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A molecular dynamics based comparison
of the mechanical properties of three polytypes
of cubic BC;

In this work molecular dynamics simulations are employed to
compare the mechanical properties and hardness of three polytypes of cubic BCs;.
Firstly, two interatomic Tersoff potentials, with different parameterizations, were
identified from the literature for the boron—carbon system. Based on cohesive energies
and structural properties from existing ab-initio studies, the suitability of the two
potentials for predicting the properties of BC; was analyzed. Secondly, using the better
interatomic potential, more detailed molecular dynamics simulations were conducted
to estimate and compare the elastic, yield, post-yield behavior and hardness of the
three polytypes. The elastic constants compare well with existing ab-initio values and
vary by at most by 15 % amongst the three polytypes. Response to indentation showed
considerable qualitative differences in yield and post-yield response. One of the
polytypes showed lower yield strength and seemed more ductile than the other two. The
hardness also showed a complex dependence on both the material and the indentation
depths. A peculiar, indenter-size dependent pile-up behavior was also seen.
Specifically, for lower radii, pile-up was seen on indentation. As the radius of the
indenter was increased, pile-up was seen only on retracting the indenter. The higher
volume occupied by the indentation-amorphized material was found to be the reason
for pile-up on retracting the indenter.

Keywords: superhard materials, elastic constants, hardness, mole-
cular dynamics, boron-doped diamond.

INTRODUCTION

Any material with hardness above 40 GPa is considered as a su-
perhard material. Diamond is the hardest material and is often used for mechanical
machining [1]. One of the disadvantages of using diamond is that it reacts with iron
at higher temperature and loses its hardness. Therefore, both computational as well
as experimental research have focused on developing alternate superhard materials
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with better chemical stability based on a combination of elements like B, C, N and
O. Boron- based materials are particularly interesting because of boron’s capacity
to form electron deficient bonding with different elements [2]. Superhard materials
like B¢O [3], cubic-BN [4], BC,N, BC4N [5] and some of the boron-doped
diamonds (BDD) have already been synthesized. BDD like BC; [6] and BCs [7]
can be synthesized from a graphite precursor by direct transformation at high
pressure and temperature. BDD are p-type semiconductors [8], and are also known
to be superconducting [9]. Most importantly, they showed better chemical stability
when compared to diamond [10]. One of the critical issues concerning BDD is that
the site occupancies of B and C in the crystal structure is not clear, although the
stoichiometry is well known. This difficulty arises due to the fact that both B and C
have similar atomic radii [11], due to which X-ray diffraction studies are unable to
pinpoint the exact locations of B and C. Since boron can substitute carbon atoms in
diamond with very little lattice distortion [12], the boron content that can be added
is also a subject of extensive research. Thus, several researches based on ab-initio
calculations have tried to find the optimum crystal structure and mechanical prop-
erties like elastic constants and hardness of various BDD [11-21].

Ab-initio calculations are very accurate, they can be used to study material
properties only when at most a few hundred atoms are sufficient. Increasing the
number of atoms becomes computationally prohibitive, making it impossible to
carry out ab-initio simulations of processes which need a larger number of atoms.
For example, simulations to study indentation responses [22] or displacement
cascade simulations [23] need several thousands to millions of atoms to obtain
meaningful results. Molecular dynamics (MD) simulations, on the other hand, use
empirical potentials, making it possible to explore material behavior which needs
larger system sizes. Experimental and ab-initio studies have shown BDD to have
excellent mechanical and superconducting properties. In order to understand other
properties of BDD, it is important to explore the possibility of using MD
simulations on BDD. Only one work thus far seems to have considered MD
simulations to study BDD (BC;) [24].

The current work aims to employ MD to compare the mechanical properties
like elastic constants and hardness of three polytypes of BC;. While some ab-initio
related works are available for these polytypes, no detailed MD simulations have
been carried out. Two aspects are important for successfully conducting MD
simulations, (a) the basic crystal structure of the material being studied and (b) the
interatomic potential. Considering the structure, several configurations for BC;
have been predicted over the years using ab-initio methods. For example, Lowther
[12] predicted two structures for BC;. Both were tetragonal with one having an
11 % difference between the lattice constant and the other having 3 % difference.
One of the structures of BC; reported in [12] was cubic. MD simulation was con-
ducted on BC; by Nkambule et al. [24], they reported a tetragonal unit cell with the
lattice constant differing by less than 3 %. They also found elastic constants for
BC; by considering it to be cubic using MD simulation. Reference [13] reported a
tetragonal P-42m, while [14] found the following three low energy structures, (a)
orthorhombic Pmma-a, (b) orthorhombic Pmma-b, (c) tetragonal P-4m2 for BC;s.
Yang et al. [21] conducted tensile tests on nearly cubic structure of BC; in different
directions of the unit cell. They concluded that it is metallic at equilibrium and
remains so under large strains, which makes it the hardest conductor. In 2013 an-
other structure with space group R3m was reported [11]. Zhang et al. [19], claimed
to have solved the crystal structure of BC; using an unbiased swarm structure
search and predicted the structure to be cubic with space group /-43m. More
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recently, BC; is predicted to have monoclinic structure with space group C2/m
[15]. Other than the work in [24], where the authors calculated elastic constants, all
the other computational works on BC; are based on ab-initio calculations.

