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STRONGLY SEMICOMMUTATIVE RINGS RELATIVE TO A MONOID
CUJIbHO HAINIBKOMYTATUBHI KLJIbIISI BIIHOCHO MOHOIJA

For a monoid M, we introduce strongly M -semicommutative rings, which are generalization of strongly semicommutative
rings and investigate their properties. We show that if G is a finitely generated Abelian group, then G is torsion free if and
only if there exists a ring R with |R| > 2 such that R is strongly G-semicommutative.

st MmoHoina M mu BBOOMMO CHIIBHO [V -HamiBKOMYTAaTHBHI KUTBIIA, IO Y3araJbHIOIOTH CHIIBHO HAIliBKOMYTAaTHBHI KUTBII,
Ta BUBYAEMO 1X BiacTuBOCTI. [TokazaHo, mo ko G — CKiHUEHHOMOPOKeHa abereBa rpyma, To G € BIIbHOIO Bill CKPYTY
TOMI i TUIBKK TOZ, KoMK icHye Kinmblie R 3 |R| > 2 Take, mo R € cubHO G-HamiBKOMYTATHBHAM.

1. Introduction. Throughout this article, R and M denote an associative ring with identity and a
monoid, respectively. In [1] Cohn introduced the notion of reversible ring. A ring R is said to be
reversible, whenever a,b € R satisfy ab = 0 then ba = 0. A ring R is called symmetric, whenever
abc = 0 implies acb = 0 for all a,b,c € R. A ring R is called reduced, whenever a*> = 0 implies
a =0 forall a € R. A ring R is called semicommutative, whenever ab = 0 implies aRb = 0 for all
a,b € R. The following implication holds:

reduced = symmetric = reversible =—> semicommutative.

In [13] Yang and Liu introduced the notion of strongly reversible. A ring R is called strongly
reversible, whenever polynomials f(x), g(z) € Rx]| satisfy f(z)g(z) = 0 implies g(z)f(x) = 0.
All reduced rings are strongly reversible but converse is not true. In [11] Singh and Juyal introduced
the notion of strongly reversible. A ring R is called strongly M-reversible, whenever af = 0
implies Sa = 0 where a, 8 € R[M]. In [5] Huh and Lee showed that polynomial rings over
semicommutative rings need not be semicommutative. In [2] Gang and Ruijuan introduced the notion
of strongly semicommutative. A ring R is called strongly semicommutative, whenever polynomials
f(z),g(x) € R[x] satisfy f(z)g(x) = 0 implies f(z)R[x]g(x) = 0. All reduced rings are strongly
semicommutative but converse is not true. Rege and Chhawchharia [10], introduced the notion of an
Armendariz ring. A ring R is called Armendariz, whenever polynomials f(x) = ag+aiz+asz?+. ..
coFanx®, g(z) = bo+biz+bez®+. . 4bypa™ € Rx] satisfy f(x)g(x) = 0 thena;b; = 0 forall 4, j.
Some properties of Armendariz rings were given in [8, 9, 12]. In [7] Z. Liu studied a generalization
of Armendariz rings, which is called M-Armendariz rings, where M is monoid. A ring R is called
M -Armendariz, whenever a = a1g1+a292+. . .+angn, 8 = bih1+boha+. .. +bngm € R[M], with
gi, hj € M satisfy a3 = 0, then a;b; = 0, for all 4, j. A ring R is called strongly M-semicommutative,
whenever o5 = 0 implies aR[M]5 = 0, where o, 8 € R[M]. Let M = (NU{0},+). Then aring R
is strongly M-semicommutative if and only if R is strongly semicommutative. Recall that a monoid
M is called a unique product monoid (u.p.-monoid) if for any two nonempty finite subsets A, B C M
there exists an element g € M uniquely in the form ab, where a € A and b € B. We investigate a
generalization of strongly semicommutative rings which we call strongly M -semicommutative rings.
It is proved that a ring R is strongly M -semicommutative if and only if its polynomial ring R|[z]
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is strongly M-semicommutative if and only if its Laurent polynomial ring R[z, 1] is strongly
M -semicommutative. Also, we check the following questions:

(1) Does R being a strongly M -semicommutative imply R(+)R being strongly M -semicommu-
tative?

