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WEYL’S THEOREM FOR ALGEBRAICALLY wF(p, r, q)
OPERATORS WITH p,r > 0 AND g > 1

TEOPEMA BEILJISI JJI51 ONIEPATOPIB, 11O AJITEBPATYHO
HAJIEXKATD KJIACY wF (p,r,q) IPU p,7 > 01q > 1

If T or T* is an algebraically wF'(p, r, q) operator with p, 7 > 0 and ¢ > 1 acting on an infinite-dimensional
separable Hilbert space, then we prove that the Weyl theorem holds for f(7T'), for every f € Hol(o(T)),
where Hol(o(T")) denotes the set of all analytic functions in an open neighborhood of o(T"). Moreover, if
T* is a wF (p,r, q) operator with p,r > 0 and ¢ > 1, then the a-Weyl theorem holds for f(T"). Also, if T'
or T* is an algebraically wF(p, r, q) operators with p,» > 0 and g > 1, then we establish spectral mapping
theorems for the Weyl spectrum and essential approximate point spectrum of 1" for every f € Hol(o(T)),
respectively. Finally, we examine the stability of the Weyl theorem and a-Weyl theorem under commutative
perturbation by finite-rank operators.

V Bunazky, xonu T abo T™* — omeparopw, 1o anredpaiqno Hanexars kiacy wF (p,r,q), ne p,r > 0,q > 1,
i IiFOTh Ha HECKIHUCHHOBUMIPHOMY cerapabebHOMY TiIbOEpTOBOMY NPOCTOPI, JOBEJCHO, 10 TeopeMa Beiins
BukoHyethest st f (1) npu kosxaoMy f € Hol(o(T')), ne Hol(o(T')) — MHOKHHA BCIX aHATITHIHIX (QyHKII
y Binkpuromy okoni o (7). Kpim Toro, sikmo T — oneparop kiacy wF(p,r,q), ne p,r > 0iq > 1, 10
a-teopema Beiins Buxonyetsest wist f(7T). Y Bumaaky, ko T a6o T* — omeparopu, 1o aireOpaidHo
Hanexars kiacy wF (p,r,q) upu p,r > 01 ¢ > 1, BCTAHOBIEHO TEOPEMH IPO CIEKTPAIbHE BiZ0OPaKeHHI,
BIAIIOBI/HO, Juts crieKTpa Beiinst Ta ju1st icTOTHOro HaGIMKEHOT0 TOYKOBOIO CIIEKTpa oreparopa 1 1yist KOKHOTo
f € Hol(o(T)). HocnimkeHo crilikicts Teopemu Beiinst Ta a-teopemu Beiins npu koMmyTarusHOMY 30ypeHHi
oIepaTopamMy CKiHYCHHOTO PaHTYy.

1. Introduction. Throughout this paper let B(#), F(#), K(H), denote, respectively,
the algebra of bounded linear operators, the ideal of finite rank operators and the ideal of
compact operators acting on an infinite dimensional separable Hilbert space H. If T €
€ B(H) we shall write ker(7T") and R(T") for the null space and range of T, respectively.
Also, let a(T) := dimker(T), B(T) := dim R(T), and let o(T), 04 (T"), 0,(T) denote
the spectrum, approximate point spectrum and point spectrum of 7', respectively. An
operator T' € B(H) is called Fredholm if it has closed range, finite dimensional null
space, and its range has finite codimension. The index of a Fredholm operator is given
by
i(T) = a(T) — B(T).

T is called Weyl if it is Fredholm of index 0, and Browder if it is Fredholm “of finite
ascent and descent”.

Recall that the ascent, a(T'), of an operator T is the smallest non-negative integer
p such that ker(T?) = ker(TP*1). If such integer does not exist we put a(T") = oo.
Analogously, the descent, d(T'), of an operator T is the smallest non-negative integer g
such that R(7T'?) = R(T?*!), and if such integer does not exist we put d(T') = co. The

essential spectrum o (7T'), the Weyl spectrum o (T') and the Browder spectrum o, (7")
of T are defined by

or(T) ={A € C: T — \is not Fredholm},

ow(T) ={A € C: T — Xis not Weyl},

and
op(T) = {A € C: T — Xis not Browder}
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respectively. Evidently

or(T) Cow(T) C op(T) Cop(T)Uacco(T),

where we write accK for the accumulation points of K C C.