It is thus clear from the above survey that several structures, with different
symmetries, have been proposed for BC; using ab-initio calculations. It is now
instructive to ask which one is the correct structure? To answer this question we
consider the experimental synthesis of BC; in 2012 [6] which clearly established
BC; to have cubic symmetry using electron energy loss spectroscopy. Since the
experimentally determined structure is cubic, we believe BC; has a cubic
symmetry. However, since there seems to be three possible cubic structures, BC;
(a) from [24], BC; (b) from [12] and one from [19] (called BC; (c) in this work),
we will consider all these three structures and examine their behavior using
existing interatomic potentials. Of all the three structures, the one proposed in [19]
seems to be the most accurate since its simulated X-ray diffraction and Raman
peaks are in excellent agreement with that obtained from experiments in [6]. In this
work, we consider all the three reported cubic polytypes with an aim to understand
from a fundamental point of view how differences in crystal structures correlate to
their properties and to verify the suitability of available interatomic potentials for
cubic BC;.

Considering the interatomic potential, it is well known that for covalently
bonded solids derived from the diamond structure, the Tersoff potential is the most
appropriate one. The Tersoff potential was originally developed for C-based sys-
tems [25] and then it was modified for multicomponent systems to model hetero-
nuclear bonds [26]. For B—C systems, two Tersoff potential parameters have been
used thus far. The first one is by Matsunaga et al. [27], while the other by Kinaci et
al. [28]. The Matsunaga potential has been used for simulating cubic boron
carbonitride systems C.(BN)(i_y (x varies from 0-1) and it has successfully pre-
dicted the bulk modulus, lattice parameter and cohesive energy of these
compounds. Matsunaga potential was used for MD simulations of BC; [24] and
B4C [29]. Kinaci potential has been used to predict thermal conductivity of hybrid
graphene BN nanostructures. Kinaci et al. [28] have parameterized the Tersoff
interaction to get ab-initio energetics of B—C and N—C bonds.

Since there are two potentials available for B and C systems, it is not clear,
which of these potentials are well suited for BC;. Therefore, the first step is to
determine a suitable potential by analyzing the accuracy with which each of them
predict certain basic properties. To this end, we use both the Matsunaga [27] and
Kinaci potentials [28]. The B—B interaction we use is that of Matsunaga, since
Kinaci parameterization does not consider these interactions. Once a suitable set of
potential parameters is identified, other properties are determined using routine
non-equilibrium MD and indentation simulations. Before proceeding, it is useful to
consider a few works that have used nano-indentation experiments and simulations
to understand various material properties.

Nanoindentation has been used to study various mechanical properties of the
materials like hardness, dislocation source activation and phase transformation
[30]. Mechanical properties like elastic modulus and hardness are routinely deter-
mined using Oliver-Pharr method [31]. Even MD simulations of indentations have
provided useful insights concerning material behavior. For example, in [32] MD
simulations were used to study the effect of temperature on dislocation activity
beneath the indenter. It was found that, as the temperature increases, transition
from elastic to plastic deformation occurs at progressively lower stresses. Arun et
al. [33] have used MD to simulate nano-indentation studies of Ni thin films (both
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single and polycrystalline Ni) and they found that low angle grain boundaries act as
a source of dislocation under indenter. Cheng et al. [34] have also performed MD
simulations to find the hardness of diamond (hard material) and gold (soft material)
using Oliver-Pharr method and have reported that the hardness varies between 84—
107 GPa and 5-7 GPa for diamond and gold, respectively. MD simulations of the
indentation on iron carbides at various rates have helped conclude that Fe;C is a
harder material than Fe,C [35]. For ceramic materials like Si, several interesting
phenomena, such as phase transformation was found to occur on indentation [36].
Szlufarska et al. [37] performed nanoindentation using MD simulations on SiC and
found that the crystalline to amorphous transformation of SiC occurred because of
the coalescence of dislocation loops. Kucharski et al. [38] has used nanoindentation
to determine the value of hardening index of 18G2A low-alloy steel and an alu-
minum alloy. In this manner, several insights can be obtained using MD
simulations of indentation on materials.

SIMULATION DETAILS

All our simulations were conducted using the LAMMPS package [39], while
Ovito [40] and VMD [41] were used for visualization purposes.

Structures of BC;

The three models of cubic BC; (BC; (a), (b) and (c)) are shown in Figs. 1, a—c.
The basic structures of BC; (a) and BC; (b) consist of a diamond cubic structure
with two of the C atoms replaced by two B atoms at appropriate lattice points. BC;
(c) is a 2x2x2 supercell having 64 atoms with 16 B atoms occupying the four prin-
cipal diagonals as mentioned in [19]. One of the important features which distin-
guish the three structures is the extent of B-B bonding that is present in each
structure. BC; (a) does not have any B-B bond, BC; (b) has one B-B bond within
the unit cell while in BC; (c) all B atoms in the principal diagonals are bonded. For
preparing the samples for MD simulations, the lattice parameter of BC; (a) is taken
to be 3.601 A (Table 2 of [24]) while that of BC; (b) is 3.685 A (Table 1 of [12])
and for BC; (c) it is 7.330 A as given in [19].

B—B bond
‘-i:-/"l—\—ﬁ\ - .F/’—IM o

(a) (b) (©)
Fig. 1. Three cubic structures BC; (a), BC; (b) and BC; (c); atoms B are indicated using gray
spheres, while black spheres indicate atoms C.

Simulation details — identification of the interatomic potential

For the determination of the interatomic potential, all the three BC; samples
consisted of 8000 atoms (10x10x10 unit cells for BC; (a) and (b) 5x5x5 unit cells
for BC; (¢)) with periodic boundary conditions applied on three sides.