(2) R being a strongly M -semicommutative if and only if R is Abelian ring?

(3) R being strongly M -semicommutative if and only if R/ is strongly M -semicommutative?

2. Strongly M -semicommutative ring. We begin this section with the following definition
which have the main role in the whole work.

Definition 2.1. A4 ring R is called strongly M -semicommutative, whenever af85 = 0 implies
aR[M]S = 0, where o, 5 € R[M].

Lemma 2.1 [6]. If R is a reduced ring, then

a b ¢
T5(R) = 0 a dl|abecdeR
0 0 a

is a semicommutative ring.

Lemma 2.2 [7]. Let M be a monoid with | M| > 2. Then the following conditions are equivalent:

(1) R is M-Armendariz and reduced.

(2) T5(R) is M-Armendariz.

Proposition 2.1. Let M be a monoid with |M| > 2, and R is M-Armendariz and reduced. Then
T3(R) is strongly M -semicommutative.

Proof. Suppose that « = Agg1 + ...+ Apgn, 8 = Boh1 + ... + Bphy € T3(R)[M], o = 0.
Since T3(R) is M-Armendariz by Lemma 2.2, so 4;B; = 0. Also T3(R) is semicommutative by
Lemma 2.1, and hence A;T3(R)B; = 0. Therefore aT3(R)[M]3 = 0. This means that T3(R) is
strongly M -semicommutative.

Before stating Proposition 2.2, we need the following lemmas.

Lemma 2.3 [11]. Let M be u.p.-monoid and R be a reduced ring. Then R is strongly M-
reversible.

Lemma 2.4 [11]. Let M be u.p.-monoid and R be a reduced ring. Then R[M] is reduced.

Proposition 2.2. Let M be u.p.-monoid and R be a reduced ring. Then R is strongly M-
semicommutative.

Proof. Suppose o = 2:;1 a;g;, B = Z:il b;jh; are in R[M] with a;,b; € R and g;,h; € M
for all 4, j. Take a3 = 0. So (aR[M]B)? = (aR[M]B)(aR[M]B) = aR[M](Ba)R[M]j3 = 0, since
R is strongly M -reversible by Lemma 2.3. Also by Lemma 2.4, we have aR[M ]S = 0. Hence R is
strongly M -semicommutative ring.

Lemma 2.5. Subrings and direct products of strongly M-semicommutative ring are strongly
M -semicommutative.

. R . . .
Proof. Let I(A € A) be ideals of R such that every T is strongly M-semicommutative and
A

— R
7= Z cxrr € R[M], we have that @y = 0 in (I)\

M -semicommutative. So Z,Jr et a;cpbj € Iy fort = 0,...,m +n +1 and any A\ € A, which
i+j+k=

Naealn = 0. Suppose that o = Z:O a;g;, B = Z?:o bjh; € R[M], satisfy a8 = 0. For any

R
> [M] for each A € A, since T is strongly
A
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implies that Z
aR[M]p = 0.

Proposition 2.3. Let M be a cancelative monoid and N an ideal of M. If R is strongly N-
semicommutative, then R is strongly M-semicommutative.

Proof- Suppose that « = a191 + asgas + ... + angn, 6 = bih1 + boho + ... 4+ bk, are
in R[M] such that a5 = 0. Take g € N. Then gg1,992,--.,99n, h1g,h2g,..., hmg € N and
99; # gg; and hig # hjg for all i # j. So ) = (Z; aiggi) (Z;”:I bjhjg) — 0. Since R
is strongly N-semicommutative, so oy R[N]B; = 0. Thus aR[M]B = 0. Therefore R is strongly
M -semicommutative.

Lemma 2.6. Let M be a cyclic group of order n > 2 and R a ring with unity. Then R is not
strongly M -semicommutative.

Proof. SupposethatM:e,g,g2,...,g"—1.Leta:<é 8>e+<(1) 8>g+...

+(é 8)g”_1andﬂz<(1) 8)64—((1) 8>g€R[M].