Following [1], we say that Weyls theorem holds for T if o(T) \ ow (T) = Eo(T),
where Fo(T') is the set of all eigenvalues A of finite multiplicity isolated in o(T"). And
Browders theorem holds for T if o(T) \ ow (T) = mo(T), where mg is the set of all
poles of T' of finite rank.

Let SF(H) be the class of all semi-Fredholm operators on H. Let SF (H) be the
class of all upper semi-Fredholm operators, SF_ (H) be the class of all T € SF(H)
with ¢(T") < 0, and for any T' € B(H), let

osp(T)={AeC:T—-X¢ SF(H)},
osp-(T) = {NeC:T - A ¢SFZ(H)},

psr(T) = C\ osp(T) and pgp- (T) = C\ ogye- (T).

In [2] Berkani define the class of B-Fredholm operators as follows. For each integer
n, define T}, to be the restriction of T' to R(T™) viewed as a map from R(7T™) into
R(T™) (in particular Ty = T). If for some n the range R(7™) is closed and T, is
Fredholm (resp. semi-Fredholm ) operator, then T is called a B-Fredholm (resp. semi-
B-Fredholm ) operator. In this case and from [2] T}, is a Fredholm operator and i(T;,,) =
= i(T;,) for each m > n. The index of a B-Fredholm operator T is defined as the index
of the Fredholm operator T,,, where n is any integer such that the range R(7™) is closed
and T,, is Fredholm operator (see [2]). Let SBF(H) be the class of all semi-B-Fredholm
operators on H. For T € B(H), let

USBF(T) = {)\ eC:T—- ¢ SBF(H)},

pspr(T) =C\ ospr(T).

Let E§ be the set of all eigenvalues of T of finite multiplicity which are isolated
in 0,(T). According to [3], we say that T satisfies a-Weyls theorem if Tspy (T) =
= 04(T) \ E§(T) and a-Browder’s theorem holds for T if Tsk; (T) = ou(T). It
follows from [3] (Corollary 2.5) a-Weyl’s theorem implies Weyl’s theorem.

It follows from [3, 4] that

a-Weyl’s theorem = Weyl’s theorem = Browder’s theorem,

a-Weyl’s theorem = a-Browder’s theorem == Browder’s theorem.

The investigation of operators obeying Weyl’s theorem, a-Weyl’s theorem, Brow-
der’s theorem or a-Browder’s theorem was studied by many mathematicians [1, 3-9]
and the references cited therein.

Following [10], we say that T € B(H) has the single-valued extension property
(SVEP) at point A € C if for every open neighborhood U, of A, the only analytic
function f: Uy — H which satisfies the equation (T" — p)f(u) = 0 is the constant
function f = 0. It is well-known that 7" € B(#) has SVEP at every point of the
resolvent p(T') := C\ o(T'). Moreover, from the identity theorem for analytic function
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it easily follows that T € B(#) has SVEP at every point of the boundary do(T")
of the spectrum. In particular, 7' has SVEP at every isolated point of o (7). In [11]
(Proposition 1.8), Laursen proved that if 7" is of finite ascent, then 7" has SVEP.

Proposition 1.1 [12]. Let T € B(H).

(1) If T has the SVEP, then i(T — X\I) < 0 for every A € pspr(T).

(il) If T* has the SVEP, then i(T — XI) > 0 for every X € pspr(T).

Definition 1.1 [13]. Let T € B(H) and n,d € N. Then T has a uniform descent
for n > d if R(T) + ker(T") = R(T) + ker(T?) for all n > d. If, in addition,
R(T) + ker(T%) is closed, then T is said to have topological uniform descent for
n > d.

2. Properties of algebraically wF (p, r, q) operators with p,r > 0 and ¢ > 1.
A bounded linear operator T' € B(#) belongs to the class wF(p, g, r) for each p,r > 0
and ¢ > 1if

(T ["(TPP|T[") e > T/
and
‘T|2(P+T)(lfl/q) > (|T|p|T*‘2T|T‘p)(171/q).

This class has been introduced by Yang and Yuan, see [14]. An operator T € B(H)
is called isoloid if every isolated point of o(T') is an eigenvalue of 7. An operator
T € B(H) is called normaloid if r(T) = ||T||, where r(T) is the spectral radius of 7.
T € B(H) is called convexoid if convo(T) = W(T), where W (T) is the numerical
range of T. X € B(#H) is called a quasiaffinity if it has trivial kernel and dense range.
S € B(H) is said to be a quasiaffine transform of T € B(H) (notation: S < T)) if there
is a quasiaffinity X € B(#) such that X.S = TX. If both S < T and T' < S then we
say that S and T are quasisimilar.

