be 
equal to zero.

Correlation between the intensity of reflexes and the number of 
overlapping could be interpreted in the following way. basis sites of 
quasi-crystalline lattice are obtained from the projection of hyper-lat-
tice sites ‘closely’ located to physical space. Moreover, according to eq. 
(26) and Table 2, (10100)- and (10000)-type sites are located at the same 
minimal distance from coordinate start in six-dimensional space. how-
ever, the (10000)-type sites are ‘closer’ located to physical space and 
this determines their selection as the basis ones. The only one site of 
six-dimensional hyper-lattice, which located in the real (physical) space, 
is the origin of coordinate. This is necessary condition of aperiodicity of 
this hyper-lattice projection in any direction. 

In fact, the overlapping of geometric group shifted by certain vec-
tor means ‘parallel transfer’ of physical space so that another site of 
hyper-lattice closely located to the physical space is turned out in the 
real space (this site corresponds to τn–2qi vector). Intensity of diffraction 
reflexes is determined by the distance from the hyper-lattice site to 
physical space [20]. Since that, indicated correlation of intensity can be 
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interpreted in terms of probability for hyper-lattice site to be in projec-
tion region at the ‘shifting’ of the physical space during the generation 
of sites groups. In this manner, within this algorithm, the sites located 
closer to the initial physical space are generated more frequently as 
compared to those located at higher distances. Therefore, multiple gen-
eration of the same sites enables to get information on the intensity of 
appropriate diffraction reflexes.

Figure 7 illustrates mutual orientation of the basis vectors projec-
tions onto the physical qi and ‘perpendicular’ qi

⊥ spaces according to the 
set (14).

Value of q1 + q2 = − τq4 type defines one of the shifting the group of 
sites during modelling process. It corresponds to ‘perpendicular’ shift-
ing to q1

⊥ + q2
⊥ =  − q4

⊥/τ vector. It follows that the radii of sites groups in 
the model (algorithms nos. 2 and 3) in the physical and ‘perpendicular’ 
spaces are defined by equations: 

 rn = 1 + 1 + τ +...+ τn–2, rn
⊥ = 1 + 1 + 1/τ +...+ 1/τn–2, (24)

respectfully. The second equation in (24) shows that the radius of sites 
groups in ‘perpendicular’ space is limited:

 r ⊥n→∞ = 1 + (1 − 1/τ)–1 = 1 + τ2 = τ + 2. (25)

It follows that only those sites of six-dimensional lattice, which are 
located at the distance not higher than τ + 2 from the physical space, are 
projected within discussed model. Then, during the construction sites’ 
groups of high orders, the density of its location will be limited due to 
finite size of projection region [21].

3. Quasi-Periodic lattices with octagonal Symmetry

let show that algorithm Dn = Dn –1 + {τn–2qi}Dn –1 proposed for decagonal 
quasi-crystals is appropriate for using to quasi-crystalline lattices with 
octagonal symmetry. 

Fig. 7. Mutual ori-
entation of basis 
vectors in the 
physical (a) and 
‘perpendicular’ (b) 
spaces
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3.1. Real Space

The set of basis vectors has to be selected with two options, which are 
different in mutual orientation (Fig. 8):

( )1 1 0= +q i j , ( )2

2

2

 
= +  

 
q i j , ( )3 0 1= +q i j , ( )4

2

2

 
= − −  

 
q i j  (26)

or

( )1 i j= +q 1 0 , ( )2

2

2

 
= +  

 
q i j , ( )3

2

2

 
= − −  

 
q i j , ( )4 0 1= −q i j . (27)

As we can see, there is some ambiguity in selection of basis vectors. 
Then, if we consider qi as reciprocal lattice vectors, the ambiguity in 
indexing of diffraction reflexes of octagonal quasi-crystals will exist.

For example, let consider set (26) as the basis. Initial sites group O1 
is constructed with  (±q1, ±q2, ±q3, ±q4) set of qi vectors. Algorithm for 
modelling the lattice can be expressed in the form

 On = On –1 + {δs
n–2qi} On –1, (28)

where we use ‘silver ratio’ 

( 1 2)sδ = +  as parameter by 
analogy with ‘golden ratio’ τ 
[28]. one of the properties of 
number δs is that exponent va-
lues for it can be expressed as

       δs
n = Knδs + Kn –1; (29)

here, Kn are Pell’s numbers 
(0; 1; 2; 5; 12; 29; 70; 169; 

Fig. 9. Model for construction of 
the octagonal quasi-lattice

Fig. 8. options for 
selection of the ba -
sis vectors for quasi-
 lattice, which pos-
sesses the octago-
nal sym metry
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408; …), which satisfy to Kn
 = 2Kn –1 + Kn –2 condition [29]. It should be 

noted that there is a relation between the basis vectors: 

 q1 + q2 + q3 = δsq2. (30)

Then, using equations (29) and (30), we can write as following:

 

2
2 1 2 3 2 1 3 2

3
2 1 2 3 2 1 3 2

4
2 1 2 3 2 1 3 2

2 1 2 3 1 2 1 3 1 2

2 ( ) 2 ( ) 3 ;

5 ( ) 2 5 ( ) 7 ;

12 ( ) 5 12 ( ) 17 ;

                         ... ... ...