Then o = 0. But (O O> R[M] <1 0) # 0, so aR[M]B # 0. Thus R is not strongly

o ajcgbj = 0 fort = 0,...,m +n + [, since Nyeply = 0. Thus we obtain
i+j+k=t

1 0 0O O
M -semicommutative.

Lemma 2.7. M be a monoid and N a submonoid of M. If R is strongly M -semicommutative
ring, then R is strongly N-semicommutative.

Lemma 2.8. Let M and N be u.p.-monoids. Then so is the monoid M x N.

Proof. See [7] (Lemma 1.13).

Let T'(G) be set of elements of finite order in an Abelian group G. Then T'(G) is fully invariant
subgroup of G. G is said to be torsion-free if 7'(G) = {e}.

Theorem 2.1. Let G be a finitely generated Abelian group. Then the following conditions on G
are equivalent:

(1) G is torsion-free.

(2) There exists a ring R with |R| > 2 such that R is strongly G-semicommutative.

Proof. (2) = (1). If g € T(G) and g # e, then N = (g) is cyclic group of finite order. If a
ring R # 0 is strongly M -semicommutative. Then by Lemma 2.7 R is strongly N-semicommutative,
a contradiction with Lemma 2.6. Thus every ring R # 0 is not strongly M -semicommutative.

(1) = (2). Let G be a finitely generated Abelian group with T(G) = {e}. Then G =
=7 X Z % ... x 7 afinite direct product of group Z. By Lemma 2.8 G is u.p.-monoid. Let R be a
commutative reduced ring. Then by Proposition 2.2, R is strongly G-semicommutative.

It is natural to conjecture that R is a strongly semicommutative ring if for any nonzero proper
ideal I of R, R/I and I are strongly semicommutative, where I is considered as a strongly semi-
commutative ring without identity. Note that strongly semicommutative rings are Abelian, and so
every n by n upper (or lower) triangular matrix ring, for n > 2, over any ring with identity can not
be strongly semicommutative.

Example 2.1 (see [13], Example 3.7). Let S be a division ring and

a b ¢
R= 0 a dll|abec,deS
0 0 a
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0o 0 S
Take anideal I = [0 O 0O |, which is strongly M -semicommutative nonzero proper ideal of
0 0 O
R. Take
n a; bj 0 m Uj vy 0
o = 0 (473 Ci | 9i,s ﬁ == Z 0 Uj w]’ hj
=\o 0 a =\o 0w

are in R/I[M] satisfying a5 = 0. Then we have that
n n m m
> aigi Y bigi 0 Yo uihy Y vhy 0
i=0 i=0 j=0 j=0
n n m m
0 > aigi Y cigi 0 Y ughy Y wihi | =0

n m
0 0 Z a;g; 0 0 Zujhj
=0 7=0

which implies Zj:o a;gi Z;n:o ujhj = 0, and hence Z::o a;g; = 0 or Z;n:o ujhj = 0, since
S is division ring, and it is easy to prove that « R[M ]S = 0. There by we get that for any strongly
M -semicommutative nonzero proper ideal I of R, R/I is strongly M-semicommutative.

However we take a stronger condition I is reduced then we may have an affirmative answer as
in the following.

Proposition 2.4. For a ring R suppose that R/I is strongly M-semicommutative ring for some
ideal I of R. If I is reduced then R is strongly M-semicommutative.

Proof. Let aff = 0 with a, 5 € R[M]. Then we have aR[M]S C I[M] and SI[M]o = 0 since
BI[M]a C I[M], (BI[M]a)? = 0 and I[M] is reduced. According

((aR[M]B)I[M])* = aR[M]BI[M]|aR[M|SI[M] = aR[M](BI[M]a)R[M]BI[M] = 0

and so aR[M]BI[M] = 0, and hence (aR[M]3)?> C aR[M]BI[M] = 0 implies (aR[M]3)? = 0.
But aR[M]5 C I[M] and so aR[M]S = 0, therefore R is strongly M -semicommutative.

As a kind of converse of Proposition 2.4, we obtain the following situation.

Proposition 2.5. Let R be a strongly M-semicommutative ring and I be an ideal of R. If I is
an annihilator in R, then R/I is a strongly M-semicommutative ring.

