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In this work molecular dynamics simulations are employed to 
compare the mechanical properties and hardness of three polytypes of cubic BC3. 
Firstly, two interatomic Tersoff potentials, with different parameterizations, were 
identified from the literature for the boron–carbon system. Based on cohesive energies 
and structural properties from existing ab-initio studies, the suitability of the two 
potentials for predicting the properties of BC3 was analyzed. Secondly, using the better 
interatomic potential, more detailed molecular dynamics simulations were conducted 
to estimate and compare the elastic, yield, post-yield behavior and hardness of the 
three polytypes. The elastic constants compare well with existing ab-initio values and 
vary by at most by 15 % amongst the three polytypes. Response to indentation showed 
considerable qualitative differences in yield and post-yield response. One of the 
polytypes showed lower yield strength and seemed more ductile than the other two. The 
hardness also showed a complex dependence on both the material and the indentation 
depths. A peculiar, indenter-size dependent pile-up behavior was also seen. 
Specifically, for lower radii, pile-up was seen on indentation. As the radius of the 
indenter was increased, pile-up was seen only on retracting the indenter. The higher 
volume occupied by the indentation-amorphized material was found to be the reason 
for pile-up on retracting the indenter. 

Keywords: superhard materials, elastic constants, hardness, mole-
cular dynamics, boron-doped diamond. 

INTRODUCTION 

Any material with hardness above 40 GPa is considered as a su-
perhard material. Diamond is the hardest material and is often used for mechanical 
machining [1]. One of the disadvantages of using diamond is that it reacts with iron 
at higher temperature and loses its hardness. Therefore, both computational as well 
as experimental research have focused on developing alternate superhard materials 
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with better chemical stability based on a combination of elements like B, C, N and 
O. Boron- based materials are particularly interesting because of boron’s capacity 
to form electron deficient bonding with different elements [2]. Superhard materials 
like B6O [3], cubic-BN [4], BC2N, BC4N [5] and some of the boron-doped 
diamonds (BDD) have already been synthesized. BDD like BC3 [6] and BC5 [7] 
can be synthesized from a graphite precursor by direct transformation at high 
pressure and temperature. BDD are p-type semiconductors [8], and are also known 
to be superconducting [9]. Most importantly, they showed better chemical stability 
when compared to diamond [10]. One of the critical issues concerning BDD is that 
the site occupancies of B and C in the crystal structure is not clear, although the 
stoichiometry is well known. This difficulty arises due to the fact that both B and C 
have similar atomic radii [11], due to which X-ray diffraction studies are unable to 
pinpoint the exact locations of B and C. Since boron can substitute carbon atoms in 
diamond with very little lattice distortion [12], the boron content that can be added 
is also a subject of extensive research. Thus, several researches based on ab-initio 
calculations have tried to find the optimum crystal structure and mechanical prop-
erties like elastic constants and hardness of various BDD [11–21]. 

Ab-initio calculations are very accurate, they can be used to study material 
properties only when at most a few hundred atoms are sufficient. Increasing the 
number of atoms becomes computationally prohibitive, making it impossible to 
carry out ab-initio simulations of processes which need a larger number of atoms. 
For example, simulations to study indentation responses [22] or displacement 
cascade simulations [23] need several thousands to millions of atoms to obtain 
meaningful results. Molecular dynamics (MD) simulations, on the other hand, use 
empirical potentials, making it possible to explore material behavior which needs 
larger system sizes. Experimental and ab-initio studies have shown BDD to have 
excellent mechanical and superconducting properties. In order to understand other 
properties of BDD, it is important to explore the possibility of using MD 
simulations on BDD. Only one work thus far seems to have considered MD 
simulations to study BDD (BC3) [24]. 

The current work aims to employ MD to compare the mechanical properties 
like elastic constants and hardness of three polytypes of BC3. While some ab-initio 
related works are available for these polytypes, no detailed MD simulations have 
been carried out. Two aspects are important for successfully conducting MD 
simulations, (a) the basic crystal structure of the material being studied and (b) the 
interatomic potential. Considering the structure, several configurations for BC3 
have been predicted over the years using ab-initio methods. For example, Lowther 
[12] predicted two structures for BC3. Both were tetragonal with one having an 
11 % difference between the lattice constant and the other having 3 % difference. 
One of the structures of BC3 reported in [12] was cubic. MD simulation was con-
ducted on BC3 by Nkambule et al. [24], they reported a tetragonal unit cell with the 
lattice constant differing by less than 3 %. They also found elastic constants for 
BC3 by considering it to be cubic using MD simulation. Reference [13] reported a 
tetragonal P-42m, while [14] found the following three low energy structures, (a) 
orthorhombic Pmma-a, (b) orthorhombic Pmma-b, (c) tetragonal P-4m2 for BC3. 
Yang et al. [21] conducted tensile tests on nearly cubic structure of BC3 in different 
directions of the unit cell. They concluded that it is metallic at equilibrium and 
remains so under large strains, which makes it the hardest conductor. In 2013 an-
other structure with space group R3m was reported [11]. Zhang et al. [19], claimed 
to have solved the crystal structure of BC3 using an unbiased swarm structure 
search and predicted the structure to be cubic with space group I-43m. More 
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recently, BC3 is predicted to have monoclinic structure with space group C2/m 
[15]. Other than the work in [24], where the authors calculated elastic constants, all 
the other computational works on BC3 are based on ab-initio calculations.  

