И. П. Мазур (Физ.-техн. ин-т низких температур НАН Украины, Харьков)

ТЕОРЕМА СКИТОВИЧА – ДАРМУА ДЛЯ КОНЕЧНЫХ АБЕЛЕВЫХ ГРУПП

Let X be a finite Abelian group, let ξ_i , $i=1,2,\ldots,n,\ n\geq 2$, be independent random variables with values in X and distributions μ_i , and let α_{ij} , $i,j=1,2,\ldots,n$, be automorphisms of X. We prove that the independence of n linear forms $L_j=\sum_{i=1}^n\alpha_{ij}\xi_i$ implies that all μ_i are shifts of the Haar distributions on some subgroups of the group X. This theorem is an analog of the Skitovich-Darmois theorem for finite Abelian groups.

Нехай X — скінченна абелева група, $\xi_i,\ i=1,2,\ldots,n,\ n\geq 2,$ — незалежні випадкові величини зі значеннями в X і розподілами $\mu_i,\ \alpha_{ij},\ i,j=1,2,\ldots,n,$ — автоморфізми X. Доведено, що із незалежності n лінійних форм $L_j=\sum_{i=1}^n\alpha_{ij}\xi_i$ випливає, що всі μ_i — зрушення розподілів Хаара деякої підгрупи групи X. Ця теорема є аналогом теореми Скітовича — Дармуа для скінченних абелевих груп.

1. Введение. Классическая теорема Скитовича – Дармуа гласит (см. [1, 2], а также [3], гл. 3): Пусть ξ_i , $i=1,2,\ldots,n,\ n\geq 2,$ — независимые случайные величины и α_i , β_i — ненулевые константы. Предположим, что линейные формы $L_1=\alpha_1\xi_1+\ldots+\alpha_n\xi_n$ и $L_2=\beta_1\xi_1+\ldots+\beta_n\xi_n$ независимы. Тогда все случайные величины ξ_i гауссовские.

Гурье и Олкин обобщили теорему Скитовича – Дармуа на случай, когда ξ_i — случайные векторы со значениями в \mathbb{R}^m и α_i , β_i — несингулярные матрицы (см. [4], а также [3], гл. 3). Они доказали, что из независимости линейных форм L_1 и L_2 следует, что все ξ_i — гауссовские векторы.

Теорема Скитовича – Дармуа обобщалась на различные классы локально компактных абелевых групп, такие как конечные, дискретные, компактные абелевы группы, а также на некоторые классы бесконечномерных линейных пространств [5–14]. В настоящей статье мы продолжаем эти исследования и изучаем теорему Скитовича – Дармуа в случае, когда случайные величины принимают значения в конечной абелевой группе и количество линейных форм больше двух.

В статье X будет обозначать конечную абелеву группу, если не оговорено противное. Пусть $\mathrm{Aut}(X)$ — группа автоморфизмов группы $X, \mathbb{Z}(k) = \{0,1,2,\ldots,k-1\}$ — группа вычетов по модулю k. Положим $x \in X$. Обозначим через E_x вырожденное распределение, сосредоточенное в x. Пусть K — подгруппа X. Обозначим через m_K распределение Хаара на K. Обозначим через I(X) множество всех сдвигов таких распределений, т. е. распределений вида $m_K * E_x$, где K — подгруппа $X, x \in X$. Распределения класса I(X) называются идемпотентными. Отметим, что идемпотентные распределения на конечных абелевых группах могут рассматриваться как аналоги гауссовских распределений на прямой.

Пусть $\xi_i,\ i=1,2,\ldots,n,\ n\geq 2,$ — независимые случайные величины со значениями в группе X и распределениями $\mu_i,\ \alpha_j,\ \beta_j$ — автоморфизмы X. Рассмотрим линейные формы $L_1=\alpha_1\xi_1+\ldots+\alpha_n\xi_n$ и $L_2=\beta_1\xi_1+\ldots+\beta_n\xi_n.$ Проблема обобщения теоремы Скитовича — Дармуа на конечные абелевы группы впервые была рассмотрена в [5], где, в частности, доказано, что класс групп, на которых из независимости линейных форм L_1 и L_2 следует, что все μ_i — идемпотентные распределения, беден и состоит из групп вида

$$\mathbb{Z}(2^{m_1}) \times \ldots \times \mathbb{Z}(2^{m_l}), \quad 0 \le m_1 < \ldots < m_l. \tag{1}$$

С другой стороны, если мы рассмотрим две линейные формы от двух случайных величин, то теорема Скитовича – Дармуа становится справедливой для произвольной конечной абелевой группы. Именно, имеет место следующая теорема (см. [8], а также [15], § 13).

Теорема 1.1. Пусть ξ_1 и ξ_2 — независимые случайные величины со значениями в X и распределениями μ_1 и μ_2 , α_i , $\beta_i \in \operatorname{Aut}(X)$, i=1,2. Если линейные формы $L_1=\alpha_1\xi_1+\alpha_2\xi_2$ и $L_2=\beta_1\xi_1+\beta_2\xi_2$ независимы, то $\mu_i \in I(X)$, i=1,2.

В статье мы рассматриваем n линейных форм L_j от n случайных величин ξ_i со значениями в конечной абелевой группе. Коэффициентами форм являются автоморфизмы группы. Мы доказываем, что из независимости L_j следует, что все ξ_i имеют идемпотентные распределения. Этот результат обобщает теорему 1.1 и может рассматриваться как естественный аналог теоремы Скитовича – Дармуа для конечных абелевых групп.

Основным результатом статьи является следующая теорема.

Теорема 1.2. Пусть $\xi_i,\ i=1,2,\ldots,n,\ n\geq 2,$ — независимые случайные величины со значениями в группе X и распределениями μ_i . Если линейные формы $L_j=\sum_{i=1}^n \alpha_{ij}\xi_i,$ где $\alpha_{ij}\in \operatorname{Aut}(X),\ i,j=1,2,\ldots,n,$ независимы, то $\mu_i\in I(X),$ $i=1,2,\ldots,n.$

Отметим, что доказательство теоремы 1.2 отличается от доказательства теоремы 1.1 при n=2 и не опирается на него.