( ) ( ) ( ) .

s

s

s

n
s n n n n nK K K K K− −

δ = + + + = + +

δ = + + + = + +

δ = + + + = + +

δ = + + + = + + +

q q q q q q q q

q q q q q q q q

q q q q q q q q

q q q q q q q q

 (31)

Thus, it is evidently that any site of On = On –1 + {δs
n–2 qi} On –1 group 

can be expressed as linear combination of basis vectors in the form 
Q = n1q1 + n2q2 + n3q3 + n4q4. Figure 9 illustrates the example of applica-
tion of specified algorithm for O4 sites group.

It is important that algorithm (28) can be modified by substitution 
of one or few numeral coefficients (Fig. 10):

(a) O2 = O1 + {qi} O1, …, On = On –1 + {δs
n–2qi} On –1;

(b) O2 = O1 + {qi} O1, O3 = O2 + {2qi} O2, …, On = On –1 + {δs
n–3qi} On –1;

(c) O2 = O1 + {qi} O1, 3 2 2{ 2 }iO O O= + q , …, On = On –1 + {δs
n–3qi} On –1;

(d) 2 1 1{ 2 }O O O= + qi , …, On = On –1 + {δs
n–2qi} On –1.

Fig. 10. Fragments of octagonal lattices for different 
algorithms, where O1 group is marked
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Also momentous is condition 
that specified coefficients are ex-
pressed through relations between 
basis vectors similar to eq. (30).

In contradistinction to known 
modelling methods [30–34], this 
proposed method for multiplying of 
sites groups allows to classify qua-
si-crystalline structures. For exam-
ple, Fig. 11 illustrates two-di men- 
sional quasi-periodic structure [35]. 
It is evident that this structure is 
in agreement with the mo -del shown 
in Fig. 10, d. Such structure ac-
cording to numeric coefficients in 
algorithm can be expressed as the 
structure of O (δs − 1, δs

n–2) type. The 
structures obtained with other structure  algorithms (Fig. 10, a, b, c) 
can be denoted as O (1, δs

n–2), O (1, 2, δs
n–3) and O (1, δs − 1, δs

n–2), respectively. 
It is easy to show that variation of algorithm consists in rearrangement 
of coefficients at qi. For instance, O2 = O1 + {δsqi} O1, O3 = O2 + {qi} O2,  
O4 = O3 + {2qi} O3, …, On = On –1 + {δs

n–3qi} On –1 leads to construction the 
structure, which is the same as obtained with O2 = O1 + {qi} O1,   
O3 = O2 + {2qi} O2, …, On = On –1 + {δs

n–3qi} On –1. That is why it is advi  - 
sable to note the coefficients in notation of structural class in ascen -
ding order.

It is known [36, 37] that quasi-crystalline lattice can be represented 
as projection of periodic lattice in the space with dimensionality R onto 
space with dimensionality d. In the case of octagonal plain quasi-lattice, 
it can be proposed the projection of four-dimensional hyper-cubic lattice 
onto the plain. If the basis of four-dimensional lattice are represented 
as orthogonal vectors,

 
[ ]

[ ]
1 2

 3 4

1 0 1 0 ,      2 2  2 2  2 2  2 2 ,

0 1 0 1 ,    2 2  2 2  2 2  2 2 ,

 = = − 
 = − = − 

u u

u u
 (32)

then, the first two coordinates of each vector correspond to basis vec-
tors. Two of rest coordinates correspond to the vectors

 1 2

3 4

(1 0 ),    ( ( 2 2) ( 2 2) ),

(0 1 ),    (( 2 2) ( 2 2) ),

⊥ ⊥

⊥ ⊥

= + = − +

= − = +

q i j q i j

q i j q i j
 (33)

which are projection of set (32) onto ‘perpendicular’ space. Mutual ori-
entation of basis vectors in ‘perpendicular’ space with preset basis in 

Fig. 11. Two-dimensional colloidal 
quasi- crystal [35]
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physical space is presented in Fig. 12. evidently, the vector of physical 
space q1 + q2 + q3 corresponds to the vector of ‘perpendicular’ space  
q1

⊥ + q2
⊥+ q3

⊥, whose modulus has a minimal value for all combinations of 
three basis vectors.

We show that algorithm (28) corresponds to the sites of four-dimen-
sional hyper-cubic lattice, which are closely located to physical space. 
by this way, it will prove that proposed method and projected method 
are equivalent between each other. For this, it is enough to show that 
‘the radius’ of sites group in ‘perpendicular’ space (maximal distance 
from sites of four-dimensional space to physical space) is finite. As seen 
from Fig. 12, the next equation is valid during execution of eq. (30):

 1 2 3 2 2( 2 1) (1 )s
⊥ ⊥ ⊥ ⊥ ⊥+ + = − − = − δq q q q q . (34)

We can show from eqs. (31) and (34) that boundary radii of sites’ 
groups rn→∞ and r ⊥n→∞ are equal to
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2 21
n s

n s
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Thus, the distance from projected four-dimensional lattice to physical 
space does not exceed 2 2 2+ . hence, proposed method is quite correct. 

3.2. Reciprocal Octagonal Lattice

let us analyse the possibility of using the proposed model for reciprocal 
lattice of the octagonal quasi-crystals.