It is thus clear from the above survey that several structures, with different 
symmetries, have been proposed for BC3 using ab-initio calculations. It is now 
instructive to ask which one is the correct structure? To answer this question we 
consider the experimental synthesis of BC3 in 2012 [6] which clearly established 
BC3 to have cubic symmetry using electron energy loss spectroscopy. Since the 
experimentally determined structure is cubic, we believe BC3 has a cubic 
symmetry. However, since there seems to be three possible cubic structures, BC3 
(a) from [24], BC3 (b) from [12] and one from [19] (called BC3 (c) in this work), 
we will consider all these three structures and examine their behavior using 
existing interatomic potentials. Of all the three structures, the one proposed in [19] 
seems to be the most accurate since its simulated X-ray diffraction and Raman 
peaks are in excellent agreement with that obtained from experiments in [6]. In this 
work, we consider all the three reported cubic polytypes with an aim to understand 
from a fundamental point of view how differences in crystal structures correlate to 
their properties and to verify the suitability of available interatomic potentials for 
cubic BC3. 

Considering the interatomic potential, it is well known that for covalently 
bonded solids derived from the diamond structure, the Tersoff potential is the most 
appropriate one. The Tersoff potential was originally developed for C-based sys-
tems [25] and then it was modified for multicomponent systems to model hetero-
nuclear bonds [26]. For B–C systems, two Tersoff potential parameters have been 
used thus far. The first one is by Matsunaga et al. [27], while the other by Kinaci et 
al. [28]. The Matsunaga potential has been used for simulating cubic boron 
carbonitride systems Cx(BN)(1–x) (x varies from 0–1) and it has successfully pre-
dicted the bulk modulus, lattice parameter and cohesive energy of these 
compounds. Matsunaga potential was used for MD simulations of BC3 [24] and 
B4C [29]. Kinaci potential has been used to predict thermal conductivity of hybrid 
graphene BN nanostructures. Kinaci et al. [28] have parameterized the Tersoff 
interaction to get ab-initio energetics of B–C and N–C bonds. 

Since there are two potentials available for B and C systems, it is not clear, 
which of these potentials are well suited for BC3. Therefore, the first step is to 
determine a suitable potential by analyzing the accuracy with which each of them 
predict certain basic properties. To this end, we use both the Matsunaga [27] and 
Kinaci potentials [28]. The B–B interaction we use is that of Matsunaga, since 
Kinaci parameterization does not consider these interactions. Once a suitable set of 
potential parameters is identified, other properties are determined using routine 
non-equilibrium MD and indentation simulations. Before proceeding, it is useful to 
consider a few works that have used nano-indentation experiments and simulations 
to understand various material properties. 

Nanoindentation has been used to study various mechanical properties of the 
materials like hardness, dislocation source activation and phase transformation 
[30]. Mechanical properties like elastic modulus and hardness are routinely deter-
mined using Oliver-Pharr method [31]. Even MD simulations of indentations have 
provided useful insights concerning material behavior. For example, in [32] MD 
simulations were used to study the effect of temperature on dislocation activity 
beneath the indenter. It was found that, as the temperature increases, transition 
from elastic to plastic deformation occurs at progressively lower stresses. Arun et 
al. [33] have used MD to simulate nano-indentation studies of Ni thin films (both 
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single and polycrystalline Ni) and they found that low angle grain boundaries act as 
a source of dislocation under indenter. Cheng et al. [34] have also performed MD 
simulations to find the hardness of diamond (hard material) and gold (soft material) 
using Oliver-Pharr method and have reported that the hardness varies between 84–
107 GPa and 5–7 GPa for diamond and gold, respectively. MD simulations of the 
indentation on iron carbides at various rates have helped conclude that Fe3C is a 
harder material than Fe4C [35]. For ceramic materials like Si, several interesting 
phenomena, such as phase transformation was found to occur on indentation [36]. 
Szlufarska et al. [37] performed nanoindentation using MD simulations on SiC and 
found that the crystalline to amorphous transformation of SiC occurred because of 
the coalescence of dislocation loops. Kucharski et al. [38] has used nanoindentation 
to determine the value of hardening index of 18G2A low-alloy steel and an alu-
minum alloy. In this manner, several insights can be obtained using MD 
simulations of indentation on materials. 

SIMULATION DETAILS 

All our simulations were conducted using the LAMMPS package [39], while 
Ovito [40] and VMD [41] were used for visualization purposes. 

Structures of BC3 

The three models of cubic BC3 (BC3 (a), (b) and (c)) are shown in Figs. 1, a–c. 
The basic structures of BC3 (a) and BC3 (b) consist of a diamond cubic structure 
with two of the C atoms replaced by two B atoms at appropriate lattice points. BC3 
(c) is a 2×2×2 supercell having 64 atoms with 16 B atoms occupying the four prin-
cipal diagonals as mentioned in [19]. One of the important features which distin-
guish the three structures is the extent of B–B bonding that is present in each 
structure. BC3 (a) does not have any B–B bond, BC3 (b) has one B–B bond within 
the unit cell while in BC3 (c) all B atoms in the principal diagonals are bonded. For 
preparing the samples for MD simulations, the lattice parameter of BC3 (a) is taken 
to be 3.601 Å (Table 2 of [24]) while that of BC3 (b) is 3.685 Å (Table 1 of [12]) 
and for BC3 (c) it is 7.330 Å as given in [19].  