Также мы покажем, что теорема 1.2 не верна, если рассматривать менее чем n линейных форм от n случайных величин.

Для доказательства основной теоремы нам понадобятся некоторые понятия и результаты из абстрактного гармонического анализа (см. [16]). Пусть $Y=X^*$ — группа характеров X. Поскольку группа X конечна, то $Y\cong X$. Значение характера $y\in Y$ на элементе $x\in X$ обозначим через (x,y). Пусть $\alpha\colon X\to X$ — гомоморфизм. Для любого $y\in Y$ определим отображение $\tilde{\alpha}\colon Y\to Y$ по формуле $(\alpha x,y)=(x,\tilde{\alpha}y)$ для всех $x\in X,\,y\in Y$. Отображение $\tilde{\alpha}$ является гомоморфизмом. Оно называется сопряженным к α . Тождественный автоморфизм группы обозначим через I. Пусть B — подгруппа X. Положим $A(Y,B)=\{y\in Y\colon (x,y)=1$ для всех $x\in B\}$. Множество A(Y,B) называется аннулятором B в Y и является подгруппой в Y.

Подгруппа H группы X называется характеристической, если равенство $\gamma(H)=H$ выполняется для всех $\gamma\in {\rm Aut}(X)$. Пусть p — простое число. Напомним, что абелева группа называется элементарной p-группой, если каждый ненулевой элемент этой группы имеет порядок p. Отметим, что каждая конечная элементарная p-группа изоморфна группе вида $(\mathbb{Z}(p))^m$ для некоторого m. Положим $X_{(p)}=\{x\in X\colon px=0\}$. Очевидно, что $X_{(p)}$ — элементарная p-группа. Также очевидно, что $X_{(p)}$ — характеристическая подгруппа в X.

Пусть E — конечномерное линейное пространство и γ — линейный оператор, действующий на E. Обозначим через $\dim E$ размерность E и через $\ker \gamma$ ядро γ . Пусть $\{E_i\}_{i=1}^n$ — семейства линейных пространств. Обозначим через $\bigoplus_{i=1}^n E_i$ прямую сумму линейных пространств E_i , $i=1,2,\ldots,n$.

Пусть μ — вероятностное распределение на X. Обозначим через $\sigma(\mu)$ носитель μ . Положим $\bar{\mu}(M)=\mu(-M)$, где $M\subset X$, $-M=\{-m\colon m\in M\}$. Характеристическая функция распределения μ определяется по формуле

$$\hat{\mu}(y) = \sum_{x \in X} (x, y) \mu(\{x\}), \quad y \in Y.$$

Если ξ — случайная величина со значениями в X и распределением μ , то $\hat{\mu}(y)=\mathbf{E}[(\xi,y)].$ Положим

$$F_{\mu} = \{ y \in Y : \hat{\mu}(y) = 1 \}.$$

Множество F_{μ} является подгруппой в Y, справедливо включение $\sigma(\mu) \subset A(X, F_{\mu})$ и выполняется равенство $\hat{\mu}(y+h) = \hat{\mu}(y)$ для всех $y \in Y, h \in F_{\mu}$. Если K — подгруппа в X, то

$$\hat{m}_K(y) = \begin{cases} 1, & y \in A(Y, K), \\ 0, & y \notin A(Y, K). \end{cases}$$
 (2)

2. Вспомогательные утверждения. Для доказательства теоремы 1.2 понадобятся некоторые леммы. При доказательстве следующей леммы используются стандартные рассуждения (см. [15], § 10).

Лемма 2.1. Пусть $\xi_i, i=1,2,\ldots,n, n\geq 2,$ — независимые случайные величины со значениями в группе X и распределениями μ_i . Рассмотрим линейные формы $L_j = \sum_{i=1}^n \alpha_{ij} \xi_i, \ j=1,2,\ldots,k,$ где α_{ij} — эндоморфизмы группы X. Линейные формы L_j независимы тогда и только тогда, когда выполняется равенство

$$\prod_{i=1}^{n} \hat{\mu}_i \left(\sum_{j=1}^{k} \tilde{\alpha}_{ij} u_j \right) = \prod_{i=1}^{n} \prod_{j=1}^{k} \hat{\mu}_i(\tilde{\alpha}_{ij} u_j), \quad u_j \in Y.$$
 (3)

Доказательство. Отметим, что линейные формы $L_j, j=1,2,\ldots,k$, независимы тогда и только тогда, когда выполняется равенство

$$\mathbf{E}\left[\prod_{j=1}^{k} \left(\sum_{i=1}^{n} \alpha_{ij} \xi_{i}, u_{j}\right)\right] = \prod_{j=1}^{k} \mathbf{E}\left[\left(\sum_{i=1}^{n} \alpha_{ij} \xi_{i}, u_{j}\right)\right], \quad u_{i} \in Y.$$
(4)

С учетом того, что случайные величины ξ_i независимы и $\hat{\mu}_i(y) = \mathbf{E}[(\xi_i, y)]$, преобразуем левую часть равенства (4) к виду

$$\mathbf{E}\left[\prod_{j=1}^{k}\left(\sum_{i=1}^{n}\alpha_{ij}\xi_{i},u_{j}\right)\right] = \mathbf{E}\left[\prod_{i=1}^{n}\left(\xi_{i},\sum_{j=1}^{k}\tilde{\alpha}_{ij}u_{j}\right)\right] =$$

$$= \prod_{i=1}^{n} \mathbf{E} \left[\left(\xi_{i}, \sum_{j=1}^{k} \tilde{\alpha}_{ij} u_{j} \right) \right] = \prod_{i=1}^{n} \hat{\mu}_{i} \left(\sum_{j=1}^{k} \tilde{\alpha}_{ij} u_{j} \right).$$

Рассуждая аналогично, преобразуем правую часть равенства (4):

$$\prod_{i=1}^{n} \mathbf{E} \left[\left(\sum_{j=1}^{k} \alpha_{ij} \xi_{i}, u_{j} \right) \right] = \prod_{i=1}^{n} \mathbf{E} \left[\prod_{j=1}^{k} (\alpha_{ij} \xi_{i}, u_{j}) \right] =$$

$$= \prod_{i=1}^{n} \mathbf{E} \left| \prod_{j=1}^{k} (\xi_i, \tilde{\alpha}_{ij} u_j) \right| = \prod_{i=1}^{n} \prod_{j=1}^{k} \mathbf{E} \left[(\xi_i, \tilde{\alpha}_{ij} u_j) \right] = \prod_{i=1}^{n} \prod_{j=1}^{k} \hat{\mu}_i (\tilde{\alpha}_{ij} u_j).$$

Лемма 2.1 доказана.