Lattice parameters, bulk modulus and cohesive energies were calculated using
both the potentials and compared with available literature values to identify the
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best potential. These simulations used a time step of 0.1 fs. For lattice parameter
determination, the systems were relaxed to 300 K, 0 GPa using a combination of
NVT and NPT ensembles. The first peak in the B—C radial distribution function
was used to calculate the lattice parameter, which for BC; (a) and (b) structures are

3 ) . . .
Ta , with a being the lattice constant. For BC; (c¢), the smallest distance between

boron and carbon atoms corresponds to atoms at 8c (in principal diagonal) and 12¢
(at edge of super cell shared by four super cells of BC; (¢)) positions, respectively,
then that distance was used to calculate the lattice constant. For determining the
bulk modulus, the simulation cell was equilibrated at 300 K and 0, 2.5, 5.0, 7.5 and
10.0 GPa pressures and the corresponding volumes were noted. The bulk modulus
(B), was then calculated using the expression
dP’
B=-V o €))

where ¥ is the volume of the simulation cell while P is the pressure.
Simulation details — determination of the elastic constants

For a cubic structure, the non zero elastic constants (written in Voigt notation)
are Cy1, Cp and Cy4. For the determination of elastic constants, two systems, each
with 8000 and 64000 atoms were considered. The simulation cells were first
equilibrated to 300 K using an NVT ensemble with a timestep of 0.1 fs for total
time of 10 ps and then to 0 GPa and 300 K using an NPT ensemble with a time step
of 0.1 fs for total time of 20 ps. After the equilibration, the length of all three sides
of the simulation cell was the same, indicating that the potential predicts a cubic
structure. To determine Cj; and Ci, tensile strain was applied on faces with nor-
mals in the X, Y or Z directions. When strain was applied on one of the faces (for
example, the face normal to the X direction), the other two pairs of faces (those
with Y and Z as the normals) were fixed. Strain was applied at a rate of 0.01 ps'
for 2 ps resulting in a total strain of 0.02. The time step used in the simulation is
0.01 fs. For strain applied in the X direction, the simulation cell was constrained in
the Y and Z directions. Then, using the constitutive Eqs. 2—4, C;; and C); were
determined. Similarly strain is applied in Y and Z directions keeping the other two
sides fixed. Note that, for a tensile test in one direction, one value for C;; and two
values for C,, are obtained:

Oy = Cllexx; (2)
ny: C12£xx; (3)
O, = CIZSXX‘ (4)

For the determination of Cu4, shear strains are applied in XY, YZ and XZ faces
separately. When shear strain was applied on a face we have not constrained any of
its sides and temperature was kept at 300 K. The strain rate used was 0.1 ps ' and
was applied for 0.2 ps with a time step of 0.1 fs resulting in a total shear strain of
0.02. For shear in XY face, Cy4 is calculated using the Eq. 5

ny: C44’ny. (5)

Cy4 is also calculated by shearing YZ and XZ faces. The reported Cy;, Ci, and
Cy4 are averages of three, six and three values, respectively.
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Simulation details — determination of hardness

The number of atoms used for indentation was 2,56,000 with 40 unit cells in the
X and Z directions and 20 unit cells in the Y direction for BC; (a) and (b). For BC;
(c) 20x10x20 unit cells were used in the X, ¥ and Z directions, respectively. The
simulation cell had the same dimensions as the sample in the X and Z directions,
while it was 1000 A in the Y direction. A schematic sketch of the simulation box
used for indentation studies (not to scale) is shown in Fig. 2. Periodic boundary
conditions are applied in all the three directions.

1000 A

‘]6 A ‘ 20 unit cells |

5100,?
Y‘X X

Fig. 2. Schematic of the simulation box used for the indentation (not to scale).

4 CG//@

40 unit cells

The system was equilibrated at 0 GPa and 300 K using NVT (for 10 ps) and
then NPT (for 20 ps) ensembles with a time step of 0.1 fs. Atoms within a
thickness of 4 unit cells in five of the six faces of the simulation cell were fixed
while the sixth face was free and was indented. The indentation is carried out in the
Y-direction at the center of XZ face at a rate of 0.01 A/ps using a time step of 1 fs.
The force exerted by the spherical indenter is given by Eq. 6. The force constant
(U) used in the Eq. 6 was 1000 eV/A®, r is the distance from center of indenter to
the each atom and R is radius of the indenter. The force that is applied is purely
repulsive as in [42] and its value is zero when » > R. Arun et al. [33] has used the
same repulsive force for conducting nanoindentation simulation on nickel thin
films. We note that, the focus of this work is more on qualitative comparison of the
three polytypes and the absolute value of U does not matter. The assumed value of
U provided reasonable estimates of load-indentation depth (P—#) curves. After
indentation, the hardness was obtained using Oliver-Pharr method [31] using Egs.
7 and 8 given below:

Force =—U(r — R)*, when (r < R) and 0 other wise; (6)
hc = hmax - 0-75(Pmax/Smax); (7)
Hardness = Py /A, ®)
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where /. is the contact depth based on which contact area 4. is calculated. Py, 1S
the load at maximum depth /p.x. Smax 1S the slope of the unloading curve at Pqy.
Simulations were carried out with four spherical indenters with radii 30, 45, 60 and
75 A.