_ R —
Proof. Setl = rg(S) forsome S C Randwritet = t+1 € T Letaf = 0,so S[M]aR[M]|3
= 0, since R is strongly M-semicommutative by hypothesis and we have rg(S)[M] = g (S[M]).

Thus aR[M]B € rgp(S[M]) implies & <]I%> [M]B = 0.

Lemma 2.9. For an Abelian ring R, R is strongly M-semicommutative if and only if eR and
(1—e)R are strongly M-semicommutative for every idempotent e of R if and only if eR and (1—e)R
are strongly M -semicommutative for some idempotent e of R.

Proof. Suppose that a8 = 0, since eR and (1 — e)R are strongly M -semicommutative, thus
eaeR[M]efe =0 and (1 —e)a(l —e)R[M](1 —e)B(1 —e) =0. So
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aR[M]S = eaR[M]S + (1 —e)aR[M|3 =

= eaeR[Mlefe+ (1 —e)a(l —e)R[M](1 —e)B(1 —e) =0,

and therefore R is strongly M -semicommutative.

For semicommutative rings relative to monoids, we have following results.

Proposition 2.6. Let M and N be a u.p.-monoid. If R is a reduced ring, then R[M| is strongly
N-semicommutative.

Proof. By Lemma 2.4 R[M] is reduced, since N is a u.p.-monoid and R[M] is reduced, therefore
by Proposition 2.2, R[M] is strongly N-semicommutative.

Proposition 2.7. Let M and N be a u.p.-monoid. If R is a reduced, then R is strongly M x N-
semicommutative.

Proof. Suppose that Zj_l a;(mj,n;) is in R[M x N|]. Without loss of generality, we assume

that {ni,na,...,ng} = {n1,ne,...,ne} with n; # nj when 1 < i # j <t Forany 1 < p <,
. . t
denote A, = {i | 1 <i <'s, n; = ny}. Then szl <Zi€AP aimi>np € R[M][N]. Note that

m; # my for any 7,7 € A, with i # /. Now it is easy to see that there exists an isomorphism of
rings R[M x N| — R[M][N] defined by

s t
Zai(mi,ni) — Z Z a;m; | np.
=1 p=1 \i€A,
s s’ .
Suppose that (Zizl ai(mi,ni)> <Zj:1 b (m/j7n/j)> = 0 in R[M x N]. Then from the above
isomorphism, it follows that

t t

Z Zaimi np Z ijm;- n; =0

p=1 \i€4, g=1 \jeBy
in R[M][N]. Therefore by Proposition 2.6 we have

t t/

Z Zaimi n, | RIM][N] Z ijm9 ng, | =0,

p=1 \i€4, q=1 \jeB,

so R is strongly M x N-semicommutative.
Let M;, i € I, be monoids. Denote H - M; = {(gi)ig | there exist only finite i’s such that g; #
(2

# e;, the identity of M }. Then Hie[ M; is a monoid with the operation (g;)icr(¢’;)icr = (9i9';)icr-
Corollary 2.1. Let M;, i € I be u.p.-monoids and R be a reduced ring. If R is strongly
M;-semicommutative for some ig € I, then R is strongly HiEI M;-semicommutative.
Proof. Let o = Z:;laigi, B = Z;n:l bjh; € R [Hiel MZ} such that a3 = 0. Then «,
B € R[M; x My x ... x M,] for some finite subset {My, Ms,...,M,} C {M; | i € I}. Thus
a,B € R[M;, x My x ... x My}. The ring R, by Proposition 2.7 and by induction, is strongly
M;, x My x ... x My,-semicommutative, so aR[M;, x My x ... x M,|3 = 0. Hence R is strongly
et M;-semicommutative.
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Let R be an algebra over a commutative ring S. The Dorroh extension of R by S is the ring
R x S with operations (71, s1) + (72, 52) = (11 + r2, 51 + s2) and (ry, s1)(r2, $2) = (rire + s172 +
+ s97r1,8182), where r; € R and s; € S. Let R be a commutative ring, M be an R-module, and o
be an endomorphism of R. Rege and Chhawchharia [10] (Definition 1.3), give R & M a (possibly
noncommutative) ring structure with multiplication (ry, m1)(ra,m2) = (ri72,0(ri)ms + rems),
where r; € R and m; € M. We shall call this extension the skewtrivial extension of R by M and o.