Лемма 2.2. Пусть Y — линейное пространство, β_{ij} — обратимые линейные операторы, действующие на Y и удовлетворяющие условиям $\beta_{1j} = I$, $\beta_{i1} = I$, $i, j = 1, 2, \ldots, n$, где I — тождественный оператор. Пусть $\{E_i\}_{i=1}^n$, $\{F_i\}_{i=1}^n$ — семейства конечномерных линейных подпространств Y, удовлетворяющих условиям

$$\beta_{ij}(E_j) \subset F_i, \quad i, j = 1, 2, \dots, n, \tag{5}$$

$$\sum_{i=1}^{n} \dim F_i \le \sum_{i=1}^{n} \dim E_i. \tag{6}$$

Тогда $E_i = F_j = F, i, j = 1, 2, \dots, n$, где F — линейное подпространство Y и $\beta_{ij}(F) = F$.

Доказательство. Положим $\dim E_i = m_i, \dim F_i = k_i$. Тогда неравенство (6) примет вид

$$\sum_{i=1}^{n} k_i \le \sum_{i=1}^{n} m_i. \tag{7}$$

Поскольку β_{ij} обратимы, получаем

$$\dim \beta_{ij}(E_j) = m_j, \quad i, j = 1, 2, \dots, n.$$
 (8)

Из (5) и (8) следует, что

$$m_i \le k_i, \quad i, j = 1, 2, \dots, n.$$
 (9)

Из (9) получаем

$$\max_{1 \le i \le n} m_i \le \min_{1 \le j \le n} k_j.$$

Отсюда и из (7) следует, что

$$\sum_{i=1}^{n} k_i \le \sum_{i=1}^{n} m_i \le n \min_{1 \le j \le n} k_j.$$
 (10)

Следовательно, (10) влечет, что $k_j = k$ и (10) принимает форму

$$nk \le \sum_{i=1}^{n} m_i \le nk.$$

Отсюда вытекает, что $\sum_{i=1}^n m_i = nk$. Учитывая это и $m_i \leq k, \ i=1,2,\dots,n,$ имеем $m_i=k, \ i=1,2,\dots,n.$ Отсюда и из (5) вытекает

$$\beta_{ij}(E_j) = F_i, \quad i, j = 1, 2, \dots, n.$$
 (11)

Из (11) и равенств $\beta_{1j}=\beta_{i1}=I,\,i,j=1,2,\ldots,n,$ получаем

$$F_1 = \beta_{1i}(E_i) = I(E_i) = E_i,$$

$$F_i = \beta_{i1}(E_1) = I(E_1) = E_1,$$

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11

откуда следует, что

$$E_i = F_j = F, \quad i, j = 1, 2, \dots, n,$$
 (12)

где F — подпространство Y. Из (11) и (12) вытекает, что $\beta_{ij}(F) = F$, $i, j = 1, 2, \ldots, n$.

Лемма 2.2 доказана.

Лемма 2.3. Пусть Y — конечная элементарная p-группа. Пусть $\hat{\mu}_i(y)$, $i=1,2,\ldots,n,\ n\geq 2,$ — неотрицательные характеристические функции на Y, удовлетворяющие уравнению

$$\prod_{i=1}^{n} \hat{\mu}_{i} \left(\sum_{j=1}^{n} \beta_{ij} u_{j} \right) = \prod_{i=1}^{n} \prod_{j=1}^{n} \hat{\mu}_{i} (\beta_{ij} u_{j}), \quad u_{j} \in Y,$$
(13)

где $\beta_{ij} \in \mathrm{Aut}(Y), \ \beta_{1j} = \beta_{i1} = I, \ i,j = 1,2,\dots,n.$ Тогда $F_{\mu_i} = F, \ i = 1,2,\dots,n,$ где F — подгруппа Y и $\beta_{ij}(F) = F, \ i,j = 1,2,\dots,n.$

Доказательство. Отметим, что Y — конечномерное линейное пространство над полем $\mathbb{Z}(p)$. При этом подгруппы Y — линейные подпространства Y, автоморфизмы группы Y — обратимые линейные операторы.

Пусть π — отображение из Y^n в Y^n , задаваемое формулой

$$\pi(u_1, u_2, \dots, u_n) = \left(\sum_{j=1}^n \beta_{1j} u_j, \sum_{j=1}^n \beta_{2j} u_j, \dots, \sum_{j=1}^n \beta_{nj} u_j\right),$$
(14)

где $u_i \in Y$. Тогда π — линейный оператор, вообще говоря, не обратимый.

Положим $N = \pi^{-1}(\bigoplus_{i=1}^{n} F_{\mu_i})$. Очевидно, что

$$\dim \bigoplus_{i=1}^{n} F_{\mu_i} \le \dim N. \tag{15}$$

Пусть ϕ_i — проекция на i-е координатное подпространство Y^n . Положим $E_i = \phi_i(N)$. Тогда E_i — подпространство Y. Мы покажем, что семейства линейных подпространств $\{E_i\}_{i=1}^n$, $\{F_{\mu_i}\}_{i=1}^n$ удовлетворяют условиям (5), (6).