In general, the following implications hold:

class wF(p,r,q) = algebraically class wF (p,r, q) for each p,r > 0 and g > 1.

The following facts follow from the above definition and some well known facts
about class wF'(p,r, q) for each p,r > 0 and ¢ > 1.

(1) If T € B(H) is algebraically class wF(p,r,q) for each p,r > 0 and ¢ > 1 then
so is T'— AI for each A € C.

(ii) If T € B(H) is algebraically class wF'(p,r, q) for each p,r > 0 and ¢ > 1 and
M is a closed T-invariant subspace of H then T'|; is algebraically class wF (p, r, q) for
each p,r > 0 and ¢ > 1.

Remark 2.1. In what follows, we use the notation wF’ to denote the class wF(p, r, q)
operators with p,r > 0 and ¢ > 1.

Lemma 2.1. Let T € B(H) belong to class wF(p,r,q) with p,r > 0 and g > 1.
Let \ € C. Assume that o(T) = {\}. Then T = \I.

Proof. We consider two cases:

Case 1 (A = 0): Since T belongs class wF for each p,r > 0 and ¢ > 1, T is
normaloid. Therefore 7" = 0.

Case 11 (A # 0): Here T is invertible, and since T belongs class wF for each
p,7 > 0and g > 1, we see that T~ is also belongs to class wF for each p,r > 0
and ¢ > 1. Therefore 7! is normaloid. On the other hand, o(7') = {1/A}, so
ITINT=| = |A]|1/A| = 1. It follows that T is convexoid, so W(T) = {\}. Therefore
7=\

Lemma 2.1 is proved.
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Proposition 2.1. Let T be a quasinilpotent algebraically wF operator. Then T is
nilpotent.

Proof. Assume that p(T) is wF operator for some nonconstant polynomial p. Since
o(p(T)) = p(a(T)), the operator p(T") —p(0) is quasinilpotent. Thus Lemma 2.1 would
imply that

cT™(T —MI)...(T =X 1) =p(T)—p(0) =0,

where m > 1. Since 7' — A;1 is invertible for every A; # 0, we must have 77" = 0.
Proposition 2.1 is proved.
An operator T' € B(#H) is said to be polaroid if iso o(T") C 7(T'), where 7(T) is the
set of all poles of 7. In general, if 7" is polaroid then it is isoloid. However, the converse
is not true. Consider the following example. Let T' € £2(N) be defined by

T2 T3
T((El,xz, .. ) = (?, ?7 .. )
Then T is a compact quasinilpotent operator with «(7) = 1, and so T is isoloid.
However, since 1" does not have finite ascent, 7" is not polaroid.
In [15] they showed that every wF’ operator is isoloid. We can prove more:
Proposition 2.2. Let T be an algebraically wF' operator. Then T is polaroid.
Proof. Suppose T is an algebraically wF' operator. Then p(T') is wF for some

nonconstant polynomial p. Let A € iso(o(T")). Using the spectral projection P :=

1
= 5 (n—"T)"" du, where D is a closed disk of center A\ which contains no other
1T JoD

points of o(T"), we can represent 1" as the direct sum

T_<T01 %) o(T1) = {\}, and o(Ts) = o(T)\ {A}.

Since 77 is algebraically class wF and o(T1) = {\}. But o(T7 — AI) = {0} it follows
from Proposition 2.1 that 73 — AI is nilpotent. Therefore 77 — A has finite ascent and
descent. On the other hand, since 75 — A is invertible, clearly it has finite ascent and
descent. Therefore 7" — AI has finite ascent and descent. Therefore A is a pole of the
resolvent of 7. Thus if A € iso(o(T)) implies A € 7(T), and so iso(c(T")) C =(T).
Hence T is polaroid.

Proposition 2.2 is proved.

Corollary 2.1. LetT be an algebraically wF operator. Then T is isoloid.