Proposition 2.8. (1) Let R be an algebra over a commutative ring S, and D be the Dorroh
extension of R by S. If R is strongly M -semicommutative and S is a domain, then D is strongly
M -semicommutative.

(2) Let R be a commutative domain, and o be an injective endomorphism of R. Then the
skewtrivial extension of R by R and o is strongly M -semicommutative.

Proof. (1) Let a = (a1,a2) = Z(T’i, $i)gi, B = (,31, B2) = Z(Sj, nj)hj € D[M] with
(a1, 2)(B1, B2) = 0. Then (a1 51 + a2f1 + fac, azflz) = 0, so we have o 51 + a5t + Baa; =0
and ag B2 = 0. Since .S is a domain, g = 0 or S = 0. In the following computations we use freely the
condition that R is strongly M -semicommutative. Say ae = 0, then 0 = a1 81 + foa; = a1 (B1+ 52)
and since R is strongly M -semicommutative, we have a; (1 +¥2) (51 + f2) = 0 such that y; + 2 €

€ R[M] and so (17181 + a2v1 51 + o1 81 + aayaB1 + Baary1 + facayt + Bayaa, aayeF2) = 0.
Also By = 0, then 0 = a1 1 +aof1 = (a1 +ag)B1 and so we have (o +as)(y1+72) /51 = 0 such that

Y1+72 € R[M] and so (a17181+aey1 B1+7201 B1+aghe B+ Bacayi +Baaeyi+Bavaan, aoyefe) =
= 0. Therefore we obtain (a1, a2)(y1,72) (51, f2) = 0 for any v = (y1,72) € D[M], so in any case,
proving that D is strongly M -semicommutative.

(2) Let N be the skewtrivial extension of R by R and 0. Set (a1, ae)(S1, f2) = 0 for (o, 5;) € N
with ¢ = 1,2,3. Then a1 = 0 and o(aq)B2 + Srae = 0, so a3 = 0 and so 51 = 0, since R is a
domain. Say a1 = 0, then 0 = o ()82 + Srae = giae, therefore 5119 = 0 for any y; € N[M],
since R is strongly semicommutative, and so 0 = (17101, S1712) = (a17181,0(a1)o(y1)B2 +

+o(a1)Biy2 + fryiae = (a1, a2)(71,72) (B, B2) for any v = (y1,72) € N[M]. Say 81 = 0, then
o(ay)B2 = 0 and it follows that o(a;) = 0, or S2 = 0, then a7 = 0 since o is injective and R is a
domain. Hence we have (a1, a2)(v1,72)(51, f2) = 0 in any case.

Now we will study some conditions under which polynomial rings may be strongly M -semicom-
mutative. The Laurent polynomial ring with an indeterminate x over a ring R consists of all formal
sums Zj:k mgz’ with obvious addition and multiplication, where m; € R and k,n are (possibly
negative) integer; we denote it R[x;z~1].

Proposition 2.9. (1) Let R be a ring and A be a multiplicatively closed subset of R consisting
of central regular elements. Then R is strongly M-semicommutative if and only if so is A~'R.

(2) For aring R, R[x] is strongly M-semicommutative if and only if so is R[x;z~1].
—owitha=S"" (v a)e. B=S"" (v b:)h,
Proof. (1)Letaf = 0witha = Zz‘:o(u a;)gi, B = ijo(v bj)hj,u,v € Aanda,b € R.
. . . . . o n -1 N m —1; o
Since A is contained in the center of R, we have 0 = aff = Zizo(u a;)gi ijo(v bj)h; =
= Zsziﬂ(aibj)(gihj)(uv)_l, SO

n m
Z a;g; Z bjhj =0.
=0 j=1
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l
But R is strongly M -semicommutative by the condition, and hence for any Zk—o ckpr € R[M] we