Очевидно, что $N \subseteq (\bigoplus_{i=1}^n E_i)$. Отсюда и из (15) получаем

$$\dim \bigoplus_{i=1}^{n} F_{\mu_i} \le \dim \bigoplus_{i=1}^{n} E_i. \tag{16}$$

Неравенство (16) влечет

$$\sum_{i=1}^{n} \dim F_{\mu_i} \le \sum_{i=1}^{n} \dim E_i.$$

Положим в (13) $(u_1,u_2,\ldots,u_n)\in N$. Тогда левая часть уравнения (13) равна 1 и мы имеем

$$1 = \prod_{i=1}^{n} \prod_{j=1}^{n} \hat{\mu}_{i}(\beta_{ij}u_{j}), \quad (u_{1}, u_{2}, \dots, u_{n}) \in N.$$
(17)

Фиксируем j. Тогда для каждого $u \in E_j$ найдется $(u_1,u_2,\ldots,u_n) \in N$ такой, что $u_j=u$. Отсюда, из (17) и $0 \le \hat{\mu}_i(y) \le 1, \ y \in Y$, следует, что $\hat{\mu}_i(\beta_{ij}u)=1, \ u \in E_j$. Следовательно, справедливы включения

$$\beta_{ij}(E_j) \subset F_{\mu_i}, \quad i, j = 1, 2, \dots, n.$$

В итоге получаем, что выполнены условия леммы 2.2. Следовательно, $F_{\mu_i}=F$, где F — подгруппа Y и $\beta_{ij}(F)=F,$ $i,j=1,2,\ldots,n$.

Лемма 2.3 доказана.

Спедствие 2.1. Пусть Y- конечная группа, $\hat{\mu}_i(y), i=1,2,\ldots,n, \ n\geq 2,-$ неотрицательные характеристические функции на Y, удовлетворяющие уравнению (13), где $\beta_{1j}=\beta_{i1}=I, i, j=1,2,\ldots,n.$ Тогда либо $F_{\mu_i}=\{0\}, i=1,2,\ldots,n,$ либо $F_{\mu_i}\neq\{0\}, i=1,2,\ldots,n,$ и существует ненулевая подгруппа H группы Y такая, что $H\subset \left(\bigcap_{i=1}^n F_{\mu_i}\right)$ и $\beta_{ij}(H)=H, i,j=1,2,\ldots,n.$ Доказательство. Предположим, что $F_{\mu_k}=\{0\}$ для некоторого k. Зафиксируем

Доказательство. Предположим, что $F_{\mu_k}=\{0\}$ для некоторого k. Зафиксируем простое число p и рассмотрим $Y_{(p)}$. Поскольку $Y_{(p)}$ является характеристической подгруппой, можно рассмотреть сужение уравнения (13) на $Y_{(p)}$. Тогда $Y_{(p)}\cap F_{\mu_k}=\{0\}$. Отсюда и из леммы 2.3 следует, что $Y_{(p)}\cap F_{\mu_i}=\{0\},\ i=1,2,\ldots,n$. Это означает, что каждая F_{μ_i} не содержит элементов порядка p. Так как p произвольно, получаем $F_{\mu_i}=\{0\},\ i=1,2,\ldots,n$.

Пусть $F_{\mu_k} \neq \{0\}$ для всех k. Тогда, в частности, $F_{\mu_1} \neq \{0\}$. Следовательно, $Y_{(p)} \cap F_{\mu_1} \neq \{0\}$ для некоторого p. Из леммы 2.3 следует, что подгруппы $Y_{(p)} \cap F_{\mu_i}$, $i=1,2,\ldots,n$, ненулевые, совпадают и инвариантны относительно $\beta_{ij},\ i,j=1,2,\ldots,n$. Положим $H=Y_{(p)} \cap F_{\mu_i}$. Тогда H— искомая подгруппа.

Следствие доказано.

Следующая лемма является ключевой для доказательства теоремы 1.2.

Лемма 2.4. Путь $\xi_i,\ i=1,2,\ldots,n,\ n\geq 2,$ — независимые случайные величины со значениями в группе X и распределениями μ_i такие, что $\hat{\mu}_i(y)\geq 0.$ Рассмотрим линейные формы $L_j=\sum_{i=1}^n\alpha_{ij}\xi_i,$ где $\alpha_{ij}\in \operatorname{Aut}(X),$ $\alpha_{1j}=\alpha_{i1}=I,$ $i,j=1,2,\ldots,n.$ Предположим, что выполняется следующее условие:

(A) для некоторого k никакая собственная подгруппа группы X не содержит носитель μ_k .

Тогда из независимости L_i следует, что $\mu_i = m_X, i = 1, 2, \dots, n$.

Доказательство. Согласно лемме 2.1 справедливо равенство

$$\prod_{i=1}^{n} \hat{\mu}_i \left(\sum_{j=1}^{n} \tilde{\alpha}_{ij} u_j \right) = \prod_{i=1}^{n} \prod_{j=1}^{n} \hat{\mu}_i(\tilde{\alpha}_{ij} u_j), \quad u_j \in Y.$$
(18)

Из условия (А) следует, что

$$F_{\mu_k} = \{0\}. \tag{19}$$

Пусть $\pi\colon Y^n\to Y^n$ — гомоморфизм, определяемый по формуле

$$\pi(u_1, u_2, \dots, u_n) = \left(\sum_{j=1}^n \tilde{\alpha}_{1j} u_j, \sum_{j=1}^n \tilde{\alpha}_{2j} u_j, \dots, \sum_{j=1}^n \tilde{\alpha}_{nj} u_j\right),\,$$

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 11

где $u_j \in Y$. Покажем, что $\pi \in \operatorname{Aut}(Y^n)$. Предположим противное, т. е. что $\pi \not\in \operatorname{Aut}(Y^n)$. Поскольку Y^n — конечная группа, то $\operatorname{Ker} \pi \neq \{0\}$. Положим в (18) $(u_1, u_2, \dots, u_n) \in \operatorname{Ker} \pi, (u_1, u_2, \dots, u_n) \neq 0$:

$$1 = \prod_{i=1}^{n} \prod_{j=1}^{n} \hat{\mu}_i(\tilde{\alpha}_{ij}u_j). \tag{20}$$

Из (20) и $\hat{\mu}_i(y) \geq 0$ вытекает, что все сомножители в правой части равенства (20) равны 1. В частности, так как $u_{j_0} \neq 0$ для некоторого j_0 , получаем $\hat{\mu}_i(\alpha_{ij_0}u_{j_0}) = 1$, $i=1,2,\ldots,n$, откуда следует, что $F_{\mu_i} \neq \{0\},\ i=1,2,\ldots,n$. Это противоречит условию (19). Следовательно, $\pi \in \operatorname{Aut}(Y^n)$.

