UDC 517.581

N. X. Thao (Hanoi Univ. Technol., Vietnam),
N. O. Virchenko (Nat. Techn. Univ. Ukraine “KPI”, Kyiv)

ON THE POLYCONVOLUTION FOR THE FOURIER COSINE,
FOURIER SINE, AND THE KONTOROVICH -LEBEDEV
INTEGRAL TRANSFORMS”

ITPO IMOJI3TOPTKY JIA KOCUHYC-®YP’€, CUHYC-®YP’€
TA KOHTOPOBHYA -JIEBEJI€BA IHTET'PAJIBHUX
IHEPETBOPEHb

The polyconvolution T( £, 9, h)(x) of three functions f, g, h is constructed for the Fourier cosine () integral

transform, the Fourier sine (F’) integral transform, and the Kontorovich—Lebedev (K, ) integral transform,
whose factorization equality is of the form

Fe(x(f,9,0)(y) = (Fs ) ()-(Fs9) (y)-(Kiyh) Yy > 0.

The relations of this polyconvolution to the Fourier convolution and the Fourier cosine convolution are ob-
tained. In addition, the relations between the new polyconvolution product and other known convolution
products are established. As application, we consider a class of integral equations with the Toeplitz kernel and
the Hankel kernel, whose solutions in closed form can be obtained with the help of the new polyconvolution.
Application in solving systems of integral equations is also presented.

[To6y10BaHO MOJI3rOPTKY T(f’ g, h)(x) Tpeox Gyukuiii f, g, h wist kocuryc-®Oyp’e (Fe), cunyc-Oyp’e (Fs)

i Kontoposuua —JleGenesa (K, ) iHTerpanbHiX mepeTBOpeHsb 3 piBHICTIO (akTopu3aii y hpopmi
Fe(x(f,9,0)(y) = (Fs ) ()-(Fs9) (y)-(Kiyh) Yy > 0.

OneprkaHo CIIBBITHOMMEHHS Li€l MOMI3ropTky i3 3ropriolo Dyp’e i xocunyc-Pyp’e 3roprroro. Takox Bera-
HOBJICHO CITIBBIIHOIICHHS MiX JOOYTKOM HOBOi MOJI3rOPTKM Ta JOOYTKaMH IHIIMX BiZOMHX 3rOpTOK. Sk
3aCTOCYBaHHS, PO3IISIHYTO KJIaC IHTErpajbHUX PiBHAHB 3 sapamu Teruina i [aHkess, po3B’ 3Ky UX PiBHAHB
3a JOMOMOTO0 HOBOI HOJTI3TOPTKH MOXKHA OIEPKaTH y 3aMKHeHil (opmi. HaBeneHO Takox 3aCTOCYBaHHS 10
PO3B’sI3aHHS CHCTEM IHTETPaJIbHUX PIiBHSHB.

Introduction. The convolution of two functions f and g for the Fourier transform is
well-known [1]:

(f % 9)(z) = \/12?/ flz—y)gly)dy, =e€R. (0.1)

This convolution has the factorization equality as belows
F(fx9)y) = (FHY)(Fa)y) vy eR,

here F' denotes the Fourier transform [1]

1 r —izy
(Ff)y) = m_/ e f(z)dz.

The convolution of f and ¢ for the Kontorovich—Lebedev integral transform has been
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studied in [2]

v uv

(f . g)(z) = L 707exp [; (% +—+ )] fwg)dudv, x>0, (0.2)
00

2z U x

for which the factorization identity holds
Ky (f KiL 9) = (Kiyf).(Kiyg) Yy >0.

Here K, is the Kontorovich—Lebedev transform [2]
Kulf) = [ Ku(o,
0

and K;,(t) is the Macdonald function [3].
The convolution of two function f and g for the Fourier cosine is of the form [1]

(f*9)(z) = \/%/f(y)[g(\w —yD+gl@+y)ldy, x>0, (0.3)

0

which satisfied the factorization equality
Fe(fx9)(y) = (Fef)(y)(Feg)(y) ¥y > 0.

Here the Fourier cosine transform is of the form [1]

(Fef)y) = \/Z/cosyx-f(af)dx, y>0.
0

The convolution with a weight function v(x) = sinz of two functions f and g for the
Fourier sine transform has introduced in [4]

+o00
(Fig)(x) = ﬁ / F()sign(z-+y—1)g(jz-+y—1)+sign(z—y+Dg(jz—y+1])—

—g(x+y+1) —sign(z —y —Dg(lz —y —1|)|dy, x>0, (0.4)

and the factorization identity holds

Fy(f*g)(y) = siny(Fs f)(y)(Fsg)(y) Yy > 0.