In order to obtain more reliable estimates of the hardness of the three materials,
we also needed to determine the hardness using a different approach. To this end,
the hardening index n of each material can be determined which can then be used
to comment on the relative hardness of the materials as given in [38]. In an
indentation test the Mean Pressure (i.e., hardness) is also given by

Mean Pressure = k(a/D)". )]
Here, k is a material constant, D is the diameter of the indenter, a is the radius

of contact after indentation y Dh, —hc® and n is a hardening index. It is to be

noted that the Mean pressure physically represents the hardness (P/A.) of the mate-
rial. For studies involving the determination of the hardening index, unloading
should be done from different points along the loading curve, since the hardness is
obtained from the slope of the unloading curves at different maximum depths.
Furthermore, these points are to be taken following plastic deformation of the
material. The indentation studies performed in this work consumed significant
computational time since we used really low indentation rates of 0.01 A/ps to
minimize strain rate effects as far as possible. Other works have used indentation
rates which are at least one or two magnitudes higher [34], [37]. In order to
minimize computational time, the hardness index determination was done only
with indenter having 30 A radius, since for this indenter size plasticity is reached
for lower indentation depths. Unloading is done for three different depths for BC;
(a), (b) and (c) and the corresponding Mean Pressure (analogous to stress) and a/D
(analogous to strain) are calculated. The first unloading was done from a depth of
6.8, 6.9 and 6.2 A for BC; (a), (b) and (c), while the second was done from a depth
0f 9.0, 8.9 and 8.0 A for BC; (a), (b) and (c), respectively. The third unloading was
done from 11.2, 10.8 and 9.7 A for the three structures, respectively. The value of n
was then found from the slope of log—log plot of Eq. 9.

RESULTS

Potential identification

The pressure showed a linear variation with volume for all the six cases (that is
for the three structures using the two potentials). The comparison of lattice parame-
ter, bulk modulus and cohesive energies are given in Tables 1, 2 and 3, re-
spectively. The Ref. [24] gives MD values while Refs. [12] and [19] correspond to
ab-initio values.

It is seen that the lattice parameter predicted by the Matsunaga potential are
closer to the literature values, for all the three structures. However, the values ob-
tained from the Kinaci potential are only slightly higher. As far as the bulk
modulus is concerned, the Kinaci potential seems to be more accurate, while Ma-
tsunaga over predicts the values. However, when we consider the cohesive ener-
gies, it is very clear that the Matsunaga potential is closer to ab-initio values, when
compared to the Kinaci potential. It is to be noted that, when compared to ab-initio
values, the cohesive energies are high even for Matsunaga potential by approxi-
mately 1.1 eV/atom for BC; (a) and (b). For BC; (c), the absolute values of the
cohesive energy and bulk modulus were not available and is hence not reported.
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Nonetheless, the lattice parameters for BC; (c) show a good agreement with the
literature values as shown in Table 1.

Table 1. Lattice parameter, A

Structure | Matsunaga | Kinaci Literature
BC;(a) 3.6543 3.7707 3.601 [24]
BC; (b) 3.6155 3.7804 3.685 [12]
BC;(c) 7.2105 7.4400 7.330 [19]

Table 2. Bulk modulus, GPa

Structure | Matsunaga Kinaci Literature
BC;(a) 361.39 344.29 342 [24]
BC;(b) 357.96 331.27 337[12]
BC;(c) 355.60 33291 -

Table 3. Cohesive energy, eV/atom, taken from [12]

Structure | Matsunaga | Kinaci | Literature
BC; (a) —7.2064 —5.8261 -9.265 (LDA)
-8.307 (GGA)
BC;(b) —7.1318 —5.9476 -9.176 (LDA)
-8.281 (GGA)
BC;(c) —7.1353 —-5.9540 -

From this preliminary analysis, it is clear that the both potentials are reasonable
as far as the bulk modulus and the lattice parameters are concerned. The cohesive
energies are however still much higher than what is predicted by ab-initio
calculations, with Matsunaga parameters showing lower values. Therefore, in what
is to follow, we will use the Matsunaga parametrized Tersoff potential for further
studies. It is however important that a better parametrization of the potential is
probably needed so that the cohesive energies are better predicted, which is left for
future research.

Elastic constants

For all the three structures, the stress was proportional to the strain. The calcu-
lated values of C;;, Cj; and Cy4 are averaged over the values obtained from
simulations performed in each of the three directions and are given in Tables 4, 5 and
6, respectively along with the standard deviations. It is seen that the calculated value
of elastic constants are in close agreement with the literature value [24], which were
also computed using MD simulations. Furthermore, it can be seen that the sizes of
the simulation cell does not affect the values significantly, confirming that the values
have converged with respect to simulation box sizes. The values predicted for BC;
(c) are higher than what is predicted by ab-initio calculations, by 14 %.

The effective isotropic bulk modulus (B’), shear modulus (G), Young’s
modulus (F) and Poisson’s ratio (v) are obtained for the three structures and given
in Table 7. Considering the Young’s modulus and the shear modulus, BC; (a)
seems to be stiffer than the other two. One possible reason for the lower stiffness of
BC; (b) and (¢) when compared to BC; (a) seems to be the presence of weaker B—
B bonding in BC; (b) and (c¢).
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Table 4. Average value of C;4, GPa, for BC; (a), (b) and (c) with standard
deviation given in parenthesis

Structure | 8000 atoms | 64000 atoms | Literature
BC;(a) 762.13 (36.92) 761.52 (37.21) 759 [24]
BC;(b) 744.11 (6.75) 743.26 (0.72) -
BCs(c) 751.85 (2.06) 739.30 (1.04) 658.4 [19]

Table 5. Average value of C;,, GPa, for BC; (a), (b) and (c) with standard
deviation given in parenthesis

Structure | 8000 atoms | 64000 atoms | Literature
BC; (a) 100.76 (8.40) 101.42 (8.52) 116 [24]
BC; (b) 105.83 (1.29) 109.00 (1.67) -
BC;(c) 104.17 (1.29) 106.75 (2.93) 194.7 [19]

Table 6. Average value of C,4, GPa, for BC; (a), (b) and (c) with standard
deviation given in parenthesis