have that
n ! m
> aigi Y erpe Y _bihj= > (aickb;)(giprh;) =0
i=0 k=0 j=0 itj+h=t
fort=0,1,...,m + n +1[. Hence

n l m
ayB = (ua)giy (W lerpr Y (7= Y (aickb;)(gipkhy) (uwv) ™t =0
=0 k=0 §=0 t=itj+k
for any v = Z;—o (w™tep)pr € A'R[M]. Hence A™'R is strongly M-semicommutative.
(2) Let A = 1,z,2%,.... Then clearly A is a multiplicatively closed subset of R[x]. Since
R[z; 271 = A7 R[z], it follows that R[z; ] is strongly M-semicommutative by the result (1).
Given a ring R we denote the center of R by Z(R), i.e.,

Z(R)={s€R|sr=rs forall r € R}.

Proposition 2.10. Let R be a ring and suppose that Z(R) contains an infinite subring every
nonzero element of which is regular in R. Then R is strongly M -semicommutative ring if and only
if R[z] is strongly M-semicommutative ring if and only if Rx; x| is strongly M-semicommutative
ring.

Proof. 1t suffices to prove that R[z] is strongly M -semicommutative ring when so is R, by
Lemma 2.5 and Proposition 2.9 (2). Since Z(R) contains an infinite subring every nonzero element
of which is regular in R by hypothesis, it follows that R[x] is a subdirect product of infinite number
of copies of R. Thus R[x] is strongly M-semicommutative by Lemma 2.5 because R is strongly
M -semicommutative ring by the assumption.

We study following proposition the connections between Armendariz rings and strongly M-
semicommutative rings. Recall that reduced rings, M is u.p.-monoid are both M-Armendariz and
strongly M -semicommutative rings Abelian. So it is natural to observe the relationships between
them.

Proposition 2.11. Let R[M| be a Armendariz ring. Then the following statements are equivalent:

(1) R is a strongly M-semicommutative ring.

(2) R[z] is a strongly M-semicommutative ring.

(3) R[z, 271 is a strongly M-semicommutative ring.

Proof. (1) = (2). It is easy to see that there exists an isomorphism of R[x][M| — R[M][z]

Ve (3w )ai — Y (3, as ). Le
R At

be polynomial in R[M][z], such that 5 = 0, where «; = Zp a;pg; and f; = Zq bjsh; € R[M].
Since R[M] is Armendariz, so R[M][z] is a Armendariz ring, therefore «;3; = 0 for all 4, j. Also
R is strongly M-semicommutative by the hypothesis, therefore a;v;/3; = 0 for all 4, j, k. Thus
aR[M][z]B = 0.

(2) = (3). By the Proposition 2.9 (2) is trivial.

3) = (1). It is clear.
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Proposition 2.12. Let R be an M-Armendariz ring. If R is a semicommutative ring, then R is
strongly M -semicommutative.

Proof. Suppose that o = ZZO aigi, B = ZT,L_O bjh; € R[M] satisfy of = 0. Since R is M-
Armendariz, and hence a;b; = 0 for all 7, j, also R]is semicommutative, therefore a;cb; = 0 for any
element ¢ in R, for all ¢, j. Now it is easy to check that oy = 0 for any v = szo ekl € R[M].

Since reversible rings are semicommutative, the following corollary is clear.

Corollary 2.2. Let R be an M-Armendariz ring. If R is a reversible ring, then R is a strongly
M-Armendariz.

Let R be a commutative ring and M an R-module. The R-module R @& M acquires a ring
structure where the product is defined by (a,m)(b,n) = (ab,an + bm). We shall use the notation
R(+)M for this ring. If M is not zero, this ring is not reduced, since M can be identified with the
ideal 0 & M which has square zero. (It seems appropriate to call this ring as “R Nagata M™.)

Let R be a ring and A an ideal of R. The factor ring R = R/A has the natural structure of a left
R-, right R-bimodule. Denote @ = a + A € R for each a € R. We use this structure to define a ring
structure on R @ (R/A) as follows:

(r,ﬁ)(r',?) = (rr’,m).

We denote this ring by R(+)R/A. Its properties are similar to those of R(+)M.