We can reduce the square values of modules of vectors Q|| = n1q1 +  
+ n2q2 + n3q3 + n4q4, Q⊥ = n1q1

⊥ + n2q2
⊥ + n3q3

⊥ + n4q4
⊥, and Q = n1u1 + n2u2 + 

+ n3u3 + n4u4 (in physical, ‘perpendicular’, and four-dimensional spaces, 
respectively) to the form:

⊥

⊥

= + + + + + + −

= + + + − + + −

= + = + + +
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Fig. 12. Mutual 
orientation of ba-
sis vectors (32) at 
their projection to 
physical and ‘per-
pendicular’ spa ces
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Using denotations

 
2 2 2 2
1 2 3 4 1 2 2 3 3 4 1 4

1 2 2 3 3 4 1 4

( ) ( ),

( ),

N n n n n n n n n n n n n

M n n n n n n n n

= + + + − + + −

= + + −
 (36)

we can deduce 
 |Q|||

2 = N + Mδs (37)

that has similar form to equations for icosahedral (1) quasi-crystals [1] 
as well as for plain lattice of decagonal (5) quasi-crystals [21]. At the 
same time, the squared distance from site of four-dimensional lattice to 
its corresponding projection in physical space is defined by Nδs − M 
value:
 |Q⊥|

2 = (Nδs – M)/δs. (38)

According to refs. [18, 20, 34, 36], the value of |Q⊥|
2 defines the 

intensity of diffraction reflexes. It is important that |Q⊥|
2 ∝ (Nτ – M)  

for the icosahedral and decagonal lattices.
The translation of On−1 sites’ groups on δs

n–2qi value corresponds to 
shifting its centres to positions of (n1n2n3n4) sites of the (1110)-, (2320)-, 
(5750)-, (1217120)-, …, (Kn, Kn + Kn−1, Kn, 0)-type according to eqs. (29) 
and (30). The substitution of these indices in eq. (36) gives the pairs of 
values N = K2

n + K2
n –1 and M = 2 (K2

n + Kn Kn –1): (1, 2); (5, 12); (29, 70); 
(169, 408); … . Thus, squared modulus values for shifting vectors of 
sites groups can be expressed throw the pairs of N and M numbers, 
which are neighbouring elements in Pell’s sequence. The corresponding 
pairs of numbers satisfy to the condition M/N < δs, which is necessary 

Fig. 13. The overlap of the groups of O4 sites on electron diffraction pattern from 
octagonal quasi-crystal of the Mn4(Al,Si) system oriented by its symmetry axis of 
the 8-th order along the electron beam (diffraction pattern adopted from paper [38])
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condition according to eq. (38). It is can be verified that the value of  
|Q⊥|

2 defined from eq. (38) is small for these numbers’ pairs as compared 
to any other numbers’ pairs.

Table 3. Characteristics of some sites of O7 groups constructed  
according to algorithms (28) and (39)

No. (n1 n2 n3 n4) N M |Q⊥|
2 Quantity of 

overlaps (28)
Quantity of 
overlaps (39)

1 (1 −1 1 0) 5 −2 5.828 5 78
2 (−1 2 −1 0) 10 −4 11.657 11
3 (0 0 1 −1) 3 −1 3.414 12 108
4 (1 0 0 0) 1 0 1 43 223
5 (1 1 −1 1) 6 −2 6.828 48
6 (−1 1 1 −2) 11 −4 12.657 12
7 (2 −1 1 0) 9 −3 10.243 22
8 (0 2 −1 0) 7 −2 7.828 46
9 (0 0 2 −2) 12 −4 13.657 6

10 (1 0 1 0) 2 0 2 26 170
11 (1 0 1 −1) 3 0 3 25 150
12 (1 1 0 0) 1 1 0.586 48 224
13 (2 0 0 0) 4 0 4 14 119
14 (0 1 1 −2) 7 −1 7.414 54
15 (2 0 1 0) 5 0 5 10 96
16 (1 1 1 0) 1 2 0.172 73 257
17 (2 1 0 1) 6 0 6 4 78
18 (1 1 1 −1) 2 2 1.172 52 236
19 (0 2 1 −1) 5 1 4.586 16 112
20 (2 1 0 0) 3 2 2.172 28 162
21 (1 1 2 −1) 5 2 4.172 15 110
22 (2 1 1 0) 3 3 1.756 42 222
23 (1 2 1 0) 2 4 0.343 78 286
24 (2 2 −1 0) 7 2 6.172 61
25 (1 2 1 −1) 3 4 1.343 44 196
26 (2 2 0 0) 4 4 2.343 32 202
27 (1 3 0 0) 7 3 5.757 8 96
28 (2 1 2 0) 5 4 3.343 17 131
29 (2 1 2 −1) 6 4 4.343 20 131
30 (3 1 1 0) 7 4 5.343 5 81
31 (1 2 2 −1) 5 5 2.929 32 192
32 (2 2 1 0) 3 6 0.515 48 213
33 (1 3 1 0) 5 6 2.515 27 151
34 (2 2 1 −1) 3 7 0.101 104 332
35 (1 3 1 −1) 6 6 3.515 32 172
36 (2 3 0 0) 7 6 4.515 7 89
37 (2 2 2 0) 4 8 0.686 54 276
38 (3 1 2 −1) 9 6 6.515 3 63
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Figure 13, a illustrates the over-
lapping of O4 sites group on the elec-
tron diffraction pattern for octago-
nal quasi-crystal of Mn4(Al,Si) 
system. evidently, the sites of con-
structed lattice totally coincide with 