For T € B(H), A € o(T) is said to be a regular point if there exists S € B(H)
such that T — A\ = (T — A )S(T — AI). T is is called reguloid if every isolated
point of ¢(7T') is a regular point. It is well known [16] (Theorems 4.6.4 and 8.4.4) that
T—X = (T —M)S(T — ) for some S € B(H) <= T — A has a closed range.

Theorem 2.1. Let T be an algebraically wF operator. Then T is reguloid.

Proof. Suppose T is an algebraically wF' operator. Then p(T') is wF for some

nonconstant polynomial p. Let A € iso(o(T")). Using the spectral projection P :=

1
= 5 (n—T)"" dp, where D is a closed disk of center A\ which contains no other
1T JoD

points of o(T"), we can represent 1" as the direct sum
Ty 0
T= (¢ g o@={}, ad o) =)\ ).

ISSN 1027-3190. Vip. mam. scypn., 2011, m. 63, Ne 8
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Since T is algebraically class wF and o(T7) = {)\}, it follows from Lemma 2.1 that
Ty = M. Therefore by [15] (Theorem 2.10),

H=E(H)®EM)" =ker(T — X)) @ ker(T — \)=*. (2.1)

Relative to decomposition (2.1), 7' = A\ @ T5,. Therefore T'— A\ = 0 ¢ T — A\I and
hence ran(T — M) = (T — M )(H) = 0@ (To — M) (ker(T — AI)*). Since Tp — A is
invertible, T' — AI has closed range.

Theorem 2.1 is proved.

3. Weyl’s theorem for algebraically wF' operators with p,» > 0 and g > 1.
Theorem 3.1. Suppose T or T* is an algebraically class wF (p,r, q) operator for
p,r > 0and q > 1. Then Weyl's theorem holds for f(T) for every f € Hol(o(T)).

Proof. Suppose that T is algebraically class wF. We first show that Weyl’s theorem
holds for T. Let A € o(T) \ ow(T). Then T — Al is Weyl but not invertible. We
claim that A € 9o (T). Assume to the contrary that A is an interior point of o (7).
Then there exists a neighborhood U of A such that dimker(T" — p) > 0 for all u € U.
Then it follows from [10] (Theorem 10) that 7" does not have SVEP. On the other hand,
since p(T) is of class wF(p,r,q) for some nonconstant polynomial p, it follows from
[15] and [10] (Proposition 1.8) that p(7T") has SVEP. Hence by [17], T has SVEP. This
is a contradiction. Therefore A € Jo(T') \ ow (T'), and it follows from the punctured
neighborhood theorem that A € F(T'). Conversely, suppose that A € Ey(T"). Using the

1
spectral projection P := 2—/ ( — T)~ ' dp, where D is a closed disk of center A
1T JoD

which contains no other points of o(7T'), we can represent 7' as the direct sum

T_<7(;1 %) o(T) = (A}, and o(Ty) = o(T)\ {\}.

Since T is of class wF and o(T7) = {A}, it follows from Lemma 2.1 that 73 — AI is
nilpotent. Since A € Eo(T'), T — M is a finite dimensional operator, so T — AI is Weyl.
Since T5 — A is invertible, 75 — Al is Weyl. Thus Weyl’s theorem holds for 7. Now
we claim that ow (f(T)) = f(ow(T)) for all f € Hol(o(T)). Let f € Hol(a(T)).
Since ow (f(T)) C f(ow(T)) with no other restriction on T, it suffices to show that
flow (T)) Cow (f(T)). Suppose that A ¢ ow (f(T)). Then f(T) — X is Weyl and

F) =AM =c(T—ar1 I)(T —azl)... (T — an)g(T), 3.1
where ¢, a1, g, . .., ap, € Cand g(T') is invertible. Since the operators in the right-hand
side of equation (3.1) commute, every T — «; I is Fredholm. Since T is algebraically
class wF(p,r,q) for each p,r > 0 and n > 1, T has SVEP. It follows from Proposition

1.1 that ¢(T — oy 1) < 0 for each k = 1,...,n. Therefore A ¢ f(ow (T)). Now recall
[17] that if T is isoloid then

f(e(T)\ Eo(T)) = f(o(T)) \ f(Eo(T)) forevery f & Hol(a(T)).
Since T is isoloid by Corollary 2.1 and Weyl’s theorem holds for 7,
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Fle(M)\ F(Eo(T)) = f(a(T)\ Eo(T)) = flow(T)) = ow (f(T))
for every f € Hol(o(T)),

which implies that Weyl’s theorem holds for f(7T').

