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ALGEBRAIC DEPENDENCES OF MEROMORPHIC MAPPINGS
IN SEVERAL COMPLEX VARIABLES"

AJITEBPATYHA 3AJIEXKHICTH MEPOMOP®HUX
BIIOBPA’KEHD JJIS1 BATATBOX KOMIIVIEKCHUX 3MIHHUX

In this article, some algebraic dependence theorems of meromorphic mappings in several complex variables
into the complex projective spaces are given.

HasezneHo aesiki Teopemu mpo anredpaiuHy 3ajeKHICTh MEpOMOPGHUX BiOOpakeHb 11l OararboxX KOMILIEKC-
HHUX 3MIHHUX Ha KOMIUICKCHI MPOCKTHBHI IPOCTOPH.

1. Introduction. The theory on algebraic dependences of meromorphic mappings in
several complex variables into the complex projective spaces for fixed targets is studied
by Wilhelm Stoll [1]. Later, Min Ru [2] generalized Stoll’s result to holomorphic curves
into the complex projective spaces for moving targets and show some unicity theorems
of holomorphic curves into the complex projective spaces for moving targets. As far as
we know, they are the first results on the unicity problem for moving targets. We now
state his remarkable results.

Let go,...,94-1, ¢ > N, be g meromorphic mappings of C" into PV (C) with
reduced representations ¢g; = (gjo : ... : gjn, 0 < j < ¢ — 1. We say that go,...,gq—1
are located in general position if det(g;,;) # 0 forany 0 < jo < ji < ... < jn < ¢—1

Let M, be the field of all meromorphic functions on C™. Denote by R ({ gj }j;é) C

C M,, the smallest subfield which contains C and all ik with g;; # 0.
gji
Let f be a meromorphic mapping of C™ into P™V(C) with reduced representation

f=(fo:...: fn). We say that f is linearly nondegenerate over R ({gj j;(l)) if

fo, ..., fn are linearly independent over R ({ 9; j;(l)) .
Let f;: C* — PY(C), 1 <t < A, be meromorphic mappings with reduced repre-
sentations f; := (fi0 : ... : fin). Let gj: C* — PV (C), 0 < j < ¢ — 1, be moving

targets located in general position with reduced representations g; := (gjo : ... : g;n)-
N
Assume that (f;,g;) = Z Oftigji #0foreach 1 <t<A\0<j<qg—1and
1=
<

(f1.9) 10} = .. = (far9;) {0} Put A; = (f1,g;)~1{0} for cach 0 < j < ¢ — 1.
Assume that every analytic set A; has the irriducible decomposition as follows A; =
= UZj:lAji, 1 <t; < oo. Set A= UAjiiAkz{Aji NAg} withl << 15, 1 <1 <ty
0<j,k<qg-—-1

Denote by T[N +1, ] the set of all injective maps from {1,..., N+1}to {0,...,q—
— 1}. For each z € C" \ {Ugernt1,q12l9801)(2) A ... A ggveny(z) = 0} U AU
UUXLI(fi)}, we define p(z) = #{j|z € A;}. Then p(z) < N. Indeed, suppose that

N
z € Aj foreach 0 < j < N. Then Z;O f1i(2) - gji(2) = 0 for each 0 < j < N. Since
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9(1)(2) Ao A ggvg1)(2) # 0, it implies that f1;(2) = 0 for each 0 < 7 < N. This
means that z € I(f1). This is impossible.

For any positive number r > 0, define p(r) = sup{p(z) | |z| < r}, where the
supremum is taken over all z € C™ \ { Ugern+1,q {295(1)(2) A~ A gavi1)(2) =
=0} UAUU}I(f;)}. Then p(r) is a decreasing function. Let

d:= lim p(r).

r—+00

Then d < N. If for each i # j, dim{A4; N A;} <n—2, thend = 1.

Theorem A (see [2], Theorem 1). Let fi,...,fr: C — PYN(C) be nonconstant
holomorphic curves. Let g;: C — PN (C), 0 < i < q — 1, be moving targets located
in general position and T (r,g;) = o(maxi<j<xT(r, f;)), 0 < i < g — 1. Assume
that (fi,g;) 2 0for 1 <i <\ 0<j<qg—1,and Aj := (f1,9;) {0} = ...
oo = (frrg;) {0} for each 0 < j < q — 1. Denote A = U?;éAj. Letl, 2 <1<,
be an integer such that for any increasing sequence 1 < j1 < ... < ji <\, fj,(2)A...
dN?(2N + 1)\

A—Il+1
algebraically dependent over C, i.e., fy N...\ fx =0 on C.