Structure | 8000 atoms | 64000 atoms | Literature
BC;(a) 468.40 (16.98) 465.64 (18.29) 483 [24]
BC;(b) 416.32 (9.43) 416.64 (0.27) -
BCs(c) 423.57 (9.72) 425.82 (1.12) 392.5[19]

Table 7. Isotropic properties for three structures

Structure | B,GPa | G, GPa | E GPa | v
BC; (a) 32145 411.40 865.00 0.0514
BC;(b) 320.42 376.84 812.14 0.0776
BC; (c) 32178 384.51 824.94 0.0727

Indentation studies

Nature of the load-indentation depth curves. So far indentation studies have not
been performed for BC; structures using MD simulations. In this paper, nano-
indentation simulations are carried out on BC; structures to understand the
differences in mechanical properties between the three polytypes and to understand
their response to local plastic deformation. Four different indenter radii are used as
mentioned in Section 2.4. The P-4 curves of all three BCs structures with the four
indenters are shown in Figs. 3—6. It is seen that, for all three structures, and for all
the indenter sizes a drop in the load occurs at a certain indentation depth. Further,
the drop seems to occur at higher depths for BC; (b), followed by BC; (a) and then
BC; (c). This drop in the load is associated with the onset of plastic deformation.
Clearly, BCs (c) seems to have lower yield/failure limit when compared to the
other two materials. The extent of the drop also qualitatively decreases with in-
crease in indenter size. In particular, for BC; (c), indentations performed with 75 A
indenter size (see Fig. 6), almost show no drop. Instead, a flat region can be seen
(shown in the figure) suggesting a more gradual flow of the material as seen in a
perfectly plastic material.
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Fig. 3. Load vs. depth for three structures using 30 A radius indenter; /, 2 and 3 represent BC;
(a), (b) and (c), respectively.
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Fig. 4. Load vs. depth for three structures using 45 A radius indenter; /, 2 and 3 represent BC;
(a), (b) and (c), respectively.
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Fig. 5. Load vs. depth for three structures using 60 A radius indenter; /, 2 and 3 represent BC;
(a), (b) and (c), respectively.
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Fig. 6. Load vs. depth for three structures using 75 A radius indenter; /, 2 and 3 represent BC;
(a), (b) and (c), respectively.

On examining the unloading portions of the P—A curves, it is seen that perma-
nent indentation left in the material, following retraction of the indenter, depends
on the material as well as the indenter size. For 30 A, BC; (a) and (b) seem to show
more or less a similar permanent deformation, while BC;5 (c) shows greater elastic
recovery. For 45 A, BC; (b) shows a larger permanent plastic deformation when
compared to BC; (c). In this case, BC; (a), seems to show no permanent in-
dentation. For 60 A none of the material shows a permanent deformation, while for
75 A, only BC; (c) shows permanent depth. Since the loading portion of the curve
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shows a drop in the load (indicating some dissipation due to plastic deformation),
the unloading curve is expected to show some permanent depth due to indentation.
The lack of a permanent indentation in the P-4 curves following unloading, despite
the dissipative effects seen on loading prompted us to examine the indentation
processes more closely. In Figs. 7, a—h, the BC; (a) sample on complete indenta-
tion (a, ¢, e and g), and after complete unloading (b, d, f'and %) for all four radii are
shown. It is seen that, for 30 A radius, on indentation a certain amount of pile-up of
the material occurs (see Fig. 7, a), while on complete unloading, this pile-up is
more or less preserved and a permanent indentation is present (see Fig. 7, b). For
the 45 A radius, we see that, on indentation no pile-up occurs (see Fig. 7, ¢), while
on complete unloading, some amount of pile-up occurs (see Fig. 7, d). The 60 A
and the 75 A simulations also show a similar behavior. In fact, for these indenter
radii, it appears as if the material has fully recovered back to its initial configura-
tion. The depth (%) is measured between the center of the indenter and the surface
of the sample. Since the material rises along with the indenter for the 45, 60 and
the 75 A cases, it appears as though the material fully recovers (with no permanent
indentation) in the P-4 diagram (see Figs. 4-6). Thus it can be concluded that, for
those simulations where the indentation produced pile-up, a permanent depth was
seen on unloading. If the simulation did not produce pile-up on indentation, then a
pile-up of the material was observed on unloading. This happened to be the case
for BC5 (b) as well. Namely, no pile-up was seen for 60 and 75 A on indentation,
and unloading did not show a permanent depth in the P-4 curve (see Figs. 5 and 6).
Both BC; (a) and BC; (b) seemed to show a trend in their behavior, i.e., lower
indenter sizes (30 A for BCs (a), 30 and 45 A for BC; (b)) showed a pile-up on
indentation and hence a permanent depth in the P-4 curve. Furthermore, as the
indenter sizes were increased they did not show pile-up during indentation and
instead the material was found to rise up producing material pile-up on unloading.
For BC; (c), an anomalous behavior was observed where the 30, 45, and 75 A
showed a pile-up on indentation, while the 60 A did not. We rerun our simulations
for 60 A (BCj3 (c)) to check the correctness of our simulation but did not find any
specific errors which could have caused this anomalous behavior. Hence, at this
point we are not sure of the exact reason for this anomaly in BC; (c).

Pile-up No pile-up on indentation

TRy,
ST XY

Permanent indentation Material piles-up on retraction

Fig. 7. The surface of BC; (a) at A, and after unloading.