reflexes from diffraction pattern. Therewith, there are reflexes with 
low intensities, which have no corresponding site on the model (some of 
them are marked with the point in Fig. 13). Changing algorithm for 

construction of O2 = O1 + {qi} O1 into 2 1 1{ 2 }O O O= + qi  (the next steps 

of algorithm remain unchanged) causes the appearance of additional 
sites, which coincide with marked reflexes (Fig. 13, b). Thus, diffrac-
tion pattern for octagonal quasi-crystal Mn4(Al,Si) is related to O (δs − 
− 1, δs

n–2), class by geometry. Such algorithm change corresponds to ex-
tending of projection region in four-dimensional space, because 

2 2 2 ( 2 1)nr
⊥
→∞ = + + −  in this case.

Table 3 presents the characteristics of some reciprocal lattice sites, 
which are the most closely located to coordinate start. These sites have 
been generated according to algorithms (28) and the following relation-
ship:
 On = On –1 + {δs

n–3qi} On –1. (39)

As a result of construction of the octagonal quasi-lattices, using 
described algorithms (as well as in the case of the construction of de-
cagonal quasi-lattices), there is a multiple mutual overlapping of the 
sites. The quantity of this overlaps for various algorithms is presented 
in the last two columns of Table 3. As shown, the correlation between 
overlapping quantity and |Q⊥|

2 value is observed for all proposed algo-
rithms as well as for decagonal quasi-lattice (Table 2).

Figure 14 shows indices and the quantity of overlaps (algorithm 
(28)) for appropriate reflexes on electron diffraction pattern for octago-
nal quasi-crystal of Mn4(Al,Si) system. As seen, the quantity of overlaps 
is in a distinct agreement with intensity of diffraction reflexes.

reflexes with the next values of indices (N, M) should have suffi-
ciently high intensity according to obtained results:

    (1,0); (2,0); (1,1); (1,2); (2,4); (3,4); (3,6); (3,7); (4,8); (5,1); …. (40)

reasoning from the three-dimensionality of octagonal quasi-crystals 
and its periodicity along 8th-order symmetry axis, inter-planar distanc-

Fig. 14. Indices (N, M) and the quantity 
of site overlaps (algorithm (28), O7 group) 
for the corresponding reflex on electron 
diffraction pattern adopted from ref. [38]
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es can be calculated by the equation, which is similar to obtained one for 
decagonal quasi-crystals (19):

 1/d2 = (N + Mδs)/a
2 + L2/c2; (41)

here, a is spacing parameter of plain quasi-lattice, с is spacing param-
eter along 8th-order symmetry axis.

In practice, value of L index does not exceed 2 during indexing of 
XrD (x-ray diffraction) patterns. That is why the number of possible 
combinations of three indices (N, M, L) is rather small. It should be 
noted that reflexes of (0, 0, L)-type can also be observed on diffraction 
patterns in addition to reflexes of (N, M, L)-type (with N and M indices, 
which correspond to values of eq. (40)). Therefore, the indexing of 
XrD-patterns for octagonal quasi-crystals should be considered as simi-
lar to indexing of crystalline materials, which belong to middle crystals’ 
systems.

4. Dodecagonal Quasi-Periodic lattices

The formation of condensed matter with quasi-periodic long-range order 
and with the 12th-order symmetry axis has been established not only for 
metal systems (as like Ni–V [39], Cr–Ni [40], bi–Mn [41], Ta–Te [42], 
and Mn–Si–V [43]), but also for liquid crystals [44], colloidal solutions 
[45], and polymer systems [46].

Interpretation of the electron and x-ray diffraction patterns for 
dodecagonal quasi-crystals, as well as for all others, is also ambiguous 
because of indetermination of indexing of diffraction reflections. Such 
ambiguity is caused by inflation–deflation symmetry, which is native 
for quasi-crystals. As a result, the ratio of the absolute values of the 
reciprocal lattice vectors is expressed in terms of so-called scaling factor 
[20–23]. In electron diffraction studies of quasi-crystals, basis vectors 
are commonly match with reflections closest to the trace of the primary 
beam, which have a very low intensity, as a rule. For this reason, the 
minimal (basis) reciprocal lattice vectors (determined in diffraction ex-
periments) are dependent on the experimental conditions.

For construction of two-dimensional reciprocal quasi-lattice, let use 
algorithm in the form of recurrent equation:

 Dn = Dn –1 + {kn–2qi} Dn –1. (42)

In this case, the k parameter (for dodecagonal lattice, let us denote it as 
t) was chosen from geometric interpretation of τ and δs numbers and 
from the condition that this numbers belong to Pisot numbers [5, 31, 
34, 47] τ = 2 cos (2 π/10) and δs = 1 + 2 cos (2 π/8):

 k = t = 1 + 2 cos (2 π/12), (43)

 k = t1 = 2 + 2 cos (2 π/12). (44)
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Parameters (43) and (44) have been used as scaling factors for a dode-
cagonal lattice in papers [5, 31, 48]. 