Here the Fourier sine is of the form [1]

(Fof)(y) = \/j]osinyx-f(x)dx, y > 0.
0

The generalized convolution of two functions f, g for the Fourier sine and Fourier cosine
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transforms has studied in [1]

2

1 o0
(F 39)a) = = / f@lg(z —u)) - gle +wldu, >0,  (0.5)

and the respectively factorization identity is [1]
Fs(fx9)(y) = (F)(w)-(Feg)(y) Yy > 0.

The generalized convolution of two functions f and g for the Fourier cosine and the
Fourier sine transforms is defined by [5]

3

I
(3900) = gz [ SO0t o= + ot Dt 220, 09

For this generalized convolution the factorization equality holds [5]
Ee(fx9)y) = (F ) ) (Fsg)(y) Yy > 0.

The generalized convolution with the weight function y(z) = sin « for the Fourier cosine
and the Fourier sine transforms of f and g has introduced in [6]

(F10)@) ZW/f g+ = 1) + g(}o — ut 1) - gl +u+1)-

—g(lz —u—1])]du, =z >0. 0.7)

It satisfies the factorization property [6]

Fu(f £ 9)() = siny (F))(0)(Fug) () Yy > 0.

The generalized convolution with the weight function v(z) = sinz of f and g for the
Fourier sine and Fourier cosine has studied in [7]

(F}0)@) 2f/f g+ = 1) + g(lo —u—11) - gl +u+1)-

—g(|Jz —u+1))]du, x>0, (0.8)

and satisfy the factorization identity

(/3 9)) = siny (F))(0)(Fug)(y) Yy > 0.

In 1997, Kakichev V. A. introduced a constructive method for defining a polyconvolution

l(fl, f2y- -y fn)(x) of functions f1, fo, ..., f,, with a weight function + for the integral
transforms K, K1, K», ..., K,, for which the factorization property holds [8]

K[l(flvf%--'vfn —'Y HKfZ n > 3.
i=1
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Polyconvolutions for the Hilbert, Stieltjes, Fourier cosine and Fourier sine integral
transforms has been studied in.

The polyconvolution of f, g and h for the Fourier cosine and the Fourier sine
transforms has the form [9]

1 [e.elNe o]
«(f,9,h) > Fw)g() (e +u —v]) + h(z —u+v[)—
27r0/0/
—h(lx —u —v|) — h(z + u +v)]|dudv, x>0, (0.9)

which satisfies the following factorization property:

Fe(+(f,9, 1) (y) = (Fs )(y)-(Fsg)(y).(Feh)(y) Yy > 0.

Recent years, many sciences interested in the theory of convolution for the integral
transforms and gave several interesting application (see [10]). Specially, the integral
equations with the Toeplitz plus Hankel kernel

+/k1 x+y)+ ke(z —y)]f(y)dy = g(x), x>0, (0.10)
0

where ki, ko, g are known functions, and f is unknow function. Many partial cases
of this equation can be solved in closed form with the help of the convolutions and
generalized convolutions. In this paper, we construct and investigate the polyconvolution
for the Fourier cosine, Fourier sine and the Kontorovich —Lebedev transforms. Several
properties of this new polyconvolution and its application on solving integral equation
with Toeplitz plus Hankel equation and systems of integral equations are obtained.

1. Polyconvolution.
Definition 1. The polyconvolution of functions f, g and h for the Fourier cosine,
Fourier sine and the Kontorovich — Lebedev integral transforms is defined as follows

f,g, 0/0/O/H(x,u,v,w)f(u)g(v)h(w)dudvdw, x>0, (1.1)

where
1
2V 2w

_|_e—wcosh(x—u+v) _ e—wcosh($+u+v) W cosh(m—u—v)].