Proposition 2.13. Let R be a domain, A be an ideal of R. Suppose R/A is strongly M-
semicommutative. Then R(+)R/A is strongly M-semicommutative.

Proof. Let o, 3 be elements of { R(+)R/A}[M], where

m

o= Z(Gi,m)gi = (o, ar1)

and .
B =" (b;,77)hj = (Bo, B)-
=0
If a3 = 0, we have (ap,a1)(Bo, 31) = 0. Thus we have the following equations:
aofo = 0, (2.1)
aoP + a1y = 0. 2.2)

Let ap = 0. Then (2.2) becomes a5y = 0 over R/A. Since R/A is strongly M-semicommutative,
. R - o _—
it follows that 041<A> [M]5p = 0. Also for any vy € R[M] implies that a8y = 0. We conclude

that 0 = (07050, @07081 + aov1Bo + a170B0 ) = (o, @1) (70, 71) (B0, B1 ). This case Sy = 0 is
similar.

Corollary 2.3. Let R be a domain, A be an ideal of R. Suppose R/ A is strongly semicommutative.
Then R(+)R/A is strongly semicommutative.

It follows from Proposition 2.13 that if R is a domain then R(+)R is strongly semicommutative.
This result can be extended to reduced rings. The following properties of these rings will be used:

(1) If a, b are elements of a reduced ring, then ab = 0 if and only if ba = 0.
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(2) Reduced rings are strongly semicommutative.

(3) If R is reduced, then so is the ring R[x|. We shall also identify {R(+)R}[z] with the ring
R[x](+)R][z] in a natural manner. Therefore if R is a reduced ring, then the ring R(+)R is strongly
semicommoutative.

Proposition 2.14. Let M be u.p.-monoid and R be a reduced ring. Then the ring R(+)R is
strongly M -semicommutative.

Proof. Let a = (ap,a1), B = (Bo,B1) be elements of {R(+)R}[M], we claim that

m

o{R(+)R}[M]B = 0. Write a = ) (a;,u;)g; = (a0, 1) and § = ijo(bjavj)hj = (Bo, 1),
with corresponding representations for oy, Sx (for k = 0,1). Now we have

apfo =0, (2.3)

apB + a1y = 0. (2.4)

By Lemma 2.4 R[M] is reduced, (2.3) implies

Boa = 0. (2.5)

Multiplying equation (2.4) by [y on the left and using (2.5) we get Soa1 89 = 0. This implies that
(a180)? = 0 and so (since R[M] is reduced)

a8y = 0. (2.6)
This implies (on account of (2.4))
a1 = 0. 2.7
Now (2.3), (2.6) and (2.7) yield (since R is strongly M -semicommutative)
agR[M]By =0, a1 R[M]By =0, and agR[M]B; = 0.

Therefore (ag, a1)(v0,71)(Bo, B1) = (070580, 0Y051 + coy180 + c17080) = 0 for each (7o, v1) of
{R(+)RY[M].

The following theorem generalization of Proposition 2.14 has a similar proof.

Theorem 2.2. Let M be u.p.-monoid, R be a reduced ring and A an ideal of R such that R/A
is reduced. Then R(+)R/A is strongly M -semicommutative.

Remark 2.1. Recall that a ring R is strongly regular [3] if for each element ¢ in R, there exists
an element b in R such that @ = a?b. A ring is strongly regular, if and only if it is (von Neumann)
regular and reduced. If R is a strongly regular ring, then for each ideal A of R, R/A is strongly
regular and reduced. On applying Theorem 2.2 we get the following result: If R is a strongly regular
ring, then for each ideal A of R, then ring R(+)R/A is strongly M-semicommutative.

The ring R is called Abelian if every idempotent is central, that is, ae = ea for any e? = e,
a € R.

Recall that a ring R is a called right principally projective ring (or simples right p.p.-ring) if the
right annihilator of an element of R is generated by an idempotent.