In order to understand the reason behind the rising up of the material, during
unloading, the nature of the material beneath the indenter was examined. In
particular, a cylindrical region was considered beneath the indented portion and the
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total radial distribution function g(») was plotted for all three materials before and
after the indentation. The cylinder was 20 A in radius and had a depth of 12 A with
its axis parallel to the Y-axis (in direction of loading). The center of the top of the
cylinder was on XZ plane, where the indenter initially touches the sample. Fig. 8
shows g(r) for BC; (a), (b) and (c) before loading, at A, and after unloading. Re-
sults from the 75 A indenter radius is used here for illustration, all the radii showed
the same behavior. For all the three materials, it can be seen that the peaks which
are present before the simulations vanish after the indentation. Clearly, the process
of indentation amorphizes the material beneath the indenter.

g(r)
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--lvnwm‘w’h%u-m-
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g [ , ; . , , ; "
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0 1 2 3 4 5 6 R,A
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4000 1
2000 A Al R g 1
o A W A s o .
wﬂjﬂuvu’bu*.l ;
0 1 2 3 4 5 6 RA

(c)
Fig. 8. RDF of BC; (a), (b) and (c) indenter radius 75 A; I, 2 and 3 represent RDF before load-
ing, Ay, and after loading, respectively.

One hypothesis due to which the material might pile-up during unloading is if
the amorphous material occupied more volume than its crystalline counterpart.
This increase in volume would cause the amorphous material to occupy more
space, which would be available only when the indenter is withdrawn. To check
this hypothesis, samples of the three materials with 8000 atoms (10x10x10 unit
cells) was amorphized using MD by increasing the temperature to 6500 K and then
quenching it to 0 GPa and 300 K in an NPT ensemble allowing the volume to
relax. The results of average volume (standard deviations associated with all the
volumes were less than 0.25 %) for the three structures are tabulated in Table 8. It
is very clear that the amorphous material occupies nearly 40 % more volume than
its crystalline counterpart, for all the three materials considered. Hence, we con-
clude that for BC; (a) (with indenter radius 30 A) and BC; (b) (with indenter radius
30 and 45 A) pile-up occurs during indentation thus removing some material. On
removal of load, the amorphized material had additional space to occupy due to
which a certain permanent depth was seen. However, for higher radii, indentation
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did not produce any pile-up and the amorphous material was trapped within the
material. So, when the indenter was withdrawn, it caused the amorphized material
to rise up. A similar physics is also true for BC; (c), except that there is no clear
trend with indenter radii.

Table 8. Volume, A3, at 300 K and 0 GPa in crystalline and amorphous
state

Structure | Crystalline | Amorphous | % Difference
BC;(a) 47167.89 65845.45 39.6
BCs(b) 46931.71 65846.85 40.3
BCs(c) 46993.52 65249.56 38.9

Hardness. The Table 9 shows the hardness value as determined by the Oliver-
Pharr method and the depth at which plasticity onsets (given in parentheses). The
depth to reach the plastic state was identified from the first major drop observed in
the P-h curves (see Figs. 3—6). As expected, the indentation depth required to
reach plastic state increases with the indenter size. This variation occurs because, at
given depth, the stress induced by larger indenter will be lower than what is in-
duced by the smaller indenter. The hardness value also seems to increase with
indenter radius for BCs (a) and (b), while for BC3 (c), the 60 A shows higher
hardness than 75 A. It is important to note that the hardness values determined here
are for comparative purposes only. The Oliver-Pharr method is known to over
predict the hardness values due to the presence of pile-up. The over prediction of
the hardness is due to the fact that the 4, calculated will be less than the actual
value if pile-up is present [43]. Since the extent of over prediction is difficult to
estimate, the hardness comparisons between the three structures can be made only
for indenter sizes, where there was no pile-up on indentation. However, the differ-
ence in the hardness between BC; (a) and (b) is not significant enough to clearly
assert that BC5 (b) is harder than (a). For BC; (c), the 60 A case did not show any
pile-up on indentation and the hardness value indicates that both BC; (a) and (b)
are softer than BC; (c¢). In contrary, the P—/ curves (see Figs. 3—6), suggest that
BC; (c) is softer, with lower magnitudes of load drops during loading. Therefore,
the hardness determination using Oliver-Pharr method in this case does not seem to
be conclusive. In order to confirm the trend in the hardness between BC; (a) and
BC; (b) and to ensure that BC; (c) indeed has the least hardness, the hardening
index of the three materials are examined.

Table 9. Hardness, GPa, and depth, A, (number in parenthesis) at which
plasticity begins

Indenter radius, A
Structure
30 | 45 | 60 | 75
BC; (a) 83 (4.6) 132 (5.3) 138 (6.1) 136 (6.7)
BC; (b) 77 (4.9) 79 (5.3) 141 (8.2) 141 (8.8)
BC; (c) 79 (4.3) 70 (5.2) 149 (5.2) 99 (6.0)

Determination of hardening index and their comparisons. Figure 9 shows P—h
curves for the three BC; structures after they are unloaded from three different
depths. Figure 10 shows the variation of log (Mean Pressure) with log(a/D) from
which the hardening index n was calculated using Eq. 9. In this plot, the labeled
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points for each material indicates the depths from which unloading was carried out.
The values of n for each portion are tabulated in Table 10. Clearly, the material’s
resistance to plastic deformation reduces with indentation depth. For example, for
BC; (c), the line connecting points (3a) and (3b) has a slope of 4.98, while that
connecting (3b) and (3c¢) has a slope of 0.3.
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Fig. 9. Load vs. depth for three structures at different depths for the three structures BC; (a), (b)
and (c); I, 2 and 3 represent unloading curves at first, second and third (deepest) depth, respec-
tively.
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Fig. 10. log(Mean Pressure) vs. log(a/D) for the three BC; structures; /, 2 and 3 represent BCs
(a), (b) and (c), respectively; the three points a, b and c represent unloading at three different
depths.