Покажем, что $\hat{\mu}_i(y) = 0, i = 1, 2, \dots, n$, для всех $y \in Y, y \neq 0$. Предположим противное. Тогда для некоторого l найдется $\tilde{y} \neq 0$ такой, что

$$\hat{\mu}_l(\tilde{y}) \neq 0. \tag{21}$$

Без потери общности можем предполагать, что l=1.

Полагая в (18) $(\tilde{u}_1, \tilde{u}_2, \dots, \tilde{u}_n) = \pi^{-1}(\tilde{y}, 0, \dots, 0)$, получаем

$$\hat{\mu}_1(\tilde{y}) = \prod_{i=1}^n \prod_{j=1}^n \hat{\mu}_i(\tilde{\alpha}_{ij}\tilde{u}_j). \tag{22}$$

Отметим, что найдутся по крайней мере два номера $j_1,\ j_2$ таких, что $\tilde{u}_{j_1}\neq 0,$ $\tilde{u}_{j_2}\neq 0.$ Действительно, если $\tilde{u}_j=0,\ j=1,2,\ldots,n,$ то получаем противоречие с $\pi^{-1}\in {\rm Aut}(Y^n).$ Если $\tilde{u}_{j_0}\neq 0,\ \tilde{u}_j=0,j\neq j_0,$ для некоторого $j_0,$ то $\pi(0,0,\ldots,\tilde{u}_{j_0},\ldots,0)=(\tilde{\alpha}_{1j_0}\tilde{u}_{j_0},\tilde{\alpha}_{2j_0}\tilde{u}_{j_0},\ldots,\tilde{\alpha}_{nj_0}\tilde{u}_{j_0})=(\tilde{y},0,\ldots,0).$ Это противоречит включению $\tilde{\alpha}_{ij_0}\in {\rm Aut}(Y).$ Следовательно, $\tilde{u}_{j_1},\ \tilde{u}_{j_2}\neq 0$ для некоторых j_1 и $j_2.$ Из неравенств

$$0 \le \hat{\mu}_i(y) \le 1, \quad i = 1, 2, \dots, n,$$
 (23)

и равенства (22) получаем

$$\hat{\mu}_1(\tilde{y}) \le \prod_{i=1}^n \hat{\mu}_i(\tilde{\alpha}_{ij_1}\tilde{u}_{j_1})\hat{\mu}_i(\tilde{\alpha}_{ij_2}\tilde{u}_{j_2}). \tag{24}$$

Положим

$$C = \max_{1 \le i \le n} \max_{y \ne 0} \hat{\mu}_i(y). \tag{25}$$

Согласно следствию 2.1 из (19) имеем

$$F_{\mu_i} = \{0\}, \quad i = 1, 2, \dots, n.$$
 (26)

Используя (23), (21) и (26), получаем, что 0 < C < 1. Поскольку $\tilde{u}_{j_1} \neq 0$, $\tilde{u}_{j_2} \neq 0$ и $\tilde{\alpha}_{ij_1}$, $\tilde{\alpha}_{ij_2} \in \operatorname{Aut}(Y)$, имеем $\tilde{\alpha}_{ij_1}\tilde{u}_{j_1} \neq 0$, $\tilde{\alpha}_{ij_2}\tilde{u}_{j_2} \neq 0$. Следовательно, из (24) и (25) вытекает, что

$$\hat{\mu}_1(\tilde{y}) \le C^{2n}$$

Из неравенств (24) и $\hat{\mu}_1(\tilde{y}) \neq 0$ следует, что

$$\hat{\mu}_i(\tilde{\alpha}_{ij_1}\tilde{u}_{j_1}), \hat{\mu}_i(\tilde{\alpha}_{ij_2}\tilde{u}_{j_2}) \neq 0, \tag{27}$$

где $\tilde{u}_{j_1} \neq 0$, $\tilde{u}_{j_2} \neq 0$, $i = 1, 2, \dots, n$.

Используя (27), таким же образом, как (24) было получено из (21), получаем оценку для каждого сомножителя в правой части (24) и применяем эту оценку к (24). Повторяя этот процесс m раз, приходим к неравенству, из которого следует, что

$$\hat{\mu}_1(\tilde{y}) < C^{(2n)^{m+1}}$$
.

Так как $C^{(2n)^{m+1}} \to 0$ при $m \to \infty$, то $\hat{\mu}_1(\tilde{y}) = 0$. Это противоречит предположению. Следовательно, $\hat{\mu}_i(y) = 0, i = 1, 2, \ldots, n$, для всех $y \in Y, y \neq 0$. Отсюда и из (2) получаем, что $\hat{\mu}_i(y) = \hat{m}_X(y), y \in Y, i = 1, 2, \ldots, n$. Поэтому $\mu_i = m_X, i = 1, 2, \ldots, n$.

Лемма 2.4 доказана.

3. Доказательства основных теорем. Доказательство теоремы 1.2. Пусть $\delta_j \in \mathrm{Aut}(X), \ j=1,2,\dots,n.$ Отметим, что линейные формы $L_j = \sum_{i=1}^n \alpha_{ij}\xi_i, \ j=1,2,\dots,n,$ независимы тогда и только тогда, когда независимы линейные формы $\delta_j L_j, \ j=1,2,\dots,n$. Поскольку

$$L_j = \alpha_{1j}(\xi_1 + \alpha_{1j}^{-1}\alpha_{2j}\xi_2 + \ldots + \alpha_{1j}^{-1}\alpha_{nj}\xi_n), \quad j = 1, 2, \ldots, n,$$

без потери общности можно предполагать, что $\alpha_{1j} = I, j = 1, 2 \dots, n$, т. е.

$$L_j = \xi_1 + \alpha_{2j}\xi_2 + \ldots + \alpha_{nj}\xi_n, \quad j = 1, 2, \ldots, n.$$
 (28)

Положим $\eta_i = \alpha_{i1} \xi_i$ и $\gamma_{ij} = \alpha_{ij} \alpha_{i1}^{-1}$. Тогда (28) можно записать в виде

$$L_1 = \eta_1 + \eta_2 + \ldots + \eta_n,$$

$$L_j = \eta_1 + \gamma_{2j}\eta_2 + \ldots + \gamma_{nj}\eta_n, \quad j = 2, \ldots, n,$$

где случайные величины η_i независимы. Очевидно, что достаточно доказать теорему 1.2, предположив что $\alpha_{1j} = \alpha_{i1} = I, i, j = 1, 2, \dots, n$.