Now suppose that T* is algebraically class wF(p,r, q) for each p,r > 0 and ¢ > 1.
We first show that Weyls theorem holds for 7. Suppose that A € o(T) \ ow (T).
Observe that o(T*) = o(T) and oy (T*) = ow (T). So A € o(T) \ ow (T), and hence
A € Eo(T*). Therefore ) is an isolated point of o(T'), and so A € Ey(T). Conversely,
suppose that A € Eo(T') . Then A is an isolated point of o(7T") and 0 < a(T — A\I) < o0.
Since \ is an isolated point of o(7*) and T* is algebraically class wF(p,r, q) for each
p,r > 0 and ¢ > 1, it follows from that A € 7(T*). Therefore there exists a natural
number ng such that ng = a(T* — M) = d(T* — X\I). Hence we have H = ker((T* —
—AI)™)@ran((T* —AI)™) and ran((T* —XI)™) is closed. Therefore ran((T—\I)™)
is closed and H = ker((T* — M)™)* @ ran((T* — A)™)+ = ker((T — AI)™) @
@ran((T'—AI)™). So A € (T"), and hence T'— A\I is Weyl. Consequently, A € o(T')\
ow (T'). Thus Weyl’s theorem holds for 7. Now we show that ow (f(T)) = f(ow (T))
for each f € Hol(o(T)). Let f € Hol(o(T')). To show that ow (f(T)) = f(ow (1)) it
is sufficient to show that ow (f(T)) 2 f(ow (T')). Suppose that A ¢ ow (f(T")). Then
F(T) — A\ is Weyl. Since T™* is algebraically class wF, it has SVEP. It follows from
Proposition 1.1 that ¢(T" — a;) > 0 for each j = 1,2,...,n. Since

0< Y i —ay) = i(f(T) = M) = 0,

T — «j is Weyl for each j = 1,...,n. Hence A ¢ f(ow(T)), and so f(ow (T)) C
C ow(f(T)). Thus f(ow (T)) = ow (f(T)) for each f € Hol(o(T)). Since Weyl’s
theorem holds for 7" and T is isoloid, Weyl’s theorem holds for f(7) for every f €
€ Hol(a(T)).

Theorem 3.1 is proved.

From the proof of the Theorem 3.1, we obtain the following useful consequence.

Corollary 3.1. Suppose T or T* is an algebraically class wF(p,r,q) operator for
each p,r > 0 and ¢ > 1. Then ow (f(T)) = f(ow (1)) for every f € Hol(o(T)).

4. a-Weyl’s theorem for algebraically wF' operators with p, > 0 and q > 1.
Let T' € B(H). It is well known that the inclusion OsF; (f(T)) < f((TSF_; (T")) holds
for every f € Hol(o(T')) with no restriction on T' [18]. The next theorem shows that
the spectral mapping theorem holds for the essential approximate point spectrum for
algebraically class wF.

Theorem 4.1. Suppose T* or T is an algebraically class wF operator. Then

osp- (/1)) = (o5, (T)).

Proof. Assume first that T is algebraically wF and let f € Hol(o(T)). It suffices to
show that USF;(f(T)) 2 f(oSF; (T")). Suppose that A ¢ USF;(f(T)). Then f(T) —
— M € SF_ (H) and

J(T) = M = T = i I)(T = pal) ... (T — i Dg(T),

ISSN 1027-3190. Vkp. mam. scypn., 2011, m. 63, Ne 8



1098 M. H. M. RASHID

where ¢, p1, 2, ...,y € C, and g(T) is invertible. Since 7' is algebraically class
wkF, it has SVEP. It follows from [19] (Theorem 2.6) that i(T" — p;) < 0 for each
j=1,2,...,n. Therefore A ¢ f(aSF; (T)), and hence USF;(f(T)) = f(USF; (1)).
Suppose now that T is algebraically class wF. Then T™* has SVEP, and so by [19]
(Theorem 2.6) (T — p;I) > 0 for each j = 1,2,...,n. Since

0.< S HT — T) = i(F(T) ~ AI) <0

T—p;Iis Weyl foreach j = 1,2,...,n. Hence A ¢ f(aSF; (T")), and so Top- (f(T)) =
= f(USF; (T))

Theorem 4.1 is proved.