If we consider the values of hardening index, it is clear that BC; (a) is harder
than BC; (b) or (¢). However, considering lower indentation depths, BC; (c) is
harder than BC; (b), while for higher depths, BC; (c) is the softest. Hence, it can be
concluded that the hardness depends on the indentation depth and the kind of
plastic mechanisms which are triggered at different depths.
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Table 10. The hardening index of the three structures

Structure | Hardening Index-Part 1 | Hardening Index-Part 2
BC;(a) 5.29 4.66
BC; (b) 3.31 1.38
BC;(c) 4.98 0.30

The contact area, 4. used to predict the hardness is less than the actual value if
pile-up is there [44]. The variation of number of atoms that are piled-up during
indentation is shown in Fig. 11. The number of atoms getting piled up are maxi-
mum for BC; (¢), followed by (b) and then by (a) for the same depth. If the pile-up
is more, then the contact area predicted will be less than the actual value. The at-
oms begin to pile-up much before elastic state is reached in case of BC; (c) but for
(a) and (b) pile-up begins just after it has crossed elastic limit. The structure which
shows highest tendency to pile-up will have low strain hardening index [45]. Fur-
thermore, to examine the ease with which the damage/plastic deformation pro-
duced as indentation proceeds, the number of atoms dislocated is plotted in Fig. 12.
Those atoms whose coordination number is different from bulk atoms are dislo-
cated atoms [46]. For the calculations of number of dislocated atoms, we have
considered only bulk atoms (not the surface atoms). Clearly, for BC; (a) there is a
burst in the number of dislocated atoms, at around 5 A depth, after which this value
increases slowly with increase in depth. For BC; (b), the burst in the activity
beneath the indenter is more gradual and it also continues to increase with depth.
For, BC; (c), the onset of plasticity occurs much earlier and then continues to
increase with depth as for BC; (b) but at a much higher rate. These plots clearly
show that, BC; (c) has a more ductile behavior than BC; (b). BC; (a) seems to be
more brittle. This difference is probably due to the B-B bonding present in BC; (b)
and BC; (c) which is absent in BC; (a) as suggested in [19].

2000 ' ' ' '

1500

~—=1000
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18
0 2 4 6 8 10 Depth, A

Fig. 11. Variation of number of piled-up atoms for the three BC; structures using 30 A indenter
radius; 7, 2 and 3 represent BC; (a), (b) and (c), respectively.

Number of piled up atoms

0 2 4 6 8 10 Depth, A
Fig. 12. Variation of number of defects with depth for three BC; structures; /, 2 and 3 represent
BC; (a), (b) and (c), respectively.
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CONCLUSIONS

Among the available potentials for BCs, the Tersoff potential as parameterized
by Matsunaga [27] seems to be more appropriate. Even though the elastic proper-
ties were predicted accurately when compared to existing ab-initio values, the co-
hesive energies of Matsunaga showed a difference of close to 1.1 eV/atom when
compared to ab-initio values for BC; (a) and (b). This discrepancy might have
arised due to the fact that the B—-C and B-B parameters were not explicitly fit to
reproduce properties of BC;. For BC; (¢), the absolute value of energy is not re-
ported in the literature [19] but the lattice parameter and elastic constants showed
good agreement with the literature values.

With regard to response to indentation, the P-4 curves seemed to suggest that
BC; (c) showed lower yield strength (hence lower hardness). Furthermore, the post
yield behavior was also less stiff for BC; (c) when compared to the other two
structures. For example, the 45 and 75 A indenter radii generated P-h curves
showed significant ductility for BCs. This behavior is probably due to the breaking
of the B—C and then B-B bonds along the weak <111> direction, which is in ac-
cordance with [19].

The indentation studies also pointed to a peculiar “pile-up on retraction” be-
havior when larger indenter radii were used. This behavior points to the fact that
the material underneath the indenter gets amorphized under pressure. Amorphiza-
tion during nanoindentation is seen for several materials like Fe;C, Fe,C [35] and
SiC [37] but has not been shown for BC;.