Theorem B (see [2], Theorem 2). In addition to the assumption in Theorem A we
assume further that f;, 1 < i < A, are linearly nondegenerated. Then f1,..., f\ are
dN(N +2)\

A—Il+1

With the same assumption on the nondegeneracy of small moving targets, it is our
main purpose of the present paper to show some algebraic dependence theorems of
meromorphic mappings from C™ into PV (C) for moving targets in more general situ-
ations. Namely, we are going to prove the following.

Theorem 1. Let fi,...,fr: C* — PN (C) be nonconstant meromorphic map-
pings. Let g;: C" — PN(C), 0 < i < q — 1, be moving targets located in general
position and T(r, g;) = o(maxi<j<x T(r, f;)), 0 < i < g — 1. Assume that (f;,g;) # 0
Jor1<i<MN0<j<qg—1,and A;:=(f1,9;) {0} = ... = (fr, g;) {0} for each
0<j<q—1. Denote A= U?;éAj. Let 1, 2 <1 < A, be an integer such that for any
increasing sequence 1 < ji < ... < ji < A, fi,(2) A... A fj,(2) = 0 for every point
z € A. Then f1,..., f\ are algebraically dependent over C, i.e., fy N...N\ fx =0on
C.ifq> AN (2N + 1)\

A—Il+1
Theorem 2. [n addition to the assumption in Theorem 1 we assume further that

... N\ fj,(z) = 0 for every point z € A. If ¢ > , then f1,..., [\ are

algebraically dependent over C, i.e., fiN...N fx=00nC, if g >

fi, 1 < @ < A, are linearly nondegenerate over R ({gj ;’;é) . Then f1,..., f\ are
dN (N + 2)\
el

Theorem 3. Let fi,...,fr: C* — PN (C) be nonconstant meromorphic map-
pings. Let g;: C" — PN (C), 0 < i < q — 1, be moving targets located in general
position such that T (r, g;) = o(maxi<;j<xT(r, f;)), 0 < i < ¢g—1, and (f;,9;) # 0 for
1<i< N\ 0<j<qg— 1. Let 5 be a positive integer or » = 0o and 3 = min{sx, N }.
Assume that the following conditions are satisfied.

algebraically dependent over C, i.e., fiN...Nfx=00nC, if g >

qilv

() min{se, vf, g0} = ... = min{se, vs, gy} for each 0 < j <
(it) dim{z|(f1,9:)(2) = (f1,9;)(2) =0} <K n—2 foreach 0 <i < j < ¢ —1,
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(iii) there exists an integer number 1, 2 < | < A, such that for any increasing
sequence 1 < j1 < ... < ji < A fi,(2) Ao A f,(2) = 0 for every point z €
€ Uy (f1,9:) {0}

Then

@ > A i+1
dent over C i.e, fiN... N\ fx =0 on C;

(i) if fi, 1 < i < A, are linearly nondegenerate over R{y; }?;é and

N@N + 1A — 7 - 1)(A—1)

, then f1, ..., f\ are algebraically depen-

N(N+2)A—(z—-1)(A—1)
A—1+1 ’

q>

then f1,..., f\ are algebraically dependent over C;

@iii) if f;, 1 < i < A, are linearly nondegenerate over C, g;, 0 < i < q— 1, are
constant mappings and (¢ — N — 1)(A—1)3 — 1) + g A — 1+ 1)) < gNA, then
fi,--., [\ are algebraically dependent over C.

2. Basic notions and auxiliary results from Nevanlinna theory. 2.1. We set
Izl = (Jz1f2 + ... + |2a]2)/? for 2 = (21,..., 2,) € C" and define

B(r):={z€ C": ||z| <}, S(r)={z€C": ||zl =r}, 0<r<oo.

Define
c n—1
Up—1(2) == (dd HZH2)

and
on(2) == dlog||z||* A (ddclog||z||2)n_1 on C"\{0}.