 
B–B bond 

 
                  (a)                                             (b)                                              (c) 
Fig. 1. Three cubic structures BC3 (a), BC3 (b) and BC3 (c); atoms B are indicated using gray 
spheres, while black spheres indicate atoms C. 

 
Simulation details – identification of the interatomic potential 

For the determination of the interatomic potential, all the three BC3 samples 
consisted of 8000 atoms (10×10×10 unit cells for BC3 (a) and (b) 5×5×5 unit cells 
for BC3 (c)) with periodic boundary conditions applied on three sides. 

Lattice parameters, bulk modulus and cohesive energies were calculated using 
both the potentials and compared with available literature values to identify the 
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best potential. These simulations used a time step of 0.1 fs. For lattice parameter 
determination, the systems were relaxed to 300 K, 0 GPa using a combination of 
NVT and NPT ensembles. The first peak in the B–C radial distribution function 
was used to calculate the lattice parameter, which for BC3 (a) and (b) structures are 

a
4

3
, with a being the lattice constant. For BC3 (c), the smallest distance between 

boron and carbon atoms corresponds to atoms at 8c (in principal diagonal) and 12e 
(at edge of super cell shared by four super cells of BC3 (c)) positions, respectively, 
then that distance was used to calculate the lattice constant. For determining the 
bulk modulus, the simulation cell was equilibrated at 300 K and 0, 2.5, 5.0, 7.5 and 
10.0 GPa pressures and the corresponding volumes were noted. The bulk modulus 
(B), was then calculated using the expression 

B = –V
dv

dP*

,      (1) 

where V is the volume of the simulation cell while P* is the pressure. 

Simulation details – determination of the elastic constants 

For a cubic structure, the non zero elastic constants (written in Voigt notation) 
are C11, C12 and C44. For the determination of elastic constants, two systems, each 
with 8000 and 64000 atoms were considered. The simulation cells were first 
equilibrated to 300 K using an NVT ensemble with a timestep of 0.1 fs for total 
time of 10 ps and then to 0 GPa and 300 K using an NPT ensemble with a time step 
of 0.1 fs for total time of 20 ps. After the equilibration, the length of all three sides 
of the simulation cell was the same, indicating that the potential predicts a cubic 
structure. To determine C11 and C12 tensile strain was applied on faces with nor-
mals in the X, Y or Z directions. When strain was applied on one of the faces (for 
example, the face normal to the X direction), the other two pairs of faces (those 
with Y and Z as the normals) were fixed. Strain was applied at a rate of 0.01 ps–1 
for 2 ps resulting in a total strain of 0.02. The time step used in the simulation is 
0.01 fs. For strain applied in the X direction, the simulation cell was constrained in 
the Y and Z directions. Then, using the constitutive Eqs. 2–4, C11 and C12 were 
determined. Similarly strain is applied in Y and Z directions keeping the other two 
sides fixed. Note that, for a tensile test in one direction, one value for C11 and two 
values for C12 are obtained: 

σxx = C11εxx;     (2) 

σyy= C12εxx;     (3) 

σzz= C12εxx.     (4) 

For the determination of C44, shear strains are applied in XY, YZ and XZ faces 
separately. When shear strain was applied on a face we have not constrained any of 
its sides and temperature was kept at 300 K. The strain rate used was 0.1 ps–1 and 
was applied for 0.2 ps with a time step of 0.1 fs resulting in a total shear strain of 
0.02. For shear in XY face, C44 is calculated using the Eq. 5 

σxy= C44γxy.     (5) 

C44 is also calculated by shearing YZ and XZ faces. The reported C11, C12 and 
C44 are averages of three, six and three values, respectively. 
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Simulation details – determination of hardness 

The number of atoms used for indentation was 2,56,000 with 40 unit cells in the 
X and Z directions and 20 unit cells in the Y direction for BC3 (a) and (b). For BC3 
(c) 20×10×20 unit cells were used in the X, Y and Z directions, respectively. The 
simulation cell had the same dimensions as the sample in the X and Z directions, 
while it was 1000 Å in the Y direction. A schematic sketch of the simulation box 
used for indentation studies (not to scale) is shown in Fig. 2. Periodic boundary 
conditions are applied in all the three directions.  

10
00

 Å
 

20
 u

ni
t c

el
ls

 
16

 Å
 

40 unit cells

 4 unit cells

Y

X

Z

h
max

 
Fig. 2. Schematic of the simulation box used for the indentation (not to scale). 

 
The system was equilibrated at 0 GPa and 300 K using NVT (for 10 ps) and 

then NPT (for 20 ps) ensembles with a time step of 0.1 fs. Atoms within a 
thickness of 4 unit cells in five of the six faces of the simulation cell were fixed 
while the sixth face was free and was indented. The indentation is carried out in the 
Y-direction at the center of XZ face at a rate of 0.01 Å/ps using a time step of 1 fs. 
The force exerted by the spherical indenter is given by Eq. 6. The force constant 
(U) used in the Eq. 6 was 1000 eV/Å3, r is the distance from center of indenter to 
the each atom and R is radius of the indenter. The force that is applied is purely 
repulsive as in [42] and its value is zero when r > R. Arun et al. [33] has used the 
same repulsive force for conducting nanoindentation simulation on nickel thin 
films. We note that, the focus of this work is more on qualitative comparison of the 
three polytypes and the absolute value of U does not matter. The assumed value of 
U provided reasonable estimates of load-indentation depth (P–h) curves. After 
indentation, the hardness was obtained using Oliver-Pharr method [31] using Eqs. 
7 and 8 given below: 

Force = –U(r – R)2, when (r < R) and 0 other wise;   (6) 

hc = hmax – 0.75(Pmax/Smax);     (7) 

Hardness = Pmax/Ac,      (8) 
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where hc is the contact depth based on which contact area Ac is calculated. Pmax is 
the load at maximum depth hmax. Smax is the slope of the unloading curve at Pmax. 
Simulations were carried out with four spherical indenters with radii 30, 45, 60 and 
75 Å. 