As shown earlier, the application of algorithm (42) for the octagonal 
and decagonal quasi-crystals results to complete agreement between ob-
tained quasi-lattices and experimental electron diffraction patterns. The 
implementation of algorithm (43) and (44) is illustrated in Fig. 15. The 
comparison of this lattice with the electron diffraction pattern of a do-
decagonal quasi-crystal (Fig. 16) [26] shows the qualitative conformity 
between them.

Fig. 16. Comparison of fragment of group D5 sites (a) (algorithm (42) and parameter 
(44)) with electron diffraction pattern from dodecagonal quasi-crystal (b) of Ta–Te 
system obtained in ref. [49]

Fig. 15. Groups of sites obtained according to algorithm (42) 
and parameter (43) (D1 is an initial group of sites)
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The usage of parameter (44) for 
the implementation of algorithm 
(42) leads to discontinuities of the 
lattice. The conformity of the mo-
del quasi-lattice with above-speci-
fied electron diffraction is obser-
ved after the replacement of algo-
rithm (1) with the algorithm pro-
posed earlier in Ref. [27], which can 
be written in the form of the following recurrent relations (Fig. 17):

 D2  D1 {qi} D1, D3  D2 {2qi} D2, D4  D3 {t1qi} D3,

 D5  D4 {2t1qi} D4, D6  D5 {t2
1 qi} D5, D7  D6 {2t2

1 qi} D6. (45)

The numbers t and t1 are the solutions for quadratic equations x2  2x  2 
and x2  4x  1, respectively. It follows, hence, that any power of t and 
t1 can be expressed in terms of these numbers proper (e.g., t3  6t  4, 
t4  16t  12, … ; t3

1  15t  4, t4
1  56t  15, …). We must take into ac-

count that basis vectors qi of a dodecagonal lattice relate as q1  q2  q3  
 tq2 and q1  2q2  q3  t1q2. Therefore, one can easy see that the posi-
tions of all sites appearing in the realization of the above algorithms can 
be expressed in terms of a linear combination of qi vectors. Thus, each 
site of model quasi-lattices can be indexed.

Let us compare the proposed method of recurrent multiplication of 
site groups with the projecting method. Since six basis vectors are used 
for a 2D-dodecagonal lattice, it is logically to use a six-dimensional 
hyper-cubic lattice. We require that the first two components of the 
coordinates of six-dimensional basis vectors represent the basis coordi-
nates of a 2D-dodecagonal quasi-lattice. Then, we can use the unit or-
thogonal basis vectors proposed in paper [31],

Fig. 17. The overlap of group D5 (algo-
rithm (45)) on the electron diffraction 
pattern [49] from quasi-crystal of Ta–Te 
system

1

2

3

4

5

6

(1,  0,  1,  0,  1 2 ,  1 2) 3 ,

( 3 2,  1 2,  3 2,  1 2,  1 2 ,  1 2) 3 ,

( 1 2,  3 2,  1 2,  3 2,  1 2 ,  1 2) 3 ,

(0,  1,  0,  1,  1 2 ,  1 2) 3 ,

( 1 2,  3 2,  1 2,  3 2,  1 2 ,  1 2) 3 ,

( 3 2,  1 2,  3 2,  1 2,  1 2 ,  1 2) 3 ,



  

   

   

   

  

u

u

u

u

u

u

(46)
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or suggest another set of vectors: 

 1

2

3

4

5

6

(1,  0,  1,  0,  1,  0) 3 ,

( 3 2,  1 2,  3 2,  1 2,  0,  1) 3 ,

(1 2,  3 2,  1 2,  3 2,  1,  0) 3 ,

(0,  1,  0,  1,  0,  1) 3 ,

( 1 2,  3 2,  1 2,  3 2,  1,  0) 3 ,

( 3 2,  1 2,  3 2,  1 2,  0,  1) 3 .

=

= − −

= −

= − −

= − −

= − −

u

u

u

u

u

u

 (47)

each vector in eq. (46) or (47) has two components corresponding to the 
two-dimensional physical (i.e., real) space and two components corre-
sponding to the ‘perpendicular’ space. Therefore, we can write these 
vectors as ui = (qi

||; qi
⊥). For each site in the physical space, to correspond 

uniquely to a vector in the ‘perpendicular’ space, it is necessary that, 
for the linear combination of vectors that gives a zero vector (e.g., q1

|| − q3
|| + 

+ q5
|| = 0 and q2

|| − q4
|| + q6

|| = 0 for vectors (48) given below), the correspond-
ing combination of vectors qi

⊥ can be also equal to zero. As revealed, 
vectors (46) and (47) do not satisfy this requirement. Then, as the basis, 
we can choose vectors obtained from set (47) in the following manner:

 

*
1 2 6

*
2 1 3

*
3 2 4
*
4 3 5

*
5 4 6

*
6 5 1

( ) (1,  0,  1,  0,  0,  0),

( ) ( 3 2,  1 2,  3 2,  1 2,  0,  0),

( ) (1 2,  3 2,  1 2,  3 2,  0,  0),

( ) (0,  1,  0,  1,  0,  0),

( ) ( 1 2,  3 2,  1 2, 3 2,  0,  0),

( ) ( 3 2,  1 2,  3 2,  1 2

= − = −

= + =

= + = − −
= + =

= + = − −

= − = − −

u u u

u u u

u u u

u u u

u u u

u u u ,  0,  0).