2.2. Let F be a nonzero holomorphic function on a domain 2 in C”. For a set
a = (aq,...,ay) of nonnegative integers, we set |a| = a3 + ... + a, and D*F =
olelFp

= ———— We define the map vp: Q2 — Z by
0%1z1...0%z,

vp(z) :==max {m: D*F(z) =0 forall a with |a| <m}, ze.

We mean by a divisor on a domain 2 in C" a map v: 2 — Z such that, for each
a € €, there are nonzero holomorphic functions F' and G on a connected neighbourhood
U C Q of a such that v(2) = vp(z) — vg(z) for each z € U outside an analytic set of
dimension < n — 2. Two divisors are regarded as the same if they are identical outside
an analytic set of dimension < n — 2. For a divisor v on Q we set |v| := {z: v(2) # 0},
which is a purely (n — 1)-dimensional analytic subset of {2 or empty.

Take a nonzero meromorphic function ¢ on a domain 2 in C™. For each a € 2, we
choose nonzero holomorphic functions F' and G on a neighbourhood U C 2 such that

F ..
p=gon U and dim(F~'(0) N G71(0)) < n — 2, and we define the divisors v, v2°
by v, == vp, yj;o := vg, which are independent of choices of F' and GG and so globally
well-defined on €.
2.3.  For a divisor v on C™ and for a positive integer M or M = oo, we define the

counting function of v by
M) (2) = min {M,v(2)},
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/ v(z)vp—1 if n > 2,
v NB(t)

Z‘Z‘qy(z) if n=1.

n(t) =

Similarly, we define n(™)(t).
Define

t
N(r,v) :/;;Ei)ldt, 1<r<oo.
1

Similarly, we define N (r, (™)) and denote them by N (r, /) respectively.
Let ¢: C™ — C be a meromorphic function. Define
N, (r) = N(r,v,), NéM)(r) :N(M)(r, Vo).

For brevity we will omit the character M) if M = oo.
2.4. Let f: C* — PY(C) be a meromorphic mapping. For arbitrarily fixed ho-

mogeneous coordinates (wp : ... : wy) on PY(C), we take a reduced representation

f = (fo:...: fn), which means that each f; is a holomorphic function on C”"

and f(z) = (fo(z) : ... : fn(z)) outside the analytic set {fo = ... = fy = 0} of
1/2

codimension > 2. Set || f|| = (| fol*> + ...+ |f~]?)
The characteristic function of f is defined by

T(r, f) = / log] £l — / log]|fl|o.

5(r) 5(1)

Let a be a meromorphic mapping of C" into P™V(C) with reduced representation
a=(ap:...:an). We define

Ul Al
Mpalr) = / log 7 ay) / o] a7

S(r) S(1)

where [|a]| = (Jaol® + ...+ |aN|2)1/2.
If f, a: C" — PY(C) are meromorphic mappings such that (f,a) # 0, then the
first main theorem for moving targets in value distribution theory (see [3]) states

T(r, f) +T(r,a) = myq(r) + Negay(r).

2.5. Let ¢ be a nonzero meromorphic function on C”, which are occationally
regarded as a meromorphic map into P*(C). The proximity function of ¢ is defined
by

m(r,p) = /logmax (lel, Doy,
S(r)
2.6. As usual, by the notation ”|| P” we mean the assertion P holds for all r €

€ [0, 00) excluding a Borel subset E of the interval [0, co) with / dr < oo.
E
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2.7. The First Main Theorem for general position [1, p. 326]. Let f;: C* —
— PN (C), 1 < i < \, be meromorphic mappings located in general position. Assume
that 1 < X< N + 1. Then

N, pigoncngs) Fmlr i A Af) <Y T(r, i)+ O(1).

1<K

Let V be a complex vector space of dimension N > 1. The vectors {vy, ..., v} are
said to be in general position if for each selection of integers 1 < iy < ... < i, < k
with p < N, then vy, A ... Awv;, # 0. The vectors {vy,...,v;} are said to be in special
position if they are not in general position. Take 1 < p < k Then {vy,..., v} are said
to be in p-special position if for each selection of integers 1 < iy < ... <14, < k, the
vectors v;,, . .., v;, are in special position.