9(1‘, u,v, w) = [e—w cosll(g:+u_v)+

1
Theorem 1. Let f, g be functions in L1(R.), and let h be function in L, (T,
w

R+>, then the polyconvolution (1.1) belongs to L1(R.y) and satisfies the factorization
property
Fo(+(£,9, 1) (y) = (Fo)(9)-(Feg)(y).(Kiyh) Yy > 0. (12)

Proof. Since |e~ cosh(z+u—v) _gmweosh(ztutv)| < NG for sufficient large w > 0,
w

we have
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1 7T T
[ (f,9:h) ///If Mg )| |h(w)]|0(z, u, v, w)|dudvdw <
2 2
\/Tro 00
\f/lf \du/ ()|dv/\ﬁ|h( ) |dw < +o0.
2
On the other hand, note that cosh(x +u — v) > w’ we have
gmweosh(pu—v) < mwlEt g g

Then we have

oo

/e—w cosh(a:—&-u—v)dx < /z /e—(\/g(fﬂ-i-u—v)fd (\/g(x +u— ’U)) <
w

0 0
2 T 2
<2 —/e’s2ds: .
w

Using this estimation we obtain

! 0/ / { e=weosh(z+u=0)| £()|g(v) | [h(w) | dudvdwds <
7/00_7 w w)||f(u)|[g(v)|dudvdw =
0 0 O

o] o0 o0 1
= \/%0/f(u)|du.0/|g(v)dv.0/ﬁh(w)|dw < +o0. (1.3)

The following estimation can be obtained by similar way

/ / / / e~ weosh@=utv))| £(4)||g(v)||h(w)|dudvdwdz < +oco, (1.4)
0 0 0 O
e~ weosh(@+utv))| £(4,) ]| g(v) || h(w)|dudvdwdz < +oco, (1.5)

e~ weosh@—u=v))| £(4))||g(v)||h(w)|dudvdwdz < +oco. (1.6)
From formulas (1.1), (1.3)—-(1.6) we have

o0
[ 15 g m@)ide < +oc.
0
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It shows that the polyconvolution (1.1) belonging to L1 (R )
We now prove the factorization equality (1.2). We get

(Fsf) (W) (Fog)(y) (Kiyh) =

7/007sm (yu) sin(yv) Ky (w) f (u) g (v) h(w)dudvdw =
0O 0 O

2
s

[c. ole ele elNe o]

////cos ya)e WO (cos y(u — v)—

0 0
—cosy(u+v)) f(u)g(v)h(w)dudvdwdo =

1 (ool ole olie o]
—////cosy +u—v)+cosy(a —u+v) —cosy(a+u+v)—
0000

smH

2
—cosy(a —u —v)]e VN £ (y) g(v)h(w)dudvdwda. (1.7)
Changing variables we have
/ [cosy(a +u —v) — cosy(a +u+ v)]e UM dn =
0
/COS Z'y[eiw cosh(z—u+v) e~ cosh(xfufv)]dx. (18)
0
Similar,
/ cosy(a —u+v) — cosy(a —u — v)]e VP Yo =
0
o0
— /Cosxy[efwcosh(:wrufv) _ efwcosh(:chquv)]dx. (19)
0
From formulaes (1.7)-(1.9) we have
(Fs ) () (Fs9)(y) (Kiyh) = Fe(x(f, 9, h))(y)-
Theorem 1 is proved.
1
Proposition. Let f,g € L1(Ry), andleth € L, <\/E7 R+> then the identity holds

(o =[5 / (g e =) () @)dw. (110)

Proof. From the definition (1.1) of the polyconvolution and the convolution (0.3)

we have
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g m@ = [ [ Hn@lgre @ w+ (g et o - w)dudu.

(1.11)
Therefore, in view of formula (0.1) we obtain

(=3 / e (1)) ()

Theorem 2. Let f, g, h be functions in Li(Ry), and let k be functions in
1
L| —,R |, then the following properties hold
Vw
a) x(f 5 g.h, k) = (f, hx g, F);

b) (f % g h k) = *(f, g % h, k).
Proof. We only need to prove the assertion a), since the second one can be obtained
similarly. From Theorem 1 and (0.5) we have

Fe(x(f,hx 9, k) () = Fs(f % 9) () (Fsh)(y) (Kiyk) =
= (Fsf) () (Feg)(y) (Fsh) (y) (Kiyk) =
= (Fsf) ) Fs(h s 9) (W) (Kiyk) = F(+(f 5 9,1, k) (v).

Then we obtain assertion a).
Definition 2. Let f be a function in L1(Ry) and g be a function in L1(8,R,),

2
B(v) = —=. Then their norm are defined as follows

Jo

(AP :/If(l’)ldl’, and |\gllz, sy = [ B()|f(v)|dv.
0

Theorem 3. Let f,g be functions in L1(R.), and let h be function in L1(5,R,.),
then the estimation holds

H T (f7gah)HL1(R+) < ||fHL1(R+)Hg‘|L1(R+)||hHL1(5,]R+)'

Proof. From formulas (1.1), (1.3)—(1.6) we have

[15Ggn@lar < /ﬁh w)d. /|f |du/|g )ldv.