 (48)

omitting in these expressions (48) the last two coordinates, we can 
obtain the four-dimensional non-orthogonal basis of the lattice, which is 

Fig. 18. reflexes of electron diffraction 
pattern [49] corresponding to basis vec-
tors according to the algorithm (45) (num-
bered reflexes are described in Table 4)
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analogous to the basis proposed in ref. [31]. It can be verified that the 
re ciprocal angles between the triples of four-dimensional vectors (u*

1, 
u*

3, u
*
5) and (u*

2, u
*
4, u

*
6) are equal to 60° and 120°. At the same time, each 

vector from a triple is orthogonal to vectors from another set. It fol-
lows, hence, that we can consider the given four-dimensional lattice as 
a combination of two 2D hexagonal sublattices, the spaces of which are 
mutually orthogonal. According to ref. [50], such a lattice belongs to a 
bi-isohexagonal orthogonal system. In the given basis, only four vectors 
are linearly independent. Therefore, two vectors (e.g., u*

5 and u*
6) can be 

omitted, writing the basis of the 4D lattice in the form:

 
* *
1 2

* *
3 4

(1,0, 1,0);    ( 3 2,1 2, 3 2,1 2);

(1 2, 3 2, 1 2, 3 2);    (0,1,0,1).

= − =

= − − =

q q

q q
 (49)

evidently, if we put vectors (49) in correspondence to the basis 
group of sites in the proposed model, the sites generated in accordance 
with algorithm (45) will be projections of certain sites in the indicated 
four-dimensional lattice.

It is easy to see that, in both cases of the octagonal and dodecagonal 
lattices during the multiplication of sites of a dodecagonal lattice in ac-
cordance with algorithm (45), a correlation between the number of self-
overlaps of sites and the intensity of the corresponding diffraction re-
flections is also observed (Fig. 18, Table 4). 

Table 4. Indices and characteristics of the sites indicated in Fig. 18

No. (n1 n2 n3 n4) N*; M* N; M N1; M1 |Q|||2 |Q⊥|2
Quantity of site 

self-overlaps

1 (2 −2 0 1) 7; −4 11; −4 15; −4 0.072 13.928 37
2 (1 0 −1 1) 2; −1 3; −1 4; −1 0.268 3.732 182
3 (1 −1 1 0) 4; −2 6; −2 8; −2 0.536 7.464 118
4 (−1 1 2 −2) 6; −3 9; −3 12; −3 0.804 11.196 76
5 (1 0 0 0) 1; 0 1; 0 1; 0 1 1 245
6 (2 −1 0 1) 5; −2 7; −2 9; −2 1.536 8.464 144
7 (0 1 1 −1) 2; 0 2; 0 2; 0 2 2 266
8 (1 1 −1 1) 4; −1 5; −1 6; −1 2.268 5.732 194
9 (1 0 1 0) 3; 0 3; 0 3; 0 3 3 350

10 (1 1 0 0) 2; 1 1; 1 0; 1 3.732 0.268 326
11 (0 2 0 0) 4; 0 4; 0 4; 0 4 4 335
12 (2 0 0 1) 5; 0 5; 0 5; 0 5 5 328
13 (1 1 0 1) 4; 1 3; 1 2; 1 5.732 2.268 346
14 (−1 2 2 −1) 6; 0 6; 0 6; 0 6 6 292
15 (1 1 1 0) 4; 2 3; 2 1; 2 7.464 0.536 387
16 (1 1 1 1) 6; 3 3; 3 0; 3 11.196 0.804 440
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let us put in correspondence the intensities of reflections to the 
distance from the sites of a 4D lattice to the physical space. each site of 
this lattice can be represented as Q = (Q||;Q⊥), where

 = ∑ 

4

1
i inQ q  and 

4

1
i in⊥ ⊥= ∑Q q . (50)

Then, squared values of vectors Q|| and Q⊥ are as follow: 

    

4
2 2 * *

1 3 2 4 1 2 2 3 3 41
| | ( ) 3 3in n n n n n n n n n n N M = Σ + + + + + = + 

 
Q , (51)

    

4
2 2 * *

1 3 2 4 1 2 2 3 3 41
| | ( ) 3 3in n n n n n n n n n n N M⊥  = Σ + + − + + = − 

 
Q . (52)

The calculation of |Q⊥| value is based on eq. (52) for reflections in 
Fig. 18 shows that a correlation is observed between |Q⊥|, the number of 
self-overlaps of sites in the modelling, and the intensity of reflections 
(Table 1).