2.8. The Second Main Theorem for general position ([1, p. 320], Theorem 2.1).
Let M be a connected complex manifold of dimension m. Let A be a pure (m — 1)-
dimensional analytic subset of M. Let V be a complex vector space of dimension n+1 >
> 1. Let p and k be integers with 1 <p < k <n+1. Let f;: M— P(V),1<j<k,
be meromorphic mappings. Assume that f1,. .., fi are in general position. Also assume
that f1,..., fx are in p-special position on A. Then we have

Bpinafe = (k—=p+1va.

2.9. The Second Main Theorem for moving target. 2.9.1 ([4], Theorem 3.1). Let
f: C"* — PN(C) be a meromorphic mapping. Let {a1,...,a4}, ¢ # 2, be a set of q
meromorphic mappings of C™ into PN (C) in general position such that f is linearly
nondegenerate over R ({aj }3:1). Then

q
) + 5 T(r, f) < ZN(jNa) (r (Ogl\agng(r a;))+o(T(r, f))

2.9.2 ([5], Corollary 1). Let f: C* — P¥(C) be a meromorphic mapping. Let
A={a1,...,a,}, ¢ > 2N +1, be a set of ¢ meromorphic mappings of C" into P (C)
located in general position such that (f,a;) Z 0 for each 1 < i < q. Then

ST ZN (Fa (" (f??é‘qT(T a))+O(log" T(r. )>

3. Proofs of main theorems. 3.1. Proof of Theorem 1. 1t suffices to prove Theo-
rem 1 in the case of A < N + 1.

Assume that f; A ... A fy #Z 0. We denote by f1¢, 1.7, the divisor associated with
fi A ... A fa. Denote by N(r, s a..ar,) the counting function associated with the
divisor fig, A, a7, - We now prove the following.

Claim 3.1.1. Forevery 1 <t < A, we have

q

. dN

§ min{N, V(fe.95) (2)} < ﬁufl/\---/\f)\(z) +gN E :/‘ga<1>/\~~/\gﬂ(w+1>(z)
j=1 B

for each z ¢ AUUX_I(f;), where the sum is over all injective maps B: {1,2,..., N+
+1} — {1,2,...,q}.
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We now prove Claim 3.1.1.
For each regular point zg € A\ (AU U I(fi) U Ugerini1,q{zl950)(2) A
.. Aga(n+1)(2) = 0}), let S be an irriducible analytic subset of .A containing zg. Smce
20 € Aand A = Un, 24, {Aji N Ar}, where Aj; are the irriducible components of
Aj = (f1,9;)"*{0}, it implies that S is a pure (n — 1)-dimentional analytic subset and
hence, S is only contained in at most d sets of A;. Thus vy, 4.y(20) # 0 at most d
indices. We have

q
Z min{N, vy, 4,)(20)} < dN.
j=1

For each increasing sequence 1 < j; < ... < j; < A, we have

(@A A fi(2) =0 VzeS.

This implies that the fimily {f1, ..., fA} is in [-special position on S. By the Second
Main Theorem for general position [1, p. 320] (Theorem 2.1), we have

fpn.nfs(2) > (A= (1 =1))vs

By the properties of divisor, we have

Ppinnfs(20) 2 A =1+ 1.

Hence

q
: dN
me{N, V(fi,9:)(20)} <dAN < 5y

< T_’_l/ifw--./\fx (20)-

If 20 € Ugerin+1,912l9801)(2) A .. A ggv41)(2) = 0}, then we have
Z mln{N V(fu, 97)(20)} qgN < gN Z HgpayA...Ags(n+1) (ZO)

j=1 BET[N+1,q]

From the above cases and by the properties of divisor, for each 2 ¢ AU U, I(f:),
we have

q
> min{N, v, 4(2)} <
j=1

dN
STt HAN DT gy ngsn (2):
BET[N+1,q]

Claim 3.1.1 is proved.
The above assertions and The First Main Theorem for general position [1, p. 326],
yield that

q
> NG

Jj=1
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dN

S mN(r, ﬂfl/\"'/\f*) +aN Z N(r, “gﬁ(l)A---AHB(NH)) <

BET[N+1,q]