По лемме 2.1 функции $\hat{\mu}_i(y)$ удовлетворяют уравнению (18). Положим $\nu_i=\mu_i*$ $*\bar{\mu}_i,\,i=1,2,\ldots,n$. Тогда $\hat{\nu}_i(y)=|\hat{\mu}_i(y)|^2,\,y\in Y$. Функции $\hat{\nu}_i(y)$ неотрицательны и также удовлетворяют уравнению (18). Докажем, что $\nu_i=m_K$, где K — подгруппа группы X. Отсюда вытекает, что $\mu_i=E_{x_i}*m_K,\,x_i\in X,\,i=1,2,\ldots,n$, т. е. $\mu_i\in I(X),\,i=1,2,\ldots,n$.

Положим $F = \bigcap_{i=1}^n F_{\mu_i}$. Рассмотрим множество подгрупп $\{G_l\} \subset F$ таких, что $\tilde{\alpha}_{ij}G_l = \tilde{\alpha}_{ij}, i, j = 1, 2, \ldots, n$. Обозначим через H подгруппу группы Y, порожденную всеми $\{G_l\}$. Несложно показать, что H — максимальная подгруппа группы Y, удовлетворяющая условию

(B)
$$\hat{\nu}_i(y) = 1, y \in \tilde{H}, i = 1, 2, \dots, n, \tilde{\alpha}_{ij}\tilde{H} = \tilde{H}, i, j = 1, 2, \dots, n.$$

С учетом того, что $\hat{\nu}_i(y+h)=\hat{\nu}_i(y),\ i=1,2,\ldots,n,$ для всех $y\in Y,\ h\in H$ и сужения автоморфизмов $\tilde{\alpha}_{ij}$ группы Y на подгруппу H являются автоморфизмами H, рассмотрим уравнение, индуцированное уравнением (18) на фактор-группе Y/H, полагая $\tilde{\nu}_i([y])=\hat{\nu}_i(y),\ i=1,2,\ldots,n,$ и $\hat{\alpha}_{ij}[y]=[\tilde{\alpha}_{ij}y],\ y\in [y],\ [y]\in Y/H.$ Пусть K=A(X,H). Отметим, что $Y/H=(K)^*.$ Поэтому если мы покажем, что $\tilde{\nu}_i([y])=\hat{m}_K([y]),\ [y]\in Y/H,$ то получим $\hat{\nu}_i(y)=\hat{m}_K(y),\ y\in Y,\ i=1,2,\ldots,n.$

Поскольку H — максимальная подгруппа Y, удовлетворяющая условию (B), то $\{0\}$ — максимальная подгруппа Y/H, удовлетворяющая условию (B) для индуцированных характеристических функций $\tilde{\nu}_i([y])$ и индуцированных автоморфизмов $\hat{\alpha}_{ij}$.

Поэтому без потери общности можем предполагать, что

$$H = \{0\}.$$
 (29)

Покажем, что для некоторого k никакая собственная подгруппа группы X не содержит $\sigma(\nu_k)$. Это условие эквивалентно условию $F_{\nu_k}=\{0\}$. Предположим противное. Тогда согласно следствию 2.1 найдется ненулевая подгруппа H группы Y, удовлетворяющая условию (В). Но это противоречит (29). Следовательно, никакая собственная подгруппа X не содержит носитель распределения ν_k . Тогда по лемме $2.4 \ \nu_i = m_X, i = 1, 2, \dots, n.$

Теорема 1.2 доказана.

Из независимости линейных форм L_j , j = 1, 2, ..., n, $n \ge 2$, где $\alpha_{1j} = \alpha_{i1} = I$, вытекает, что $\xi_i = m_K * E_{x_i}, i = 1, 2, \dots, n$. Здесь, в отличие от общего случая, распределения случайных величин ξ_i являются сдвигами распределений Хаара одной и той же подгруппы группы X.

Покажем, что теорема 1.2 точна в следующем смысле: в классе конечных групп из независимости k линейных форм от n случайных величин, где k < n, не следует, что $\mu_i \in I(X)$.

Теорема 3.1. Пусть n и k удовлетворяют условию n > k > 1, $X = (\mathbb{Z}(p))^n$, где p > 2 — простое число, такое, что p не является делителем n. Тогда существуют независимые случайные величины $\xi_i, i = 1, 2, \dots, n$, со значениями в группе X и распределениями $\mu_i \not\in I(X)$ и автоморфизмы $\alpha_{ij} \in \operatorname{Aut}(X)$ такие, что линейные формы $L_j = \sum_{i=1}^n \alpha_{ij} \xi_i, \ j=1,2,\ldots,k,$ независимы. Доказательство. Очевидно, что достаточно доказать утверждение для k=1

= n - 1.