The equation for calculation of |Q||| in both cases of using t and t1 
parameters can be reduced to the form similar to eqs. (5) and (37):

 |Q|||2 = N + Mt, |Q|||2 = N1 + M1t1; (53)

here, N = N* − M*, M = M*, N1 = N* − 2M*, M1 = M*. Within the value 
of |Q⊥| (in contrast of to those of icosahedral, octagonal, and dodecagonal 

Table 5. Indices of the sites (Fig. 18) with basis vectors corresponding  
to the reflexes located near the central spot

No. (n1 n2 n3 n4)ch Nch; Mch |Q||
ch|

2 |Q⊥
ch|

2

1 (1 0 0 0) 1; 0 1 1
2 (1 1 0 0) 2; 1 3.732 0.268
3 (1 1 1 0) 4; 2 7.464 0.536
4 (1 2 1 −1) 6; 3 11.196 0.804
5 (2 2 0 −1) 7; 4 13.928 0.072
6 (2 2 1 0) 11; 6 21.392 0.608
7 (2 3 1 −1) 14; 8 27.856 0.144
8 (2 3 1 0) 16; 9 31.588 0.412
9 (2 3 2 0) 21; 12 41.785 0.215

10 (3 4 1 −1) 26; 15 51.981 0.019
11 (2 4 2 0) 28; 16 55.713 0.287
12 (3 4 2 0) 35; 20 69.641 0.359
13 (2 4 3 1) 40; 23 79.837 0.163
14 (1 4 4 1) 42; 24 83.569 0.431
15 (3 5 3 0) 52; 30 103.96 0.038
16 (2 5 5 2) 78; 45 155.94 0.058
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quasi-lattices) cannot be reduced to the form |Q|2  (Nk M):

 |Q|  N 2M/t, |Q|  N1 M1/t1. (54)

Basis vectors of reciprocal lattice are ascribed in [48] to low-inten-
sity reflections that are closest to the trace of primary beam. In this 
case, the indices of the reflections and the magnitudes of corresponding 
vectors are recalculated by the following formulas:

 Nch  7N* 12M*, Mch  4N* 7M*,

 
2

2 2
ch

| |
| | | | (7 4 3)

7 4 3
  


Q

Q Q


  , 
2

2 2
ch

| |
| | | | (7 4 3)

7 4 3


   


Q

Q Q . 

The results of calculations for characteristics of reflexes (Fig. 18) 
obtained with Eq. (55) are presented in Table 5.

Note that, with such indexing of intense reflections, the rounding 

of ch 3M  value to the larger integer yields the value of Nch. The values 

of |Q
ch|

2 and |Q
ch|

2 are also determined only by Mch value, i.e.,

  ch ch[ 3 1]N M ,

    2
ch ch ch| [ 3 1] 3M MQ , 2

ch ch ch| | [ 3 1] 3M M   Q . 

According to [51, 52], low-intensive reflections in the vicinity of 
central spot on electron diffraction patterns are the results of multiple 
diffraction typical of quasi-crystals. At the same time, many authors 
take these reflections as those corresponding to basis vectors [48, 49]. 
In our model, the basis vectors of the reciprocal lattice correspond to 
reflections of type 5 (Fig. 18), which is in agreement with the results 
obtained in [51, 52]. Therefore, the proposed model of recurrent multi-
plication of site groups takes into account the effect of multiple diffrac-
tion and, at the same time, correctly maps the basis vectors on the dif-
fraction pattern. The existence of correlation between the quantity of 
self-overlaps of sites and the intensity of diffraction reflections indi-
cates that the procedure of recurrent construction of site groups is a 
certain analog of multiple diffraction processes.

To pass from the reciprocal space to the real one, we write vectors 
(49) as * * *

4 2i D iaa q  where a*
4D is a space parameter of four-dimen-

sional reciprocal lattice. Using the condition a*
i aj  δij, we can define the 

basis vectors of the direct lattice as follows

 

4 4
1 2

4 4
3 4

( 3 2, 1 2, 3 2,1 2),   (1,0,1,0),
2 2

(0,1,0, 1),   ( 1 2, 3 2, 1 2, 3 2);
2 2

D D

D D

a a

a a

   

    

a a

a a

 (57)

(56)

(55)
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here, *
4 42/( 3 )D Da a=  is a lattice parameter. Denoting the interplanar 

distance corresponding the basis vector of reciprocal lattice as dq and 

considering that *
4 / 2 1/D qa d= , we obtain the equation for the param-

eter of four-dimensional lattice and quasi-parameter a of four-dimen-
sional quasi-lattice:

 4 2/3D qa d= , 4 / 2 / 3D qa a d= = . (58)

Then, to calculate the interplanar distances, we can use expression

 * *

* *

( , )
3 3

N M
d a N M= + . (59)

If there were detected reflexes corresponding to basis vectors, which 
are closely located to primary electron beam, then, equation remains 
similar to eq. (59):

 
ch ch( , ) ch ch ch3 3N Md a N M= + , (60)

where ch 17 4 3a a a t= + = .

From the physical point of view, (N*, M*) indices are more correct, 
since they relate to the fundamental vectors of the reciprocal quasi-
crystal lattice. however, indices (Nch, Mch) are more convenient, be-
cause, if we know only one index from this pair, we can easily determine 
the second index and estimate the intensity of the corresponding reflec-
tions (see eq. (56)).