N+1

l+1ZT r, fi) +gN Z ZTTQB

BET[N+1,q] i=1

l+ 1 ZT fi) + (fgagg{T(T fi) }>

Thus, by summing them up, we have

YN el f:T fi) + (T, £} i
(ft’gj l+1 ’I“ Z 1I2134<X ( ) : (1)

t=1 j=1

By using the Second Main Theorem for moving targets [5] (Corollary 1), it implies
that

A A
dN A
g r, fi) < i1 ZT i) + <max {T(r, fl)})
dN(2N +1)A
Letting » — 400, we get ¢ < %:::1) This is a contradiction. Thus, the

family {f1,..., fo} is algebraically dependent over C", i.e., f1 A... A fr =0.
Theorem 1 is proved.
3.2. Proof of Theorem 2. From (1), we have

A (N) dN X A
N
<
22 Nigu (1) S 37 2T A) (le%{T " fl’}>

By using the Second Main Theorem for moving targets [4] (Theorem 3.1), it implies
that

A
LT < T T 1 o s (10 10)
dN (N +2)A
A—1l+1

family {f1,..., fo} is algebraically dependent over C™, i.e. f1 A... A f) =0.

Theorem 2 is proved.

3.3. Proof of Theorem 3. It suffices to prove Theorem 3 in the case of A < N +1.
Assume that f1 A ... A f) Z0.

We now prove the following.

NE
=

1

~
Il

Letting r — +00, we get ¢ < . This is a contradiction. Thus, the

Claim 3.3.1. For any A\ — 1 moving targets g;,, ..., g, , € {9; }‘;zl, there exists
Gio € {Yjus- -, Gjn_, } Such that
(fr.9i) - (xg0)
det [ (fr,950) - (Fugin) |70
(fr.95) - ()
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We now prove Claim 3.3.1.

Suppose on contrary. Without loss of generality, we assume g;, = g1,...,0j,_,=9xr—1-
Then
(f1,91)(2) (fr,91)(2)
rank <A -1
(frogn+1)(z) oo (fa,gn+1)(2)

for each z € C™. By f1 A ... A fi # 0, there exists zg € C™ such that fi(z9) A ...
oA fa(z0) #0and 20 € {g1 A ... A gns1}1(0). On the other hand, we have

(Fog)z0) o (Frgn)(zo)
Gravadeo) . Gnaxele)
goz0) o gin() \ [fol) o faolo)
vt o oo Ui o)

Since the family {g, }?:1 is located in general position, is implies that the matrix

flO(ZO) f)\O(ZO)

fin(z0) oo fan(zo)

is of rank < A — 1. This is a contradiction.

The Claim 3.3.1 is proved.

We now consider A — 1 moving targets gi,...,gx—1. Then, by Claim 3.3.1, there
exists g;, with jo > A — 1 such that

(f1,91) (fx,91)
det (fl,g.,\71) (f,\75.7,\71) # 0.
(fi:950) o (fx95)

Without loss of generality, we may assume that jo = A.

Now we put A := U3 (f1,9;) {0}, A = Urcicica ((f1,.9:) 7H{OIN(f1, 95) 1 {0}).
We now show the following.

Claim 3.3.2. For each 1 <t < A\, we have

(min {%’ V(ftvgi)(z)} + ()‘ - l) min {1’ V(ft»gi)(z)}) +
1

A
i=

q
+ D0 (A=l min{Lyg, g)(2)} <
i=A+1
< KA AFx (2) + A+ A=)+ (=N —1+ 1)),“’91/\.../\gA (2) 2
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for every = € G\ (AUULLI(f)), where fi = (firg1) © - © (fingn)) for each
1 < ¢ < A\ Furthermore we have

A

(32) (1)
S (NG, 0+ A= ONG ) +

=1

q
+ 20 A1+ DN, () <

i=A+1
< ; I(r, fi) +o <112?<X)\{T(T’ fi)})_ )

We now prove Claim 3.3.2.

By the properties of divisor, we only consider three cases for regular points.

