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TOPOLOGICAL CLASSIFICATION OF ORIENTED CYCLES
OF LINEAR MAPPINGS

TOIHOJIOTTYHA KITACUDIKALIA OPIEHTOBAHUX LIUKJIIB
JIHIHHUX BIIOBPA)KEHb

We consider oriented cycles of linear mappings over the fields of real and complex numbers. The problem of their
classification to within the homeomorphisms of spaces is reduced to the problem of classification of linear operators to
within the homeomorphisms of spaces studied by N. Kuiper and J. Robbin in 1973.

Po3misgaroTbest Opi€eHTOBaHI LMKIIM JIIHIKHUX BiOOpa)KeHb HaJ IMOJISIMHU JIMCHUX Ta KOMIUICKCHUX YHCel. 3aaava iXHbOi
kiacuikamnii 3 TOYHICTIO JO roMeoMopdi3MiB IIPOCTOPIB 3BOAUTECS 10 3aadi Kiacudikamii JiHIHHUX oreparopiB 3 TOYHIC-
TIO 10 ToMeoMopdi3miB mpocTopis, siky Budain H. Koitep ta . Po66in y 1973 pori.

1. Introduction. We consider the problem of topological classification of oriented cycles of linear

mappings.
Let
A A A A
A ‘/1 1 ‘/2 2 o t—2 ‘[t_l t—1 W (1)
T
and
B Bo B2 Bi_1
B: Wi —Wy — ... —= W1 —W; )
By

be two oriented cycles of linear mappings of the same length t over a field F. We say that a system
o = {¢i: Vi > W;}t_, of bijections transforms A to B if all squares in the diagram

Ay As Ap—2 Ap—1
Vi Va e Vi1 Vi
Ay
®1 w2 Pt—1 »t (3)
Bl B2 Bt—2 Bt—l
Wy Wy ... Wi_1 Wy

are commutative; that is,

w2 A1 = Bip1, ..., @iAi1=DBi1pi—1, @14 = By 4
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Definition 1. Let A and B be cycles of linear mappings of the form (1) and (2) over a field F.
(i) A and B are isomorphic if there exists a system of linear bijections that transforms A to B.
(i) A and B are topologically equivalent if F = C or R,

V; = F™, W; = F™ forall i=1,...,t,

and there exists a system of homeomorphisms' that transforms A to B.
The direct sum of cycles (1) and (2) is the cycle

A1®B; A>®B2 A 1®Bi-1
Ve ® W - VoW

W

The vector dim A := (dim V3, ...,dim V}) is the dimension of A. A cycle A is indecomposable

A(—BB Vl@Wl

if its dimension is nonzero and A cannot be decomposed into a direct sum of cycles of smaller
dimensions.

A cycle A is regular if all Aq,..., A; are bijections, and singular otherwise. Each cycle A
possesses a regularizing decomposition

A:Areg@A1®-u@Ar7 (5)

in which A, is regular and all A, ..., A, are indecomposable singular. An algorithm that constructs
a regularizing decomposition of a nonoriented cycle of linear mappings over C and uses only unitary
transformations was given in [3].

The following theorem reduces the problem of topological classification of oriented cycles of
linear mappings to the problem of topological classification of linear operators.

Theorem 1. (a) Let F = C or R, and let

A: Frm L Fme L Fme—1 L) e
(6)

and

B
B: ™ 2 . Fri-1 —— [ 7)

be topologically equivalent. Let
A:-Areg@Al@u-@Ar; B:Breg®81@~--®65 (8)

be their regularizing decompositions. Then their regular parts Acg and B are topologically
equivalent, r = s, and after a suitable renumbering their indecomposable singular summands A; and
B; are isomorphic for all i = 1,...,r.

By [1] (Corollary 19.10) or [2] (Section 11) m1 = n1,...,m: = ns.
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(b) Each regular cycle A of the form (6) is isomorphic to the cycle

A o Lopme L L pmey (1 pm

. )

If cycles (6) and (7) are regular, then they are topologically equivalent if and only if the linear

operators Ay ... Ay Ay and By . .. By By are topologically equivalent (as the cycles F™ < Ay ... As Ay
and F" O By ... BaBy of length 1).