Thus, the dodecagonal system ‘falls out’ of the general relation  
|Q⊥|2 ∝ (Nk − M); this is observed for other existing types of quasi-crys-
tals. however, it is still possible to indexing diffraction reflections us-

Fig. 19. Comparison of atomic structure of baTio3 thin layer on platinum substrate 
(a) [53] and fragment of group D5 (b) (algorithm (61))
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ing integers. At the same time, taking into account the periodicity of 
dodecagonal quasi-crystals along the 12th-order symmetry axis, all dif-
fraction peaks on the powder diffraction patterns can be indexed with 
three indices, as for the octagonal and decagonal quasi-crystals. 

except the analysis of the diffraction pattern from quasi-crystalline 
materials, the description and classification of quasi-crystalline struc-
ture is a complicated problem. We proposed above the method for de-
scription of the variety of octagonal quasi-lattices. Such description is 
possible because we can change the coefficients of vectors in initial al-
gorithm (42). For example, a change of even one coefficient changes the 
quasi-lattice without affecting its symmetry. For instance, the image of 
the atomic structure of a thin baTio3 layer on a platinum substrate was 
obtained in ref. [53]. We obtained almost the same geometry of the ar-
rangement of sites (Fig. 19) using the following algorithm:

 
1

2 1 1 3 2 2

4 3 3 5 4 4

{2 } ,   {2 } ,

{ } ,   {2 } .
i i

i i

D D t D D D D

D D t D D D t D

−= + = +

= + = +

q q
q q

 (61)

Taking into account earlier proposed denotation of quasi-crystalline 
structures classes, the structure illustrated in Fig. 18 can be denoted as 

(2/ , 2, , 2 )D t t t .

5. Conclusions

The method of modelling the quasi-periodic structures, which act as a 
geometric interpretation of Fibonacci-type sequences, is proposed.

The correspondence between projection method for periodic lattices 
and the method of recurrent multiplication of basis sites’ group is ob-
tained.

The possibility of using only three indices (NML) for describing dif-
fraction patterns for quasi-crystals with 10th-order, 8th-order, and 
12th-order symmetry axis is proved.

Using constructed algorithm for quasi-crystalline structures, we can 
directly obtain information about the intensity of diffraction reflexes.

Described method of modelling is simpler as compared with projec-
tion method. It enables to operate the coordinates of two-dimensional 
space unlike to coordinates with dimensionality, greater than three.
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моДелюВАННя ґрАТНиць  
ДВоВимІрНих КВАЗиКриСТАлІВ

Запропоновано спосіб моделювання квазиперіодичних структур, в основі якого 
лежить алґоритм, що є геометричною інтерпретацією числових послідовностей 
типу послідовности Фібоначчі. моделювання полягає у рекурентному розмно жен-
ні базисних груп вузлів, які мають ротаційну симетрію 10, 8 або 12-го порядку. 
перевагою запропонованого способу є можливість оперувати координатами лише 
двовимірного простору, а не гіпотетичних просторів із вимірністю, вищою за 
три. показано відповідність між методою проєціювання періодичних ґратниць 
і методою рекурентного розмноження груп базисних вузлів. Встановлено, що 
шестивимірну обернену ґратницю для декагонального квазикристалу можна 
одержати з ортогональної шестивимірної ґратниці для ікосаедричного квазикри-
сталу за допомогою зміни масштабу вздовж одного з базисних векторів і заборо-
ни на проєціювання вузлів, для яких сума п’ятьох індексів (відповідних іншим 
базисним векторам) не дорівнює нулю. показано достатність використання лише 
трьох індексів для опису дифрактограм від квазикристалів з осями симетрії 10, 
8 та 12-го порядків. ориґінальний алґоритм уможливлює безпосереднє одержан-
ня інформації про інтенсивність дифракційних рефлексів за кількістю самона-
кладань вузлів у процесі побудови обернених ґратниць квазикристалів.

Ключові слова: квазіперіодичні структури, послідовність Фібоначчі, метод проє-
ціювання, базисні вектори, ротаційна симетрія, обернена ґратниця.
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моДелироВАНие решёТоК  
ДВУмерНых КВАЗиКриСТАллоВ

предложен способ моделирования квазипериодических структур, в основе кото-
рого лежит алгоритм, являющийся геометрической интерпретацией числовых 
последовательностей типа последовательности Фибоначчи. моделирование за-
ключается в рекуррентном размножении базисных групп узлов, имеющих ро-
тационную симметрию 10, 8 или 12-го порядка. преимуществом предлагаемого 
способа является возможность оперировать координатами только двумерного 
пространства, а не гипотетических пространств с размерностью, большей трёх. 
показано соответствие между методом проецирования периодических решёток 
и методом рекуррентного размножения групп базисных узлов. Установлено, что 
шестимерную обратную решётку для декагональных квазикристаллов можно 
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получить из ортогональной шестимерной решётки для икосаэдрических квази-
кристаллов с помощью изменения масштаба вдоль одного из базисных векторов 
и запрета на проецирование узлов, для которых сумма пяти индексов (соответ-
ствующих другим базисных векторам) не равна нулю. показана достаточность 
использования только трёх индексов для описания дифрактограм от квазикри-
сталлов с осями симметрии 10, 8 и 12-го порядков. оригинальный алгоритм 
даёт возможность непосредственного получения информации об интенсивности 
дифракционных рефлексов по количеству самоналожений узлов в процессе по-
строения обратных решёток квазикристаллов.

Ключевые слова: квазипериодические структуры, последовательность Фибонач-
чи, метод проецирования, базисные векторы, ротационная симметрия, обратная 
решётка.