An operator T € B(H) is called a-isoloid if isocq(T)) C o,(T). Clearly, if T
is a-isoloid then it is isoloid. However, the converse is not true. Consider the fol-
lowing example: Let U @ @, where U is the unilateral forward shift on ¢ and Q is
an injective quasinilpotent on ¢2, respectively. Then o(T) = {A € C: |\ < 1} and
0a(T) ={A € C: A\ =1} U{0}. Therefore T is isoloid but not a-isoloid.

It is easily seen that quasinilpotent operators do not satisfy a-Weyl’s theorem, in
general. for instance, if
T2 I3
273"
then 7' is quasinilpotent but a-Weyl’s theorem fails for T, since o(T) = o0,(T) =
= OsF; (T) = {0} = Eg(T).

Theorem 4.2. Suppose T* is an algebraically class wF (p,r,q). Then a-Weyl's
theorem holds for f(T) for every f € Hol(o(T)).

Proof. Suppose T™ is an algebraically class wF' operator. We first show that a-
Weyl’s theorem holds for 7". Suppose that A € 04(T) \ 04 Py (T'). Then T — Al is upper
semi-Fredholm and (T — AI) < 0. Since T is algebraically class wF, T* has SVEP.
Therefore by [19] (Theorem 2.6) that i(T" — A\I) > 0, and hence T' — AT is Weyl. Since
T* has SVEP, it follows from [10] (Corollary 7) that o, (T) = o(T'). Also, since Weyl’s
theorem holds for T’ by Theorem 3.1, A € #n§(T).

Conversely, suppose that A € 7§(T'). Since T* has SVEP, it follows from [10]
(Corollary 7) that 0,(T) = o(T). Therefore A is an isolated point of o(T"), and hence
A is an isolated point of o(T*). But T* is algebraically class wF operator, hence
by Proposition 2.2 that A € 7(T*). Therefore there exists a natural number ng such
that ng = a(T* — M) = d(T* — M\). Hence we have H = ker((T* — A\I)™) @&
@ran((T*—AI)™) and ran((T* —\I)™) is closed. Therefore ran((T—\I)™) is closed
and H = ker((T* —\I)™) Lt @ran((T* =)™+ = ker((T—\I)™)@ran((T—A\I)™).
So A € 0,(T), and hence T' — AI is Weyl. Consequently, A € o, (T') \O'SF; (T'). Thus
a-Weyl’s theorem holds for 7.

Now we show that T' is a-isoloid. Let A be an isolated point of o,(7T"). Since T™*
has SVEP, \ is an isolated point of o (7). But T* is polaroid, hence T is also polaroid.
Therefore it is isoloid, and hence A € o,(T’). Thus T is a-isoloid.

Finally, we shall show that a-Weyl’s theorem holds for f(T") for every f € Hol(c(T)).
Let f € Hol(o(T)). Since a-Weyl’s theorem holds for T, it satisfies a-Browder’s theo-
rem. Therefore o4,(T) = og Py (T"). 1t follows from Theorem 4.1 that

T(z1,9,...) = (o, ) (z) € (N),
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ow(F(T)) = fow(T)) = F(o5p—(T)) = ogp (f(T)).

and hence a-Browder’s theorem holds for f(7T'). So o,() f(T) \USF; (f(T)) C wg(T).
Conversely, suppose that A € 7§ (f(T)). Then X is an isolated point of o, (f(T")) and
0 < o f(T) — M) < 1. Since X is an isolated point of f(o,(T)), if u; € 04(T) then
p; is an isolated point of o, (7). Since T is a-isoloid, 0 < (T — p;) < 1 for each
J=1,2,...,n. Since a-Weyl’s theorem holds for T', T'— 1, is upper semi-Fredholm and
i(T — pj) <0 for each j = 1,2,...,n. Therefore f(T") — A is upper semi-Fredholm
and f(T) — \ = Z:ﬂ i(T = i;1) < 0. Hence A € 04() f(T) \ ogo (f(T)), and so
a-Weyl’s theorem holds for f(7') for each f € Hol(o(T)).

Theorem 4.2 is proved.

From the proof of the Theorem 4.2, we obtain the following useful consequence.

Corollary 4.1. Suppose T* is an algebraically class wF (p,r,q). Then T is a-
isoloid.