Kuiper and Robbin [4, 5] gave a criterion for topological equivalence of linear operators over R
without eigenvalues that are roots of 1. Budnitska [6] (Theorem 2.2) found a canonical form with
respect to topological equivalence of linear operators over R and C without eigenvalues that are
roots of 1. The problem of topological classification of linear operators with an eigenvalue that is a
root of 1 was studied by Kuiper and Robbin [4, 5], Cappell and Shaneson [7-11], and Hsiang and
Pardon [12]. The problem of topological classification of affine operators was studied in [6, 13 —16].
The topological classifications of pairs of counter mappings V; = V5 (i.e., oriented cycles of length
2) and of chains of linear mappings were given in [17] and [18].

2. Oriented cycles of linear mappings up to isomorphism. This section is not topological;
we construct a regularizing decomposition of an oriented cycle of linear mappings over an arbitrary
field F.

A classification of cycles of length 1 (i.e., linear operators V D) over any field is given by the
Frobenius canonical form of a square matrix under similarity. The oriented cycles of length 2 (i.e.,
pairs of counter mappings V; == V5) are classified in [19, 20]. The classification of cycles of arbitrary
length and with arbitrary orientation of its arrows is well known in the theory of representations of
quivers; see [21] (Section 11.1).

For each ¢ € Z, we denote by [c] the natural number such that

1< <t [c]=¢ (mod t).

By the Jordan theorem, for each indecomposable singular cycle V O A there exists a basis
€1,-..,en of V in which the matrix of A is a singular Jordan block. This means that the basis vectors
form a Jordan chain

A A A A
61—>€2—>€3—>...—>en—>0.

In the same manner, each indecomposable singular cycle A of an arbitrary length ¢ also can be
given by a chain

Ap Ap+1] App+2] Afg-1) Alq)
ep — €pyl — > €pi2 .. €q 0
in which 1 < p < ¢ <tandforeach! =1,2,...,¢the set {e;[i =1 (mod t)} is a basis of V}; see

[21] (Section 11.1). We say that this chain ends in V|, since e, € V];). The number g — p is called
the length of the chain.
For example, the chain

/65

€ = €7 —>= €8 —> €9 —= €10

= oo

e =ej2 —0
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of length 8 gives an indecomposable singular cycle on the spaces V) = Feg @ Feqq, Vo = Fer @Feqo,
V3 = Feg, V4 = Fey @ Feg, V5 = Fes @ Feqp.
Lemma 1. Let

Al AQ At—2 At—l
A N Va cos Vi Vi

‘\\\\\\\;i_,//////

be an oriented cycle of linear mappings, and let (5) be its regularizing decomposition.
(a) Write

A; = Afigi—1] - Apedi: Vi Vi (10)
and fix a natural number z such that
Vii= A2V, = AZYYW, o forall i=1,... .t
Let

be the cycle formed by the restrictions /L : f/z — f/[l-ﬂ] of A;: V; — Viis1)- Then Ayeg = A (and so
the regular part is uniquely determined by A).
(b) The numbers
kij := dimKer(Apy ). Appndi), i=1,...,t and j=0,

determine the singular summands A1, ..., A, of regularizing decomposition (5) up to isomorphism
since the number nyj (I = 1,...,t and j = 0) of singular summands given by chains of length j that
end in Vi can be calculated by the formula
= K-35 — kp-ilg-1 — kp—j-11g41 + kg1 (11)
in which k; _1 := 0.
Proof. (a) Let (5) be a regularizing decomposition of A. Let
‘/i:‘/i,reg@‘/ﬂ@---@‘/im t=1,....t,
be the corresponding decompositionsA of its vector spaces. Then Af Vireg = Vz;,reg (since all lineelr
mappings in Ayg are bijections) and A7V = ... = A?V;, = 0. Hence V; ;¢q = Vi, and so Ayeq = A.
(b) Denote by
O 1= Mg T Ny j+1 + Ny 42+ ...
the number of chains of length > j that end in V;. Clearly, k;g = o9, ki1 = 0i0 + Olit1],1s -« - > and
k‘ij = 00 + J[i+1],1 + ...+ J[i+j],j
foreach 1 < i <t and j > 0. Therefore,
oy = kij —kij-1,  Li=[i+]]
(recall that k; _; = 0). This means that [ =i + j (mod ¢),i=1[0—j (mod t), i = [l — j], and so