In order to obtain more reliable estimates of the hardness of the three materials, 
we also needed to determine the hardness using a different approach. To this end, 
the hardening index n of each material can be determined which can then be used 
to comment on the relative hardness of the materials as given in [38]. In an 
indentation test the Mean Pressure (i.e., hardness) is also given by 

Mean Pressure = k(a/D)n.   (9) 

Here, k is a material constant, D is the diameter of the indenter, a is the radius 

of contact after indentation 2hcDhc −  and n is a hardening index. It is to be 

noted that the Mean pressure physically represents the hardness (P/Ac) of the mate-
rial. For studies involving the determination of the hardening index, unloading 
should be done from different points along the loading curve, since the hardness is 
obtained from the slope of the unloading curves at different maximum depths. 
Furthermore, these points are to be taken following plastic deformation of the 
material. The indentation studies performed in this work consumed significant 
computational time since we used really low indentation rates of 0.01 Å/ps to 
minimize strain rate effects as far as possible. Other works have used indentation 
rates which are at least one or two magnitudes higher [34], [37]. In order to 
minimize computational time, the hardness index determination was done only 
with indenter having 30 Å radius, since for this indenter size plasticity is reached 
for lower indentation depths. Unloading is done for three different depths for BC3 
(a), (b) and (c) and the corresponding Mean Pressure (analogous to stress) and a/D 
(analogous to strain) are calculated. The first unloading was done from a depth of 
6.8, 6.9 and 6.2 Å for BC3 (a), (b) and (c), while the second was done from a depth 
of 9.0, 8.9 and 8.0 Å for BC3 (a), (b) and (c), respectively. The third unloading was 
done from 11.2, 10.8 and 9.7 Å for the three structures, respectively. The value of n 
was then found from the slope of log–log plot of Eq. 9. 

RESULTS 

Potential identification 

The pressure showed a linear variation with volume for all the six cases (that is 
for the three structures using the two potentials). The comparison of lattice parame-
ter, bulk modulus and cohesive energies are given in Tables 1, 2 and 3, re-
spectively. The Ref. [24] gives MD values while Refs. [12] and [19] correspond to 
ab-initio values. 

It is seen that the lattice parameter predicted by the Matsunaga potential are 
closer to the literature values, for all the three structures. However, the values ob-
tained from the Kinaci potential are only slightly higher. As far as the bulk 
modulus is concerned, the Kinaci potential seems to be more accurate, while Ma-
tsunaga over predicts the values. However, when we consider the cohesive ener-
gies, it is very clear that the Matsunaga potential is closer to ab-initio values, when 
compared to the Kinaci potential. It is to be noted that, when compared to ab-initio 
values, the cohesive energies are high even for Matsunaga potential by approxi-
mately 1.1 eV/atom for BC3 (a) and (b). For BC3 (c), the absolute values of the 
cohesive energy and bulk modulus were not available and is hence not reported. 
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Nonetheless, the lattice parameters for BC3 (c) show a good agreement with the 
literature values as shown in Table 1. 

Table 1. Lattice parameter, Å 

Structure Matsunaga Kinaci Literature 
BC3 (a) 3.6543 3.7707 3.601 [24] 

BC3 (b) 3.6155 3.7804 3.685 [12] 

BC3 (c) 7.2105 7.4400 7.330 [19] 

Table 2. Bulk modulus, GPa 

Structure Matsunaga Kinaci Literature 
BC3 (a) 361.39 344.29 342 [24] 

BC3 (b) 357.96 331.27 337 [12] 

BC3 (c) 355.60 332.91 – 

Table 3. Cohesive energy, eV/atom, taken from [12] 

Structure Matsunaga Kinaci Literature 
BC3 (a) –7.2064 –5.8261 –9.265 (LDA) 

–8.307 (GGA) 

BC3 (b) –7.1318 –5.9476 –9.176 (LDA) 

–8.281 (GGA) 

BC3 (c) –7.1353 –5.9540 – 

 
From this preliminary analysis, it is clear that the both potentials are reasonable 

as far as the bulk modulus and the lattice parameters are concerned. The cohesive 
energies are however still much higher than what is predicted by ab-initio 
calculations, with Matsunaga parameters showing lower values. Therefore, in what 
is to follow, we will use the Matsunaga parametrized Tersoff potential for further 
studies. It is however important that a better parametrization of the potential is 
probably needed so that the cohesive energies are better predicted, which is left for 
future research. 