Case 1. Letzy € A\ (AUUM I(f;)U{z|gi A...Agr(2) = 0}) be a regular point
of A. Then 2 is only a zero of one of the meromorphic functions {( ft, gj)}j\:y Without
loss of generality, we may assume that zq is a zero of (ft,g1). Let S be an irriducible
analytic subset of A, containing zy. Then the pure dimension of S is n — 1. Suppose
that U is an open neighbourhood of zy in C™ such that U N {A\ S} = @. Choose a
holomorphic function  on C™ such that v}, = min{s, vy, 4} if z € Sand v, = 0
if z ¢ S. Then (f;,g1) = a;h, 1 < i < A, where a; are holomorphic functions. Since

(fr92)(z) o (fr92)(2)
the matrix : : : is of rank < A — 1 for each z € C™,
(fo0) o (faon)(2)
it implies that there exist holomorphic functions by, ...,by such that there is at least
b; # 0 and
A
D bilfing) =0, 2<j<A
i=1

Without loss of generality, we may assume that the set of common zeros of {b; }2_,
is an analytic subset of codimension > 2. Then there exist an index i1, 1 < 71 < A such
that S ¢ bi_ll{O}. We can assume that i; = \. Then for each z € (U N S) \ by {0}, we
have

= h(2) (fl(z) Ao A Faoi(2) A V(Z)>7

A-1 b,
where V(z) := (aA +Z_ . bai,O,...,O).
i= A

By assumption, for any increasing sequence 1 < j; < ... < j; < A — 1, we have
fin Ao A fj, =00n S. Then

ISSN 1027-3190. Vip. mam. xcypn., 2010, m. 62, Ne 7
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fjlo(z) szo(z)
rank(f;, (2),..., f;(2)) = rank : : : <l-1 VvVzeb.
fun(z) o fin(z)
On the other hand
(fjugl)(z) s (szvgl)(z)
Frog)E) o (Fagn)(2)
g10(z) .. gin(2)\ [ fio(z) o fio(2)
90(2) o ow@) \Fan(®) o ()

Hence

rank (j?h(z), .. .,fjl (z)) =

(fjugl)(z) (sz?gl)(z)

= rank : : : <l-1 Vzelbs.
(fi90(=) o (f90)(2)

Therefore, f’jl A A ijz = 0 on S. This implies that the family {fl, e f,\_l} is in
I-special position on S, and {fi,... fa—1,V} is in (I 4+ 1)-special position on S. By
using The Second Main Theorem for general position [1, p. 320] (Theorem 2.1), we
have

/J’flA.../\fA_l/\V(z) >(A=lvs Vzels.

Hence
HF A A (2) > vp(z) + (A= Dvs =
= min{3, 14, 4,)(2)} + (A = Dvg,Vz € (UUS) \ b, {0}.
By the properties of divisors, we have

KA AFN (ZO) > min{%7 V(ftsgl)(zo)} +A-1

This implies that

A
> (min{se, vy, gy (20)} + (A = D min{1, 4, 4 (20)}) +
=1
q
+ > (A=l D) min{l, vy, 4 (20)} =
i=A+1
= min{s, v, ¢,)(20)} + A =1 <
S bfanf(20) + AGe+ A= 1) + (= A)A =14 1)) gy n...nga (20)-
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Case 2. Letzy € A\ (AUUN I(f;)U{z|gi A...Agx(2) = 0}) be a regular point
of A. Then zj is only a zero of (ft,g:),7 > A. By the assumption, we have the family
{f1,..., [} is in [-special position on an irriducible analytic subset of codimension 1
of A which containing z. By using The Second Main Theorem for general position [1,
p. 320] (Theorem 2.1), we have

fn. nfy(20) 2 A =1+ 1.
Hence
A
D (min{se, vg, g (20)} + (A = D min{1, vy, ) (20)}) +
=1
q

+ Z (A =1+ 1)min{1, vy, 4,)(20)} =
i=A+1

=A=141) min{l,l/(f“gi)(zo)} =
=A=1+1< pja af(20) + (AGe+ A= D)+

(g =N\ =1+ 1)pgn...ngx (20))-
Case 3. Assume that zo € (g1 A ... A gx)"1{0}. Then
A
Z (min{%7 V(ft;gi)(zo)} + (/\ - l) min{l? V(ft;gi)(zo)}) +
i=1
q

+ Y (A =1+ D) min{L, vy, 6 (20)} <
i=A+1

SAx+A=-D))+(@—NA-1+1)<

S Hjnnfy (20) + (AGe+ A =1) + (g = A)(A =1+ 1) g, n...ng, (20))-

From the above cases and by the properties of divisors, for each z ¢ A UX | I(f:),
we have