Therefore,
1% CFs g M Ly < ALy lgll, @ oL, s ey -

2. Applications. Consider the integral equation

f(x)+/01(z,u)f(u)du+/Hg(x,u)f(u)du+
0 0
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+b/0/0/9(96,u,v,w)f(u)l(v)k(w)dudvdw =p(z), z>0. 2.1

Here 0(x, u, v, w) is given by the Definition 1, and 6, (z,u) and 05(z, u) are defined by
1

Oy (,u) = E[g(lw —ul) =gz +u)],

O (z, u) [h(Jz 4+ u—1])sign(z+u—1) 4+ h(Jz —u+1|)sign(z —u+1)—

1
C2Vor
—h(z+u+1)—h(lz —u—1])sign(z —u — 1)].

Beside, g, h, I, k, p are known functions, f is unknow function.

Theorem 4. Let g, hy, ho, I, p1, p2 € Li(Ry), p = p1 + pa, and let k €

1
€Ly (\/E,]RJr), h=hy >5h2 such that

L+ (Feg)(y) +sin(Fsh)(y) #0 Yy >0,

and
pae) = (1, 1K) = Lt (epu, 1)) ),

where | € L1(R.) is defined uniquely by

_ (Feg)(y) +sin(F.h)(y)

Then the equation (2.1) has a unique solution in L1(R) whose closed form is

J@) = pi(e) = (o 5 D).

Proof. First, similarly to the proof of the Theorem 1, we obtain the following lemma.
Lemma 1. Let f,g € Li(Ry), then (f%g) (x) belongs to Ly (R) the identity holds

F(f % 9)(y) = —isiny(Fs f)(y)(Fs9)(y),

where
+oo
(Fio)@) = 57= [ S@lo(la+u= 1) sign(e +u 1)+
T 0

+g9(Jxr —u+1|)sign(z —u+1) — g(|x + v+ 1]) sign(x + v + 1)—
—g(|x —u —1]) sign(x — u — 1)]du.
Lemma 2. Let f,g € L1(R), then (f%g)(m) belongs to L1(R) the identity holds

F(f 3 9)(y) = ~i(F.f)0)(Feg) (),

where

+oo
¥ 1
(fjg)(w)=mO/f(U)[g(Iw—UI)—g(|w+u)]dw
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We now prove the Theorem 4 with the help of the Fourier transform, Lemmas 1
and 2, Theorem 1, the generalized convolution (0.5) and the convolution (0.4). Extend
f,p1 oddly, and p, evenly over whole real-line, we have

—i(Fs f)(y) — i(Fs f)(y)-(Feg)(y) — i(Fs ) (y)-(Fsh)(y) siny+

F(Fa /)W) (Ful)(y)(Kiyk) = —i(Fsp1)(y) + (Fep2)(y)- 2.2)

Note that the equation (2.2) is equivalent to the following system:
(Fsf) () (1 + (Feg)(y) + siny(Fsh)(y)) = (Fap1)(y), (2.3)
(Fs f) (). (Fs) (y) (Kiyk) = (Fep2)(y)- (2.4)

From (2.3) and the given condition we have

2.5)

FD)0) = (Fn)) (1- L) Ly Bl

L+ (Feg)(y) + siny(Fsh)(y)
Since h = hy x ho we have
siny(Fuh)(y) = Feo(hn % ha)(y).

In virtue of the Wiener—Levy theorem [10], and the given condition, there exists a
function | € L1 (R4 ) such that

(ch)(y) + Fc(hl % h2)(y)

(Fel)(y) = 5 - (2.6)
L+ (Feg)(y) + Fe(h1 # ha)(y)
From (2.4)—(2.6) we have
(Fsf)(y) = (L= (Fel) () (Fasp1)(y)-
Therefore,
f@) = pi(@) = (pr £ D(@). (2.7)
Substitute (2.7) into (2.4) we obtain
(Fep2)(y) = (1 = (Fel)(y)) (Fap1) (y) (Fsl) (y) (Kiy ).
Hence, using formula (0.5) and Theorem 1 we have
pa(a) = 5o, L)) — (% (1o, L)) (@), > 0. 23)

From (2.3), (2.4), (2.7), (2.8), the solution of equation (2.1) has a closed form in L; (R4)
as

f@) = pi(z) = (pr % D (@)-

Remark. The integral equation (2.1) is a special case of the integral equation with
the Toeplitz plus Hankel kernel (0.10) with

1 1

[h(t + 1) — h(|t — 1|) sign(t — 1)]—
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3