Elastic constants 

For all the three structures, the stress was proportional to the strain. The calcu-
lated values of C11, C12 and C44 are averaged over the values obtained from 
simulations performed in each of the three directions and are given in Tables 4, 5 and 
6, respectively along with the standard deviations. It is seen that the calculated value 
of elastic constants are in close agreement with the literature value [24], which were 
also computed using MD simulations. Furthermore, it can be seen that the sizes of 
the simulation cell does not affect the values significantly, confirming that the values 
have converged with respect to simulation box sizes. The values predicted for BC3 

(c) are higher than what is predicted by ab-initio calculations, by 14 %. 
The effective isotropic bulk modulus (B′), shear modulus (G), Young’s 

modulus (E) and Poisson’s ratio (ν) are obtained for the three structures and given 
in Table 7. Considering the Young’s modulus and the shear modulus, BC3 (a) 
seems to be stiffer than the other two. One possible reason for the lower stiffness of 
BC3 (b) and (c) when compared to BC3 (a) seems to be the presence of weaker B–
B bonding in BC3 (b) and (c). 
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Table 4. Average value of C11, GPa, for BC3 (a), (b) and (c) with standard 
deviation given in parenthesis 

Structure 8000 atoms 64000 atoms Literature 
BC3 (a) 762.13 (36.92) 761.52 (37.21) 759 [24] 

BC3 (b) 744.11 (6.75) 743.26 (0.72) – 

BC3 (c) 751.85 (2.06) 739.30 (1.04) 658.4 [19] 

Table 5. Average value of C12, GPa, for BC3 (a), (b) and (c) with standard 
deviation given in parenthesis 

Structure 8000 atoms 64000 atoms Literature 
BC3 (a) 100.76 (8.40) 101.42 (8.52) 116 [24] 

BC3 (b) 105.83 (1.29) 109.00 (1.67) – 

BC3 (c) 104.17 (1.29) 106.75 (2.93) 194.7 [19] 

Table 6. Average value of C44, GPa, for BC3 (a), (b) and (c) with standard 
deviation given in parenthesis 

Structure 8000 atoms 64000 atoms Literature 
BC3 (a) 468.40 (16.98) 465.64 (18.29) 483 [24] 

BC3 (b) 416.32 (9.43) 416.64 (0.27) – 

BC3 (c) 423.57 (9.72) 425.82 (1.12) 392.5 [19] 

Table 7. Isotropic properties for three structures  

Structure B′, GPa G, GPa E, GPa ν 
BC3 (a) 321.45 411.40 865.00 0.0514 

BC3 (b) 320.42 376.84 812.14 0.0776 

BC3 (c) 321.78 384.51 824.94 0.0727 

Indentation studies 

Nature of the load-indentation depth curves. So far indentation studies have not 
been performed for BC3 structures using MD simulations. In this paper, nano-
indentation simulations are carried out on BC3 structures to understand the 
differences in mechanical properties between the three polytypes and to understand 
their response to local plastic deformation. Four different indenter radii are used as 
mentioned in Section 2.4. The P–h curves of all three BC3 structures with the four 
indenters are shown in Figs. 3–6. It is seen that, for all three structures, and for all 
the indenter sizes a drop in the load occurs at a certain indentation depth. Further, 
the drop seems to occur at higher depths for BC3 (b), followed by BC3 (a) and then 
BC3 (c). This drop in the load is associated with the onset of plastic deformation. 
Clearly, BC3 (c) seems to have lower yield/failure limit when compared to the 
other two materials. The extent of the drop also qualitatively decreases with in-
crease in indenter size. In particular, for BC3 (c), indentations performed with 75 Å 
indenter size (see Fig. 6), almost show no drop. Instead, a flat region can be seen 
(shown in the figure) suggesting a more gradual flow of the material as seen in a 
perfectly plastic material. 
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Fig. 3. Load vs. depth for three structures using 30 Å radius indenter; 1, 2 and 3 represent BC3 
(a), (b) and (c), respectively. 
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Fig. 4. Load vs. depth for three structures using 45 Å radius indenter; 1, 2 and 3 represent BC3 
(a), (b) and (c), respectively. 
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Fig. 5. Load vs. depth for three structures using 60 Å radius indenter; 1, 2 and 3 represent BC3 
(a), (b) and (c), respectively. 
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Fig. 6. Load vs. depth for three structures using 75 Å radius indenter; 1, 2 and 3 represent BC3 
(a), (b) and (c), respectively. 