A
Z (min{}r7 V(trg)(2)} 4 (A = 1) min{1, I/(ft)gi)(Z)}) +

+ ) (A= 1+ D min{L, gy, 4(2)} <
i=A+1

< KA AFx (2) + Ae+ A =1 + (@ = NN =1+ 1)) g, n...ngs (2)-

The first assertion of Claim 3.3.2 is proved.
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By the assumption and definiton of the characteristic function, for each 1 < j < A,
we have

T(r, ) < 047 + o o (70 1)),

I<j<A
By The First Main Theorem for general position [1, p. 326], it implies that

q

A
(22) (1) (1)
S (NG 0+ O =DNG L m) + 3 =1+ NG ) <
=1 1=X+1

SN0 p 7))+ (MG A= D) + (= MO =1+ 1)) Ny, (1) <

A
<3 T fi) + (A(%Jr)\—l) =M1+ 1)) N T(r.g:) +0(1) <
i=1 i=1
A
< S0 ) o (70 1)),

1

7

The second assertion of Claim 3.3.2 is proved.
Thus, for any increasing sequence 1 < 71 < ... < iyx_1 < ¢, we have

() M o
> (NG )+ A= DN, ) + Z;(’\ — DN, gy (1) <
Jj= [4S]

< ST £+ o e (10 ).

: 1<iKA
=1

where I = {1,2,...,q} \ {#1,...,9r-1}-
Thus, by summing-up them over all sequences 1 < i1 < ... < iy_1 < ¢, we have

SO =DNG @+ (=D =D+

i=1

Ha= A+ DA =1+ DN (1) <

< (IEA:T(T» fi) +o ( mgA{T(ﬁ fi)}>~

1<4
i=1 =

Since ?N;N)(r) < NNJ(C”) (r) Vs, we have

((A — 1N )+ (A= DA = D)+
=1

Hg—A+1D)A—1+ 1))N{J{f}gi)(r)) <
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NS T ) 4o ( max {T(r, f»})

1<i<A
i=1

This implies that

i( A=)z + (= DA=D+(g= A+ DA=1+ )N () <
=1

CONST( ) +o (s (7 1)

‘ 1<
=1

Thus, by summing them up over all ¢ (1 < ¢ < A), we have

q A
ZZ( /\f1)(/\71)+(qf/\+1)(/\fl+l)>N((;V)g)()<
A
<370 1)+ o s 70 10) @

We now prove the assertions of Theorem 3.
i) By applying the Second Main Theorem for moving targets [5] (Corollary 1) to the
left-hand side of (4), it implies that

A

q _
ST (A~ DR+ (A= DA + = A+ DA 1+ D)T(0 1) <

< qmiT(r, f)+o ( max {T(r, )}).

. 1<i<A
=1

Letting » — 400, we have

@N+DNA-(A-D)z-(A-1)(A-1) _

<A1
gSA-1+ N_l+1

(2N +1)NX— (A —1)(z — 1)
A—1+1 ’

This is a contradiction. Thus, we have fi A... A f) =0.
ii) By applying the Second Main Theorem for moving targets [4] (Theorem 3.1) to
the left-hand side of (4), it implies that

>

A=+ A-1DA=-D+ @@= A+1D)A=1+1)T(r, f;) <

< qN)\E/\:T(n f)+o ( max {T(r, fz)}>

, 1<K
i=1
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Letting r — 400, we have

(N4 2NA— (A~ D)7z~ (A~ A1)
gSA—LT A—l+1 -

(N+2)NX\—(A—=1)(z—1)
A—1+1 ’

This is a contradiction. Thus, we have f1 A... A f\ =0.
iii) By applying the Second Main Theorem for hyperplanes in general position [6,
p- 304] to the left-hand side of (4), it implies that

A

(@=N-1DY (A=1z+A=DA=)+(g= A+ DA =1+ 1)T(r fi) <
i=1

A
< qN/\ZT(r, fi)+o ( max {7T(r, fl)}>

Py ISISA
Letting » — +o00, we have
(g—N-1)((A=1)GE—-1)+qgA—=14+1)) <gNA

This is a contradiction. Thus, we have f1 A... A fy =0.
Theorem 3 is proved.
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