Пусть $\alpha_{i,i-1}x=2x,\ x\in X,\ i=2,3,\ldots,n,$ и $\alpha_{ij}=I$ в остальных случаях, $i=1,2,\ldots,n,\,j=1,2,\ldots,n-1.$ Ясно, что $\alpha_{ij}\in {\rm Aut}(X).$ Отметим, что $Y\cong$ $\cong (\mathbb{Z}(p))^n, \tilde{\alpha}_{ij} = \alpha_{ij}.$

Пусть $e_1=(1,0,\ldots,0),\,e_2=(0,1,\ldots,0),\ldots,e_n=(0,0,\ldots,n)\in Y$. Рассмотрим на X функцию

$$\rho_i(x) = 1 + \operatorname{Re}(x, e_i).$$

Тогда $\rho_i(x) > 0, x \in X$, и

$$\sum_{x \in X} \rho_i(x) m_X(\{x\}) = 1.$$

Обозначим через μ_i распределение на группе X с плотностью $\rho_i(x)$ относительно распределения m_X . Видим, что

$$\hat{\mu}_i(y) = \begin{cases} 1, & y = 0, \\ \frac{1}{2}, & y = \pm e_i, \\ 0, & y \in Y, \quad y \notin \{0, \pm e_i\}. \end{cases}$$

Очевидно, что $\mu_i \not\in I(X)$. Пусть $\xi_i, i=1,2,\ldots,n,$ — независимые случайные величины со значениями в группе X и распределениями μ_i . Покажем, что линейные формы $L_j = \sum_{i=1}^n \alpha_{ij} \xi_i$ независимы. По лемме 2.1 достаточно показать, что характеристические функции $\hat{\mu}_i(y)$ удовлетворяют уравнению (3), которое принимает вил

$$\hat{\mu}_1(u_1 + u_2 + \ldots + u_{n-1})\hat{\mu}_2(2u_1 + u_2 + \ldots + u_{n-1}) \dots \hat{\mu}_n(u_1 + u_2 + \ldots + 2u_{n-1}) =$$

$$= \hat{\mu}_1(u_1)\hat{\mu}_1(u_2) \dots \hat{\mu}_1(u_{n-1})\hat{\mu}_2(2u_1)\hat{\mu}_2(u_2) \dots \hat{\mu}_2(u_{n-1}) \dots$$

$$\dots \hat{\mu}_n(u_1)\hat{\mu}_n(u_2) \dots \hat{\mu}_n(2u_{n-1}). \tag{30}$$

Покажем, что левая часть уравнения (30) не равна 0 тогда и только тогда, когда $u_j=0,\ j=1,2,\ldots,n-1.$ Действительно, предположим, что что левая часть уравнения (30) не равна 0. Тогда u_j удовлетворяет системе уравнений

где $b_i \in \{0, \pm e_i\}.$

Из (31) следует, что

Первое уравнение системы (32) влечет $b_i=0,\,i=1,2,\ldots,n.$ Поэтому единственным решением системы (31) является $u_j=0,\,j=1,2,\ldots,n-1.$

Принимая во внимание, что $\hat{\mu}_i(\pm e_j)=0$ при $i\neq j$, легко видеть, что если $u_j\neq 0$ для некоторого j, то правая часть уравнения (30) равна 0, т. е. правая часть уравнения (30) не равна 0 тогда и только тогда, когда $u_j=0,\ j=1,2,\ldots,n-1$. Поэтому равенство (30) выполняется для всех $u_j\in Y$.

Теорема 3.1 доказана.

Отметим, что теорема 3.1 может быть усилена при n=3. Обозначим через G группу вида (1). Справедливы следующие утверждения [13]:

1. Пусть $\alpha_i,\beta_i\in {\rm Aut}(G),\ i=1,2,3,\ \xi_i$ — независимые случайные величины со значениями в группе X и распределениями μ_i . Предположим, что линейные формы $L_1=\alpha_1\xi_1+\alpha_2\xi_2+\alpha_3\xi_3$ и $L_2=\beta_1\xi_1+\beta_2\xi_2+\beta_3\xi_3$ независимы. Если X=G, то все μ_i — вырожденные распределения. Если $X=\mathbb{Z}(3)\times G$, то либо все μ_i — вырожденные распределения, либо $\mu_{i_1}*E_{x_1}=\mu_{i_2}*E_{x_2}=m_{\mathbb{Z}(3)},\ x_i\in X$, для как минимум двух распределений μ_{i_1} и μ_{i_2} . Если $X=\mathbb{Z}(5)\times G$, то либо все μ_i —

вырожденные распределения, либо $\mu_{i_1} * E_{x_1} = m_{\mathbb{Z}(5)}, x_1 \in X$, для как минимум одного распределения μ_{i_1} .

2. Если группа X не изоморфна ни одной из групп, упоминавшихся в утверждении 1, то найдутся $\alpha_i, \beta_i \in \operatorname{Aut}(X), i=1,2,3$, и независимые одинаково распределенные случайные величины ξ_i со значениями в группе X и распределениями $\mu \notin I(X)$ такие, что линейные формы $L_1 = \alpha_1 \xi_1 + \alpha_2 \xi_2 + \alpha_3 \xi_3$ и $L_2 = \beta_1 \xi_1 + \beta_2 \xi_2 + \beta_3 \xi_3$ независимы.

Докажем, что теорема 1.2 не верна, если α_{ij} — эндоморфизмы X и не все α_{ij} являются автоморфизмами.

Предложение 3.1. Предположим, что группа X не изоморфна группе $\mathbb{Z}(p)$, где p — простое число. Тогда найдутся независимые одинаково распределенные случайные величины ξ_1 , ξ_2 со значениями в X и распределением μ и ненулевые эндоморфизмы α , β группы Y такие, что:

- а) линейные формы $L_1 = \alpha \xi_1 + \beta \xi_2$ и $L_2 = \xi_1 + \alpha \xi_2$ независимы;
- b) $\mu \notin I(X)$;
- c) $\sigma(\mu) = X$.

Доказательство. Сначала покажем, что существуют эндоморфизмы α , β группы X, удовлетворяющие условиям:

- 1) $\alpha \notin Aut(X), \beta \in Aut(X);$
- 2) $\beta(\operatorname{Ker} \alpha) = \operatorname{Ker} \alpha$;
- 3) $\alpha^2 x \neq \beta x$ для всех $x \in X, x \neq 0$.

Без потери общности можем предполагать, что X-p-примарная группа. По структурной теореме для конечных абелевых групп

$$X = \prod_{k=1}^{m} (\mathbb{Z}(p^k))^{k_l},$$

где $k_l \geq 0$. Возможны два случая: $X \cong \mathbb{Z}(p^k)$ и $X \ncong \mathbb{Z}(p^k)$. Если $X \cong \mathbb{Z}(p^k)$, где k > 1, то положим $\alpha x = px, \, x \in X, \, \beta = (p-1)x, \, x \in X$. Легко доказать, что α и β удовлетворяют условиям 1-3.