 
On examining the unloading portions of the P–h curves, it is seen that perma-

nent indentation left in the material, following retraction of the indenter, depends 
on the material as well as the indenter size. For 30 Å, BC3 (a) and (b) seem to show 
more or less a similar permanent deformation, while BC3 (c) shows greater elastic 
recovery. For 45 Å, BC3 (b) shows a larger permanent plastic deformation when 
compared to BC3 (c). In this case, BC3 (a), seems to show no permanent in-
dentation. For 60 Å none of the material shows a permanent deformation, while for 
75 Å, only BC3 (c) shows permanent depth. Since the loading portion of the curve 
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shows a drop in the load (indicating some dissipation due to plastic deformation), 
the unloading curve is expected to show some permanent depth due to indentation. 
The lack of a permanent indentation in the P–h curves following unloading, despite 
the dissipative effects seen on loading prompted us to examine the indentation 
processes more closely. In Figs. 7, a–h, the BC3 (a) sample on complete indenta-
tion (a, c, e and g), and after complete unloading (b, d, f and h) for all four radii are 
shown. It is seen that, for 30 Å radius, on indentation a certain amount of pile-up of 
the material occurs (see Fig. 7, a), while on complete unloading, this pile-up is 
more or less preserved and a permanent indentation is present (see Fig. 7, b). For 
the 45 Å radius, we see that, on indentation no pile-up occurs (see Fig. 7, c), while 
on complete unloading, some amount of pile-up occurs (see Fig. 7, d). The 60 Å 
and the 75 Å simulations also show a similar behavior. In fact, for these indenter 
radii, it appears as if the material has fully recovered back to its initial configura-
tion. The depth (h) is measured between the center of the indenter and the surface 
of the sample. Since the material rises along with the indenter for the 45, 60 and 
the 75 Å cases, it appears as though the material fully recovers (with no permanent 
indentation) in the P–h diagram (see Figs. 4–6). Thus it can be concluded that, for 
those simulations where the indentation produced pile-up, a permanent depth was 
seen on unloading. If the simulation did not produce pile-up on indentation, then a 
pile-up of the material was observed on unloading. This happened to be the case 
for BC3 (b) as well. Namely, no pile-up was seen for 60 and 75 Å on indentation, 
and unloading did not show a permanent depth in the P–h curve (see Figs. 5 and 6). 
Both BC3 (a) and BC3 (b) seemed to show a trend in their behavior, i.e., lower 
indenter sizes (30 Å for BC3 (a), 30 and 45 Å for BC3 (b)) showed a pile-up on 
indentation and hence a permanent depth in the P–h curve. Furthermore, as the 
indenter sizes were increased they did not show pile-up during indentation and 
instead the material was found to rise up producing material pile-up on unloading. 
For BC3 (c), an anomalous behavior was observed where the 30, 45, and 75 Å 
showed a pile-up on indentation, while the 60 Å did not. We rerun our simulations 
for 60 Å (BC3 (c)) to check the correctness of our simulation but did not find any 
specific errors which could have caused this anomalous behavior. Hence, at this 
point we are not sure of the exact reason for this anomaly in BC3 (c). 
 

 30 Å                          45 Å                               60 Å                         75 Å 

Permanent indentation

After 
unloading 

h
max

 

Pile�up No pile�up on indentation

Material piles�up on retraction

(a)                                  (c)                             (e)                                 (g) 

(b)                                (d)                              (f)                                 (h) 

 
Fig. 7. The surface of BC3 (a) at hmax and after unloading. 

 
In order to understand the reason behind the rising up of the material, during 

unloading, the nature of the material beneath the indenter was examined. In 
particular, a cylindrical region was considered beneath the indented portion and the 
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total radial distribution function g(r) was plotted for all three materials before and 
after the indentation. The cylinder was 20 Å in radius and had a depth of 12 Å with 
its axis parallel to the Y-axis (in direction of loading). The center of the top of the 
cylinder was on XZ plane, where the indenter initially touches the sample. Fig. 8 
shows g(r) for BC3 (a), (b) and (c) before loading, at hmax and after unloading. Re-
sults from the 75 Å indenter radius is used here for illustration, all the radii showed 
the same behavior. For all the three materials, it can be seen that the peaks which 
are present before the simulations vanish after the indentation. Clearly, the process 
of indentation amorphizes the material beneath the indenter. 
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Fig. 8. RDF of BC3 (a), (b) and (c) indenter radius 75 Å; 1, 2 and 3 represent RDF before load-
ing, hmax and after loading, respectively. 

 
One hypothesis due to which the material might pile-up during unloading is if 

the amorphous material occupied more volume than its crystalline counterpart. 
This increase in volume would cause the amorphous material to occupy more 
space, which would be available only when the indenter is withdrawn. To check 
this hypothesis, samples of the three materials with 8000 atoms (10×10×10 unit 
cells) was amorphized using MD by increasing the temperature to 6500 K and then 
quenching it to 0 GPa and 300 K in an NPT ensemble allowing the volume to 
relax. The results of average volume (standard deviations associated with all the 
volumes were less than 0.25 %) for the three structures are tabulated in Table 8. It 
is very clear that the amorphous material occupies nearly 40 % more volume than 
its crystalline counterpart, for all the three materials considered. Hence, we con-
clude that for BC3 (a) (with indenter radius 30 Å) and BC3 (b) (with indenter radius 
30 and 45 Å) pile-up occurs during indentation thus removing some material. On 
removal of load, the amorphized material had additional space to occupy due to 
which a certain permanent depth was seen. However, for higher radii, indentation 
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did not produce any pile-up and the amorphous material was trapped within the 
material. So, when the indenter was withdrawn, it caused the amorphized material 
to rise up. A similar physics is also true for BC3 (c), except that there is no clear 
trend with indenter radii. 