_2 1 //Z(U)k<w)[e—wcosh(t+v) _ e_u]COSh(t_v)]dwa,
0 0

[h(]t + 1|) sign(t + 1) — h(]t — 1]) sign(t — 1)]+

ka(t) g(t]) +

1 1
V2r 21/ 27

1 oo o0
+ //Z(U)k(w)[e—wcosh(t+v) _ B_U)COSh(t_U)]dwa.
2v2
T 00

Next, we consider the following system of two integral equations for x > 0:

+/93 du+0/9 1(z, u)g(u)du+

0
+0/0/0/9 x, u, v, w)h(u)g(v)h(w)dudvdw = p(z),
(2.9

/ 05, u) f (u)du + / 06(,u) f(u)du + g(x) = q(z).
0 0

Here 0(x, u,v,w) is defined by (1.1), and

Oa(a, ) = = [hfu-+ ) + h(fu - a sign - )

0 (z,0) — ﬁ[l{:(\m bu— 1)+ k(7 —ut 1)) — k@ +ut 1) — k(7 —u— 1)),
Os(a ) = (o — u sign(a =) + (o +u).
06 (,u) = ﬁ[ﬁﬂﬂﬂruf ) +&(lz —u—1]) =&z +u+1) = &(|lz —u+ 1)),

h,k,l, @, & p,q are known functions, f, g are unknown functions.
Theorem 5. Given that h,k,1,¢,&1,8,p,q € L1(Ry) and ¢ € L1<
E=4 ?;52 such that 1 — (For)(y) #0 Vy > 0, where

vR-i-)z

7~

() = (b 9)() + (¢
+HREE)(@) + (&1 F (&3 R) (@) + 4(&1, & +1,9) (@),

= %2

B)@) + 5,1 o) (1) +

Then the system (2.9) has a unique solution in L1(Ry) x L1(Ry) whose closed formed
as follows

f(@) = p(@) = (g1 W)(@) — (g% k)(@) = *(q,1, ) (@) +
+Hxp)(@) = (# (g W) (@) = (0% (g% ) (@) = (% ((g, L, ) (@),
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1398 N. X. THAO, N. O. VIRCHENKO

Here, n € L1(R.) is defined by

(Fer)(y)
1= (Fer)(y)

Proof. Using Theorem 1 and (0.5)-(0.8) we write the system (2.9) in the form

(Fef)(y) + (Fsg) (W) [(Fsh)(y) + siny(Fok)(y) + (Fl)(y)(Kiyp)] = (Fep)(y),

Fen =

(Fef)W(Fs)(y) + siny(Fed)(y) + (Fs9)(y) = (Fsq)(y)- o
We obtain a system of two linear equations for (F,f)(y) and (Fsg)(y). We have
A 1 (Fsh)(y) + siny(Fek) (y) + (Fl) (y) (Kiyep) _
(Fo)(y) + siny(F.£)(y) 1
=1 (Fur)(y). @11

In view of the Wiener—Levy theorem [10], by the given condition, there is a unique
function n € L1(R4) such that

(Fer)(y)

(Fen)(y) = T— ) (2.12)
From (2.11) and (2.12) we have
1 =1+ (Ea)) e.13)
On the other hand,
A (Fep)(y)  (Fsh)(y) + siny(Fek)(y) + (Fsl)(y) (Kiyp) _
(Feq)(y) 1
= (Fep)(y) = Felg x M)(y) = Felax b)(y) = Felx(q, L o) (). (2.14)

Hence, from (2.13), (2.14) we have
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It follows
f@) =p(@) = (g1 h) (@) = (g k) (@) = *#(a, L, ) () + (1 % p) ()~
~(x(@xh)(@) = (nx (@ *k)(@) = (0% (+(a,1,9)) (2). (2.15)
Similarly,
1 (Fep) ()
Ay = -
(Fsb)(y) +siny(Feb)(y)  (Faq)(y)
= (Fa)(y) - F.( £ p)(y) = Fu(E £ p)(v)- (2.16)

Using formula (2.13) and (2.16) we have

(Fu)(y) = 32 =
— [+ (FEn)@)][Faa) ) — B 5 2)) — Fu(€ 30)(w)] =

It shows that
g(z) = Q(x)—(wgp)(z)—(f%p)(z)ﬂq;n)(x)—((wgp);n)(:ﬁ)—((fgp);n)(m)- (2.17)

From (2.10), (2.15), (2.17), system (2.9) has a solution (f, g) in L1(R;) x L1 (R;).
Theorem 5 is proved.
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