Если $X \not\cong \mathbb{Z}(p^k)$, то $X = X_1 \times X_2$, где X_1, X_2 — нетривиальные подгруппы группы X. Обозначим через $(x_1, x_2), x_i \in X_i$, элементы группы X. Пусть $\alpha(x_1, x_2) = (0, x_1), x \in X, \ \beta = I$. Несложно проверить, что условия 1 – 3 выполняются.

Итак, пусть α и β удовлетворяют условиям 1–3. Легко показать, что гомоморфизм $\pi\colon Y^2\to Y^2$, определяемый по формуле

$$\pi(u,v) = (\tilde{\alpha}u + v, \tilde{\beta}u + \tilde{\alpha}v), \tag{33}$$

является автоморфизмом Y^2 . Ясно, что $H={\rm Ker}\,\tilde{\alpha}\neq\{0\}$. Из (33) и условия 2 следует, что $\pi H^2\subset H^2$. Так как $\pi\in{\rm Aut}(Y^2)$ и Y^2 конечны, получаем

$$\pi H^2 = H^2. \tag{34}$$

Положим $K = A(X, H), \mu = (1 - b)m_X + bm_K$, где 0 < b < 1. Тогда

$$\hat{\mu}(y) = \begin{cases} 1, & y = 0, \\ b, & y \in H, y \neq 0, \\ 0, & y \notin H. \end{cases}$$
 (35)

Очевидно, что $\mu \notin I(X)$ и $\sigma(\mu) = X$.

Рассмотрим независимые одинаково распределенные случайные величины ξ_i , ξ_2 со значениями в группе X и распределениями μ . Докажем, что L_1 и L_2 независимы. По лемме 2.1 достаточно показать, что характеристические функции $\hat{\mu}(y)$ удовлетворяют уравнению (18), которое принимает вид

$$\hat{\mu}(\tilde{\alpha}u+v)\hat{\mu}(\tilde{\beta}u+\tilde{\alpha}v) = \hat{\mu}(\tilde{\alpha}u)\hat{\mu}(v)\hat{\mu}(\tilde{\beta}u)\hat{\mu}(\tilde{\alpha}v), \quad u,v \in Y.$$
(36)

Если $u, v \in H$, то очевидно, что (36) выполняется.

Покажем, что если либо $u \not\in H$, либо $v \not\in H$, то обе части равенства (36) равны 0. Если либо $u \not\in H$, либо $v \not\in H$, то (35) влечет, что правая часть (36) равна 0. Покажем, что то же верно и для левой части (36). Предположим противное. Тогда справедливы включения

$$\tilde{\alpha}u + v \in H,$$

$$\tilde{\beta}u + \tilde{\alpha}v \in H.$$
(37)

Включения (37) означают, что $\pi(u,v) \in H^2$. Тогда (34) влечет, что $(u,v) \in H^2$, т. е. $u,v \in H$. Это противоречит предположению.

Предположение 3.1 доказано.

Автор выражает благодарность Г. М. Фельдману за постановку задачи и полезные обсуждения и А. И. Ильинскому за полезные обсуждения и комментарии.

- Skitovich V. P. On a propherty of the normal distribution // Dokl. Akad. Nauk SSSR (N.S.). 1953. 89. – P. 217 – 219.
- Darmois G. Analyse generale des liasions stochastiques. Etude particuliere de l'analyse factorielle lineaire // Rev. Inst. Int. Statist. – 1953. – 21. – P. 2 – 8.
- 3. Kagan A. M., Linnik Yu. V., Rao C. R. Characterization problems in mathematical statistics // Wiley Ser. in Probab. and Math. Statist. New York etc.: John Wiley & Sons, 1973.
- Ghurye S. G., Olkin I. A characterization of the multivariate normal distribution // Ann. Math. Statist. 1962. – 33. – P. 533 – 541.
- Feldman G. M. On the Skitovich Darmois theorem for finite abelian groups // Theory Probab. Appl. 1992. – 37. – P. 621–631.
- Feldman G. M. On the Skitovich Darmois theorem on compact groups // Theory Probab. Appl. 1996.
 41. P. 768 773.
- 7. Feldman G. M. The Skitovich Darmois theorem for discrete periodic Abelian groups // Theory Probab. Appl. 1997. 42. P. 611–617.
- Feldman G. M. More on the Skitovich Darmois theorem for finite Abelian groups // Theory Probab. Appl. – 2001. – 45. – P. 507 – 511.
- Feldman G. M., Graczyk P. On the Skitovich Darmois theorem on compact Abelian groups // J. Theor. Probab. – 2000. – 13. – P. 859 – 869.
- Feldman G. M., Graczyk P. On the Skitovich Darmois theorem for discrete Abelian groups // Theory Probab. Appl. - 2005. - 49. - P. 527 - 531.
- Feldman G. M., Graczyk P. The Skitovich Darmois theorem for locally compact Abelian groups // J. Austral. Math. Soc. – 2010. – 88. – P. 339 – 352.
- Graczyk P., Feldman G. M. Independent linear statistics on finite abelian groups // Ukr. Math. J. 2001.
 53, № 4. P. 499 506.
- 13. *Krakowiak W.* The theorem of Darmois Skitovich for Banach valued random variables // Ann. Inst. H. Poincare B. 1975. 11, № 4. P. 397 404.
- 14. *Myronyuk M. V.* On the Skitovich Darmous and Heyde theorem in a Banach space // Ukr. Math. J. 2008. 60, № 9. P. 1437 1447 (transl. from Ukr. Mat. Zh. 2008. 60, № 9. P. 1234 1242).
- Feldman G. Functional equations and characterizations problems on locally compact Abelian groups // EMS. – 2008.
- 16. Hewitt E., Ross K. A. Abstract harmonic analysis. Berlin etc.: Springer, 1963. Vol. 1.

Получено 23.05.11