Table 8. Volume, Å3, at 300 K and 0 GPa in crystalline and amorphous 
state 

Structure Crystalline Amorphous % Difference 
BC3 (a) 47167.89 65845.45 39.6 

BC3 (b) 46931.71 65846.85 40.3 

BC3 (c) 46993.52 65249.56 38.9 

 
Hardness. The Table 9 shows the hardness value as determined by the Oliver-

Pharr method and the depth at which plasticity onsets (given in parentheses). The 
depth to reach the plastic state was identified from the first major drop observed in 
the P–h curves (see Figs. 3–6). As expected, the indentation depth required to 
reach plastic state increases with the indenter size. This variation occurs because, at 
given depth, the stress induced by larger indenter will be lower than what is in-
duced by the smaller indenter. The hardness value also seems to increase with 
indenter radius for BC3 (a) and (b), while for BC3 (c), the 60 Å shows higher 
hardness than 75 Å. It is important to note that the hardness values determined here 
are for comparative purposes only. The Oliver-Pharr method is known to over 
predict the hardness values due to the presence of pile-up. The over prediction of 
the hardness is due to the fact that the Ac calculated will be less than the actual 
value if pile-up is present [43]. Since the extent of over prediction is difficult to 
estimate, the hardness comparisons between the three structures can be made only 
for indenter sizes, where there was no pile-up on indentation. However, the differ-
ence in the hardness between BC3 (a) and (b) is not significant enough to clearly 
assert that BC3 (b) is harder than (a). For BC3 (c), the 60 Å case did not show any 
pile-up on indentation and the hardness value indicates that both BC3 (a) and (b) 
are softer than BC3 (c). In contrary, the P–h curves (see Figs. 3–6), suggest that 
BC3 (c) is softer, with lower magnitudes of load drops during loading. Therefore, 
the hardness determination using Oliver-Pharr method in this case does not seem to 
be conclusive. In order to confirm the trend in the hardness between BC3 (a) and 
BC3 (b) and to ensure that BC3 (c) indeed has the least hardness, the hardening 
index of the three materials are examined. 

Table 9. Hardness, GPa, and depth, Å, (number in parenthesis) at which 
plasticity begins 

Indenter radius, Å Structure 
30 45 60 75 

BC3 (a) 83 (4.6) 132 (5.3) 138 (6.1)  136 (6.7) 

BC3 (b) 77 (4.9) 79 (5.3) 141 (8.2) 141 (8.8) 

BC3 (c) 79 (4.3) 70 (5.2) 149 (5.2) 99 (6.0) 

 
Determination of hardening index and their comparisons. Figure 9 shows P–h 

curves for the three BC3 structures after they are unloaded from three different 
depths. Figure 10 shows the variation of log (Mean Pressure) with log(a/D) from 
which the hardening index n was calculated using Eq. 9. In this plot, the labeled 
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points for each material indicates the depths from which unloading was carried out. 
The values of n for each portion are tabulated in Table 10. Clearly, the material’s 
resistance to plastic deformation reduces with indentation depth. For example, for 
BC3 (c), the line connecting points (3a) and (3b) has a slope of 4.98, while that 
connecting (3b) and (3c) has a slope of 0.3. 
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Fig. 9. Load vs. depth for three structures at different depths for the three structures BC3 (a), (b) 
and (c); 1, 2 and 3 represent unloading curves at first, second and third (deepest) depth, respec-
tively. 
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Fig. 10. log(Mean Pressure) vs. log(a/D) for the three BC3 structures; 1, 2 and 3 represent BC3 
(a), (b) and (c), respectively; the three points a, b and c represent unloading at three different 
depths.  

 
If we consider the values of hardening index, it is clear that BC3 (a) is harder 

than BC3 (b) or (c). However, considering lower indentation depths, BC3 (c) is 
harder than BC3 (b), while for higher depths, BC3 (c) is the softest. Hence, it can be 
concluded that the hardness depends on the indentation depth and the kind of 
plastic mechanisms which are triggered at different depths. 
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Table 10. The hardening index of the three structures 

Structure Hardening Index-Part 1 Hardening Index-Part 2 
BC3 (a) 5.29 4.66 

BC3 (b) 3.31 1.38 

BC3 (c) 4.98 0.30 

 
The contact area, Ac used to predict the hardness is less than the actual value if 

pile-up is there [44]. The variation of number of atoms that are piled-up during 
indentation is shown in Fig. 11. The number of atoms getting piled up are maxi-
mum for BC3 (c), followed by (b) and then by (a) for the same depth. If the pile-up 
is more, then the contact area predicted will be less than the actual value. The at-
oms begin to pile-up much before elastic state is reached in case of BC3 (c) but for 
(a) and (b) pile-up begins just after it has crossed elastic limit. The structure which 
shows highest tendency to pile-up will have low strain hardening index [45]. Fur-
thermore, to examine the ease with which the damage/plastic deformation pro-
duced as indentation proceeds, the number of atoms dislocated is plotted in Fig. 12. 
Those atoms whose coordination number is different from bulk atoms are dislo-
cated atoms [46]. For the calculations of number of dislocated atoms, we have 
considered only bulk atoms (not the surface atoms). Clearly, for BC3 (a) there is a 
burst in the number of dislocated atoms, at around 5 Å depth, after which this value 
increases slowly with increase in depth. For BC3 (b), the burst in the activity 
beneath the indenter is more gradual and it also continues to increase with depth. 
For, BC3 (c), the onset of plasticity occurs much earlier and then continues to 
increase with depth as for BC3 (b) but at a much higher rate. These plots clearly 
show that, BC3 (c) has a more ductile behavior than BC3 (b). BC3 (a) seems to be 
more brittle. This difference is probably due to the B–B bonding present in BC3 (b) 
and BC3 (c) which is absent in BC3 (a) as suggested in [19]. 
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Fig. 12. Variation of number of defects with depth for three BC3 structures; 1, 2 and 3 represent 
BC3 (a), (b) and (c), respectively. 
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CONCLUSIONS 

Among the available potentials for BC3, the Tersoff potential as parameterized 
by Matsunaga [27] seems to be more appropriate. Even though the elastic proper-
ties were predicted accurately when compared to existing ab-initio values, the co-
hesive energies of Matsunaga showed a difference of close to 1.1 eV/atom when 
compared to ab-initio values for BC3 (a) and (b). This discrepancy might have 
arised due to the fact that the B–C and B–B parameters were not explicitly fit to 
reproduce properties of BC3. For BC3 (c), the absolute value of energy is not re-
ported in the literature [19] but the lattice parameter and elastic constants showed 
good agreement with the literature values. 