Lemma 2.10. Let M be an monoid and R be strongly M-semicommutative. Then R is an
Abelian ring. The converse holds if R is a right p.p.-ring.
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Proof. If e is an idempotent in R, then e(1 — e) = 0. Since R is strongly M -semicommutative,
we have ea(1—e) = 0 for any o € R[M] and so e« = ece. On the other hand, (1 —e)e = 0 implies
that (1 — e)ae = 0, so we have ae = eae. Therefore, ae = ea. For converse suppose now R is an
Abelian and right p.p.-ring. Let o, 8 € R[M] with af = 0. Then o € Ann(f3) = eR[M] for some
e? =e € Rand so Ba = 0 and a = ea. Since R is Abelian, we have oy = eay3 = ayfe = 0 for
any v € R[M], so, aR[M]|S = 0. Therefore R is strongly M -semicommutative.

Before stating Example 2.2, we need the following lemmas.

Lemma 2.11 ([4], Lemma 1). Given a ring R we have the following assertion: R is an Abelian
ring if and only if R is a reduced ring if and only if R is a semicommutative ring, when R is a right
p-p--ring.

Lemma 2.12 ([4], Lemma 2). Let S be an Abelian ring and define

a a2 a13 R ain

0 a a3 e aon

0 0 a oo @ |la, ay; €8y =R,
0 0 0 a

with n a positive integer > 2. Then every idempotent in R,, is of the form

f 0 0 0
o f 0 ... 0
0o 0 f 0
o o o0 ... f
with f?> = f € S and so R,, is Abelian.
Example 2.2. Let S be Abelian ring and
a a2 ... Gin
0 a ... Qon
R= . . . ' a, a;j €S

(\o 0 0 @

Then R is Abelian by Lemma 2.12. Let M be a monoid with |M| > 2. Take e,g € M such that
e # g. Consider

O 1 0 O O 1 -1 0
O 0 0 O 0 0 0 0
o = e+ QGR[ML
0O 0 0 O 0 0 0 0
O 0 0 O 0 0 0 0
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0O 0 0 0 0O 0 0 O
0O 0 0 0 0O 0 0 1
B = e+ g € R[M].
0O 0 0 1 0O 0 0 1
0O 0 0 0 0O 0 0 O
Then a8 = 0, but
O 1 0 o0\y/1 1 1 1\/0 0 0 O
o o o offo 1 1 1}]}j0 0o 0 1
#0,
o 0o o offo o 1 1}]}jo o o0 1
O 0 O o/\Oo O O 1/\0 O 0 O

so R is not strongly M-semicommutative. Assuming that R is a right p.p.-ring, then R is reduced
by Lemma 2.11, a contradiction by the element

0

o O O

o o o O
o o o O
o O o =

in R. Thus, R is not a right p.p.-ring. In fact there can not be an idempotent ¢ € R such that

0 0 0 1
0 0 O
Anng =cR.
0 0 0 O
0 0 0 O

Proposition 2.15. The direct limit of a direct system of strongly M -semicommutative rings is
also strongly M -semicommutative.

Proof. Let A = {R;,a;;} be a direct system of strongly M -semicommutative rings R; for
i € I and ring homomorphism «;: R; — R; for each ¢ < j satisfying «;;(1) = 1, where [
is a directed partially ordered set. Let R = lim R; be the direct limit of D with [;: R; — R and
ljoj = 1;, we will prove that R is strongly M -semicommutative ring. Take =,y € R, then z = I;(x;),
y = l;(y;) for some ¢, j € I and there is k € I such that i < k, j < k define « + y = I (o (;) +
+ i (y;)) and zy = g (uk(xi) ok (yj)), where cig (i), a;k(y;) are in Ri. Then R forms a rings
with 0 = 1;(0) and 1 = [;(1). Now suppose a3 = 0 for o = Z:L_I asgs, B = Zj_l bihy in

R[M] —{0}. There exist is, j;, k € I such that a; = l;,(ai,), by = 1;,(bj,), is < k, jr < k. So asby =
= lp(ai,k(ai, )i (bj,)). Thus aff = <25:1 lk(aisk(az’s))gsxz Olk(ajtkz(bjt)ht> = 0. But Ry

is strongly M -semicommutative ring and so (o, k(as, ) Ri[M]oy,k(bs,)) = 0. Thus aR[M]S = 0,
and hence R is strongly M-semicommutative ring.
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