5. Finite rank perturbations for Hilbert space operators. For each nonnegative
integer n define 7T, to be the restriction of T to R(7™) viewed as a map from R(7T™) into
R(T™) (in particular Ty = T). If for some n, R(T™) is closed and T;, is an upper (resp.
lower) semi-Fredholm operator then 7' is called an upper (resp. lower) semi-B-Fredholm
operator. A semi-B-Fredholm operator is an upper or lower semi-B-Fredholm operators.
If moreover, T, is a Fredholm operator then T is called a B-Fredholm operator. The
index of a semi-B-Fredholm is defined as the index of the semi-Fredholm operator T,
(see [13]). In [13] it is proved that an operator T is a B-Fredholm operator if and only if
T = F& N, where F' is a Fredholm operator and N is a nilpotent operator. An operator
T € B(H) is said to be a B-Weyl operator if it is a B-Fredholm operator of index zero.
The B-Weyl spectrum opw (T') of T is defined by

opw(T) ={X € C: T — AI is not a B-Weyl operator}.
Following [13] generalized Browder s theorem holds for T if
o(T)\ opw(T) = n(T);
where 7(T') is the set of all poles of T. Recently, in [20] it is proved that
generalized Browder’s theorem < Browder’s theorem.

Recall that an operator T' € B(H) is a Drazin invertible if and only if it has a finite
ascent and descent, which is also equivalent to the fact that T' = Ty @ T, where Tj is
nilpotent operator and 77 is invertible operator (see [21] (Proposition A). The Drazin
spectrum is given by

op(T):={X € C: T — Al is not Drazin invertible}.

We observe that op(T') = o(T) \ n(T), where 7(T') is the set of all poles.

Theorem 5.1. Suppose T € B(H) be an algebraically wF. If F' is finite rank on
H such that TF = FT, then T' + F satisfies generalized Browders theorem.

Proof. From the characterization of o gy (T') [2] (Theorem 4.3), it follows that if F'
is a finite rank operator, then opw (T + F) = opw (T'). Moreover, if F' commutes with
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T, it follows from [22] (Theorem 2.7) that op(T + F) = op(T). Since T has SVEP,
then it satisfies generalized Browder’s theorem by [12] (Theorem 1.5), then o gy (T') =
= op(T). Hence opw (T + F) = op(T + F), and so T + F satisfies generalized
Browder’s theorem.

Theorem 5.1 is proved.

Corollary 5.1. Suppose T € B(H) be an algebraically wF. If F is finite rank on
H such that TF = FT, then T + F satisfies Browder s theorem.

Theorem 5.2. IfT € B(H) is an algebraically wF, if FT = TF, F € F(H).
Then T + F satisfies Weyl's theorem.

Proof. Since by Corollary 5.1 Browder’s theorem holds for 7'+ F it suffices to prove
that Eo(T + F) = mo(T + F). Let A € Eo(T + F) be given, then A\ € isoo(T + F)
and A € 0,(T + F), hence A ¢ acc(o(T + F)) and X ¢ acc(o(T)). We distinguish two
cases:

Case 1. If A ¢ o(T), then T — X[ is invertible and T' — AI is Fredholm of index
zero, since F' is a finite rank operator on H, it follows that 7"+ F' — AI is Fredholm
operator of index zero. Then A ¢ ow (T + F) and A € 7o(T + F).

Case 1. If A € o(T), then A € iso(o(T)) and since T is isoloid A € o,(T).
Thus X € iso(o(T)) Nop(T) = Eo(T). From the fact that T' obeys Weyl’s theorem, it
follows that A ¢ ow (T) = ow (T + F') and since A € iso(o(T + F)), it follows that
A € mo(T + F). Finally Eo(T + F) C 7o(T + F'), and since the reverse inclusion is
always true, T+ F' obeys Weyl’s theorem.

Theorem 5.2 is proved.

Example 5.1. This example shows that the commutativity hypothesis in Theo-
rem 5.2 is essential. Let H = ¢?(N) and T and F be defined by

T(x1,22,...) = (0%%) {z,} € 2(N),

and
x1

F(xy1,29,...):= (0, _7,07 . .), {x,} € (N).
Clearly, F' is a nilpotent operator and hence of finite rank operator, and 7" is a quasi-
nilpotent satisfying Weyl’s theorem since o(T") = ow (T) = {0} and Ey(T) = @. Now
T and F do not commute, 0(T + F) =ow (T + F) =Ey(T+ F)={0},and T + F
does not satisfy Weyl’s theorem.