With regard to response to indentation, the P–h curves seemed to suggest that 
BC3 (c) showed lower yield strength (hence lower hardness). Furthermore, the post 
yield behavior was also less stiff for BC3 (c) when compared to the other two 
structures. For example, the 45 and 75 Å indenter radii generated P–h curves 
showed significant ductility for BC3. This behavior is probably due to the breaking 
of the B–C and then B–B bonds along the weak <111> direction, which is in ac-
cordance with [19]. 

The indentation studies also pointed to a peculiar “pile-up on retraction” be-
havior when larger indenter radii were used. This behavior points to the fact that 
the material underneath the indenter gets amorphized under pressure. Amorphiza-
tion during nanoindentation is seen for several materials like Fe3C, Fe4C [35] and 
SiC [37] but has not been shown for BC3. 

The tendency to pile-up increases with the number of B–B bonding. So here the 
tendency was maximum for BC3 (c) followed by BC3 (b) and then by BC3 (a). The 
hardness predicted by Oliver-Pharr method increases with decrease in value of Ac. 
This hardness was inconclusive and suggested almost identical hardness for all the 
three polytypes. A more detailed study based on the hardness index revealed that 
the hardness depended on the depth of indentation. The resistance to plastic 
deformation decreases with increase in depth as more atoms are dislocated and 
hence unable to resist the deformation. 
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Методом молекулярної динаміки проведено моделювання механічних 

властивостей і твердості трьох політипів кубічного ВС3 та їх порівняння. Для системи 
бор–вуглець з літературних даних ідентифіковано два міжатомних потенціалу Терсоффа 
з різними параметрами. На основі існуючих ab-initio досліджень енергії когезії і струк-
турних властивостей проаналізовано придатність цих двох потенціалів для прогнозуван-
ня властивостей BC3. З використанням кращого міжатомного потенціалу більш деталь-
не моделювання методом молекулярної динаміки виконано для оцінки та порівняння 
пружності, плинності, пост-плинної поведінки і твердості трьох політипів ВС3. Значен-
ня констант пружності добре узгоджуються з існуючими їх значеннями ab-initio для 
трьох політипів і відрізняються один від одного не більше ніж на 15 %. Реакція на 
індентування має значні якісні відмінності під час занурення індентора та під час роз-
вантаження. Один з політипів має меншу межу плинності і здається більш пластичним, 
ніж два інших. Твердість також має складну залежність як від матеріалу, так і від 
глибини занурення індентора. Також спостерігали своєрідну залежність виникнення 
навалів від розміру індентора. Зокрема, за меншим радіусом індентора спостерігали 
виникнення навалів біля відбитка під час занурення індетнора. При збільшенні радіуса 
індентора виникнення навалів спостерігали тільки при розвантаженні індентора. 
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Більший об’єм, що займає аморфізований матеріал, який формується під час 
індентування, виявився причиною виникнення навалів при розвантаженні індентора. 

Ключові слова: надтверді матеріали, константи пружності, 
твердість, молекулярна динаміка, легований бором алмаз. 

 
Методом молекулярной динамики проведено моделирование механиче-

ских свойств и твердости трех политипов кубического ВС3 и их сравнения. Для системы 
бор–углерод по литературным данным идентифицировано два межатомных потенциала 
Терсоффа с различными параметрами. На основе существующих ab-initio исследований 
энергий когезии и структурных свойств проанализирована пригодность этих двух потен-
циалов для прогнозирования свойств BC3. С использованием лучшего межатомного по-
тенциала более детальное моделирование методом молекулярной динамики выполнено 
для оценки и сравнения упругости, текучести, пост-текучего поведения и твердости 
трех политипов ВС3. Значение констант упругости хорошо согласуются с существую-
щими их значениями ab-initio для трех политипов и отличаются друг от друга не более 
чем на 15 %. Реакция на индентирования имеет значительные качественные различия во 
время погружения индентора и во время разгрузки. Один из политипов имеет меньший 
предел текучести и кажется более пластичным, чем два других. Твердость также име-
ет сложную зависимость как от материала, так и от глубины погружения индентора. 
Также наблюдали своеобразную зависимость возникновения навалов от размера инден-
тора. В частности, при меньшему радиусе индентора наблюдали возникновение навалов у 
отпечатка во время погружения индетнора. При увеличении радиуса индентора возник-
новения навалов наблюдали только при разгрузке индентора. Больший объем, что занима-
ет аморфизированный материал, который формируется во время индентирования, ока-
зался причиной возникновения навалов при разгрузке индентора. 

Ключевые слова: сверхтвердые материалы, константы упругости, 
твердость, молекулярная динамика, легированный бором алмаз. 
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