015 = kp—j1; — kp—jli-1-
We get
g = 015 = 011 = k-l = kgl -1 = Fp—j—1g+1 + Ep—j-1,5-
Lemma 1 is proved.
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3. Proof of Theorem 1. In this section, F = C or R.

(a) Let A and B be cycles (6) and (7). Let them be topologically equivalent; that is, A is
transformed to B by a system {¢;: F™ — F"}!_, of homeomorphisms. Let (8) be regularizing
decompositions of A and B.

First we prove that their regular parts A,cs and B, are topologically equivalent. In notation (10),

Ai = Alie1) - Al 4s, B;i = Blit¢-1] - - - Bli+11Bi-

Let 2z be a natural number that satisfies both Amel = flf“lﬁ‘mi and EfIF"l = Ef“F"l‘ for all
i=1,...,t. By (3), the diagram

e AT

1T

Fri = > Fn

is commutative. Then ¢; Im Af = Im Ef for all ¢. Therefore, the restriction ; : Im flf — Im Bf
is a homeomorphism. The system of homeomorphisms @1, . . ., ¢ transforms A to B, which are the
regular parts of .4 and B by Lemma 1(a).

Let us prove that » = s, and, after a suitable renumbering, 4; and B; are isomorphic for all
i =1,...,r. Since all summands .4; and B; with ¢ > 1 can be given by chains of basic vectors,
it suffices to prove that n;; = ngj for all ¢ and j, where ngj is the number of singular summands
By, ..., Bs in (8) given by chains of length j that end in the ¢ th space ™.

Due to (11), it suffices to prove that the numbers k;; are invariant with respect to topological
equivalence.

In the same manner as k;; is constructed by A, we construct kgj by B. Let us fix ¢ and j and
prove that k;; = ki;. Write

and consider the commutative diagram
i i> Fma

" l lwq (12)
Fri 2o Fra
which is a fragment of (3). We have
kij = dimKer A = m; — dimIm A, k:gj =n; — dimIm B.
Because ¢; : F'™ — F"i is a homeomorphism, m; = n; (see [1], Corollary 19.10, or [2], Section 11).
Since the diagram (12) is commutative, ¢, (Im A) = Im B. Hence, the vector spaces Im A and Im B
are homeomorphic, and so dim Im A = dim Im B, which proves k;; = k;]

(b) Each regular cycle A of the form (6) is isomorphic to the cycle A’ of the form (9) since the
diagram
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™ 1 Fma2 1 Fms 1 Fma *1> . *]1> e

Ai_1...A2A;

(13)

sy

is commutative.
Let A and B be regular cycles of the form (6) and (7). Let them be topologically equivalent; that
is, A is transformed to B by a system ¢ = (1, ..., ;) of homeomorphisms; see (3). By (4),

1A A 1. AL = By Ar 1. AL = BBy 1o 1Ay 2. Ay = ... = BBy 1... By,

and so the cycles F™ <D A, ... As Ay and F™ <D B, ... By B; are topologically equivalent via 1.
Conversely, let F™ <D A, ... As Ay and F"™ © By ... Bo By be topologically equivalent via some

homeomorphism 1, and let A’ and B’ be constructed by A and B as in (9). Then A’ and B’ are

topologically equivalent via the system of homeomorphisms ¢ = (¢1,¢1,...,¢1). Let € and ¢

be systems of linear bijections that transform A’ to A and B’ to B; see (13). Then A and B are

topologically equivalent via the system of homeomorphisms e,
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