The tendency to pile-up increases with the number of B-B bonding. So here the
tendency was maximum for BC; (c) followed by BC; (b) and then by BC; (a). The
hardness predicted by Oliver-Pharr method increases with decrease in value of 4..
This hardness was inconclusive and suggested almost identical hardness for all the
three polytypes. A more detailed study based on the hardness index revealed that
the hardness depended on the depth of indentation. The resistance to plastic
deformation decreases with increase in depth as more atoms are dislocated and
hence unable to resist the deformation.
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Memooom MmonexyasApHoi OUHAMIKU NPOBEOEHO MOOENIO8AHHA MeXAHIYHUX
enacmugocmell i meepoocmi mpbox noaimunie Kyoiunozo BC; ma ix nopisuauns. /lna cucmemu
bop—eyeneys 3 Aimepamyprux 0anux i0enmu@ixoeano 0ea miscamomuux nomenyiany Tepcoghpa
3 pisnumu napamempamu. Ha ocnosi icnyiouux ab-initio 0ocniodcens enepeii Koeesii i cmpyk-
MYPHUX 81ACMUBOCMEl NPOAHANIZ08AHO NPUOAMHICIb YUX 080X NOMEHYIANIE 05l NPOSHO3Y6AH-
Ha enacmusocmeti BCs. 3 uxopucmanmam Kpawjoeo mMincamomno2o nomenyiany 6inoul 0emans-
He MOOeNoBaANHA MemOoOOM MONEKYIAPHOI OUHAMIKU GUKOHAHO ONA OYINKU Mda NOPIGHAHHA
NPYAHCHOCMI, NAUHHOCME, NOCM-NIUHHOI nogedinku i meepoocmi mpvox nonimunie BC;. 3nauen-
HSL KOHCMAHM NPYIHCHOCMI 000pe Y3200H4CYIOMbCs 3 ICHYIOUUMU iX 3HaueHHAMU ab-initio Oaa
MpbOX NONIMUNI@ i GiOpPi3HAIOMbCA 00un 8I0 00HO20 He Oinbwie Hixc na 15 %. Peaxyis na
IHOEeHMY68aHHs MA€ 3HAYHI AKICHI 6IOMIHHOCMI NI YAC 3AHYPEHHA THOEHMOpA ma nid 4ac po3-
sanmaoicenns. OOun 3 NONIMUNIE MAE MEHULY Medicy NAUHHOCTI | 30acmbcs OLIbW NIACTHUYHUM,
Hiie 06a Thwux. Teepdicmb Maxoxdc Mae CKIAOHY 3ANeNCHICMb K 610 Mamepiany, mak i 6io
enubunu 3anypenns inoenmopa. Takodc cnocmepiedanu CE0EPIOHY 3ANENHCHICMb BUHUKHEHHS
Haganie 6i0 po3mipy iHOenmopa. 30Kpema, 3a MeHwuUM paodiycom iHOeHmopda chocmepieanu
BUHUKHEHHs Haeanie Oilsi 8iobumka nio uac 3anypenns inoemuopa. Ilpu 30invuienni paodiyca
iHOeHmopa BUHUKHEHHA HABANI8 CHocmepieanu MITbKU HpU  PO3BAHMANCEHHI THOeHmopa.
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binvwuii  06’em, wo 3aimae amopghizosanuii mamepian, akuil gopmyemvca nid  uac
iHOEHMYBAHHS, BUABUECS NPUYUHOK) GUHUKHEHHS HABANIE NPU PO36AHMANCEHHT IHOEHMOPA.

Knrwuosi cnoea: Haomeepdi mamepianu, KOHCMAHMU — NPYICHOCHII,
meepoicmb, MONEKYIAPHA OUHAMIKA, 1€208AHULL OOPOM AIMA3.

Memooom monekyiapHou OUHAMUKYU NPOBEOEHO MOOETUPOSaHUe MeXaHuye-
CKUX €80licme u meepdocmu mpex noaumunos kyouueckoeo BCs u ux cpagnenus. [Jna cucmemol
bop—yenepoo no aumepamypHviM OaHHLIM UOEHMUDPUYUPOBAHO 08A MEHCAMOMHBIX NOMEHYUANA
Tepcogppa ¢ paznuunvimu napamempamu. Ha ocrose cywecmeyrowux ab-initio uccreoosanuti
9Hepeuil Ko2e3uu U CMPYKNYPHbIX CEOUCME NPOAHAIUZUPOBAHA NPULOOHOCTIL IMUX O8YX NOMEH-
yuanos ona npoenosuposanus ceoticme BC;. C ucnonvsosanuem ayuiue20 Mexdcamommozo no-
menyuana Ooiee OemaibHoe MOOEIUPOBAHUE MEMOOOM MONEKVIAPHOU OUHAMUKU BbINOJIHEHO
0I5l OYEHKU U CPABHEHUs YRPY2OCMu, MeKyuecmu, NOCm-meKyuezo No6eoeHus u meepoocmu
mpex noaumunos BCs. 3nauenue xoncmanm ynpyeocmu Xopouwio coenacylomcs ¢ cywecmsyio-
WuMU Ux 3HavenuamMu ab-initio 0ns mpex noaUMUNO8 u omMmauuaromcsa opye om opyea He bonee
uem na 15 %. Peakyus Ha uHOeHMUpo8aHus umeem 3HauumenbHvle Kaiecmseennble pasiuius 60
8peMs nocpydtceHus UHOeHmopa u 6o epems paszpysku. OOun u3 noaumunog umeem MeHbUUll
npeoden mexkyuecmu u Kasxcemcs 6ojee niacmuyHvim, yem 0sa opyeux. Teepoocmv makoice ume-
em CIOJCHYIO 3a8UCUMOCb KAK OM Mamepuaind, maxk u om 2iyOuHsl NOepydHceHus UHOeHmopa.
Taxorce nabniodanu c60e0OpasHyI0 3a8UCUMOCTb 603HUKHOBEHUA HABAN08 OM pA3Mepd UHOEeH-
mopa. B uacmnocmu, npu menvuiemy paouyce UHOEHmMopa HabI00aIU 603HUKHOBEHUE HABANO8 Y
Omneuamra 60 epems nozpyxcenus unoemuopa. Ilpu yeerusenuu paouyca uHOEHmopa 803HUK-
HOBeHUs HABAI08 HAOTIOOANU MOALKO NPU pazepy3Ke uHoeHmopa. borvuuli 06vem, ymo 3anuma-
em amopu3UpPOBAHHbIIL MAMepua, KOmopbvlii hopMupyemcs 80 pems UHOCHMUPOBAHUA, OKd-
3a0CA NPUMUHOT 603HUKHOBEHUS HABAL08 NPU PA32PY3Ke UHOEHMOpA.

Knroueevie cnoga: ceepxmeepovie mamepuansl, KOHCMAHMbL YRPY2OCHU,
meepoocnv, MOAEKYIAPHASA OUHAMUKA, 1e2UPOBANHbIL OOPOM aTMa3.
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