Theorem 5.3. Let T be an algebraically wF. If F is an operator that commutes
with T and for which there exits a positive integer n such that F™ is finite rank, then
T + F satisfies Weyl's theorem.

Proof. Form Corollary 2.1 and Theorem 3.1, 7" is isoloid and satisfies Weyl’s theo-
rem. Now the result follows at once from [9] (Theorem 2.4).

Theorem 5.3 is proved.

Theorem 5.4. [f T is an algebraically wF, then for any finite rank operator
F € B(H) commuting with T, the a-Weyl's theorem holds for T + F.

Proof. (a) Firstly, We will prove that o, (T + F) \ Tsp- (T+F)CEJ(T+F).

Let \g € 0o(T + F) \ o4 Py (T + F). Using the perturbation theorem of semi-
Fredholm operator, T — Ao/ is upper semi-Fredholm with i(T" — Agl) < 0 because F' is
compact. Since a-Weyl’s theorem holds for 7' by Theorem 4.2 if T" is an algebraically
class wF operator, it follows that A\g € o, (T) \USF; (T), or X\g € p(T). Then T — XoI
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has finite ascent and hence T + F' — Aol has finite ascent [23] (Theorem 1), [24]
(Lemma 2.4), \g € E§(T + F).

(b) Secondly, We will prove that o,(T + F') \ Tsp- (T+ F)D E§(T+F).

Let A\g € E§(T+F), thatis Ag € is0(0q(T+ F')) and 0 < dimker(T+F — XoI) <
< 00. Then dimker(T — A\gI) < oo [25] (Lemma 2.1) and there exists € > 0 such that
T+ F — oI is bounded below if 0 < |A—Xg| < €. Then T'— AI is upper semi-Fredholm
if0<|A=Xo| <e

If there exists {\,},—; € 04(T) such that \; # A; and \,, — Ao as n — oo,
without loss of generality, we suppose 0 < |A — Ag| < e. Let M,, = ker(T — A, I) and
let F,, = F|p,. Then F,, is linear and injective. In fact, if there exists = € M, such
that F,,z = 0, then (T + F — A\, I)x = F,z = 0. Since T + F — \,,I is bounded below,
we have x = 0. We know that in finite dimensional linear space M,,, F;, is injective
if and only if F,, is surjective. Then ker(T — A\, I) = F,ker(T — \,I) C ran(F),

(o) oo .
thus Zn:l P ker(T — A1) C ran(F). We have that anl dimker(T — A1) <
< dimran(F). Since Ay, € 04(T) \ 04u(T), we have dimker(T' — A\, 1) > 0 for any
n € N. Then dimran(F') = oo; it is impossible because dim ran(F") < oo.

From the proof above, we get there exists € > 0 (¢ should be less than €) such that
T — AI is bounded below if 0 < |A — Ag| < €. Then Ag € iso(0,(T)).

Since T is a-isoloid by Corollary 4.1, it follows that 0 < ker(7" — A\oI)oo, which
means that A\g € E§(T). The a-Weyl’s theorem holds for T', then \g € 0,(T) \
Tsr- (T'), and hence T+ F —M\oI is upper semi-Fredholm operator with ¢(T+F—XoI) <
< 0. Now we have that A\g € 0,(T + F) \ IsF; (T+ F).

From (a) and (b), we get o, (T + F) \ Tsp: (T + F) = E§(T + F), which means
that the a-Weyl’s theorem holds for 7"+ F.

Theorem 5.4 is proved.

In general, a-Weyl’s theorem is not transmitted under commuting finite rank pertur-
bation.

Example 5.2. Let S = (> — (? be an injective quasinilpotent operator which
is not nilpotent and let U: (> — (2 be defined by U (z1,79,...) := (—x1,0,...),
z, € £*(N). Define on H := ¢? @ ¢? the operators T and K by T := [ & S where I is
the identity on ¢2 and K := U & 0.

It is easily that o, (T) = {0,1}, E§(T) = {1} and Tsp- (T) = {0}. Hence T’
satisfies a-Weyl’s theorem. Now K is finite rank operator and 7K = K'T. Moreover,
0.(T+ K)=1{0,1} and E§(T + K) = {0,1}. As Tsp- (T+K)= Tsp- (T) = {0},
Then T + K does not satisfy a-Weyl’s theorem.
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