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POLYNOMIAL EXTENSIONS 
OF GENERALIZED QUASI-BAER RINGS 

POLINOMIAL|NI ROZÍYRENNQ 

UZAHAL|NENYX KVAZIBEROVYX KILEC| 

In this paper we consider the behavior of polynomial rings over generalized quasi-Baer rings, and we
show that the generalized quasi-Baer condition on a ring R is preserved by many polynomial extensions.

Rozhlqnuto povedinku polinomial\nyx kilec\ nad uzahal\nenymy kvaziberovymy kil\cqmy i po-

kazano, wo uzahal\nena kvaziberova umova wodo kil\cq  R   zberiha[t\sq pry bahat\ox

polinomial\nyx rozßyrennqx. 

1.  Introduction.  Throughout this paper all rings are associative with identity.  A ring
R  is called (quasi-)Baer if the right annihilator of every (right ideal) nonempty subset
of  R  is generated as a right ideal by an idempotent.  It is easy to see that the Baer and
quasi-Baer properties are left-right symmetric for any ring.  The study of Baer rings has
its roots in functional analysis.  In [1] Kaplansky introduced Baer rings to abstract
various properties of von Neumann algebras and complete  ∗-regular rings.  In [2]
Clark uses the quasi-Baer concept to characterize when a finite-dimensional algebra
with unity over an algebraically closed field is isomorphic to a twisted matrix units
semigroup algebra.  The concepts of Baer and quasi-Baer have been investigated by
several authors for rings.  Every prime ring is a quasi-Baer ring.  Since Baer rings are
nonsingular, the prime rings  R  with  Z Rr ( )   ≠  0  are quasi-Baer but not Baer.  Ano-
ther generalization of Baer rings are  p.p.-rings.  A ring  R  is called a right  (resp. left)
p.p.-ring if every principal right (resp. left) ideal is projective (equivalently, if the
right (resp. left) annihilator of any element of  R  is generated by an idempotent of  R ).
A ring  R  is called a  p.p.-ring if it is both right and left  p.p.-ring.  A ring  R  is said to

be generalized right  p.p.-ring if for any  x R∈   the right annihilator of  xn   is gene-
rated by an idempotent for some positive integer  n.  Von Neumann regular rings are
p.p.-rings, and  π-regular rings are generalized  p.p.-rings in the same sense as von
Neumann regular rings. 

In [3, 4], Birkenmeier, Kim and Park introduced a principally quasi-Baer ring and
used them to generalize many results on reduced (i.e., it has no nonzero nilpotent
elements)  p.p.-rings.  A ring  R   is called right principally quasi-Baer (or simply
right p.q.-Baer)  if the right annihilator of a principal right ideal is generated by an
idempotent.  Similarly, left  p.q.-Baer rings can be defined.  In [5] Moussavi, Javadi
and Hashemi introduced generalized (principally) quasi-Baer ring.  A ring  R   is
generalized right (principally) quasi-Baer if for any (principal) right ideal  I  of  R,

the right annihilator of  I n   is generated by an idempotent for some positive integer  n,
depending on  I.  For example  Z

pn , n > 2   ( p  is a prime number), is generalized

quasi-Baer but is not quasi-Baer.
In 1974 Armendariz seems to be the first to consider the behavior of polynomial
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rings over Baer rings [6] (Theorem B).  In this paper we consider the behavior of
polynomial rings over generalized quasi-Baer rings. 

We used  R x[ ] ,  R[ , , ]x α δ ,  R x x[ , ]−1 ,  r XR( ) ,  l XR( )   and  Id( )R   for the ring of
polynomial over  R ,  the skew polynomial ring over  R ,  the laurent polynomial ring
over  R ,  the right and left annihilators of  X  subset of  R  and the set of all idempotent
of  R ,  respectively. 

2.  Main results.  In this section we prove our main result showing that the
generalized quasi-Baer condition on  R  is preserved by many polynomial extensions. 

Lemma 1.  Let  I  be an right ideal of the ring  R  then we have the following
assertions:         

(1)  I xn[ ]   =  ( )[ ]I x n ; 

(2)  r I xR x[ ]( )[ ]   =  r I xR( )[ ] . 

Proof.  The proof is straightforward. 
Recall that a ring  R  is called Armendariz if whenever polynomials 

f x( )   =  a a x a xm
m

0 1+ + … +     and    g x( )   =  b b x b x R xn
n

0 1+ + … + ∈ [ ]

satisfy  f x g x( ) ( )   =  0  then  a bi j   =  0  for all  i,  j. 

Let  cf  denote the set of all coefficients of  f x R( ) ∈ . 
Proposition 1.  Let  R  be a generalized right quasi-Baer and Armendariz ring.

Then  R x[ ]   is a generalized right quasi-Baer ring. 

Proof.  Assume  R  be a generalized right quasi-Baer and Armendariz ring.  Let  I
be a right ideal of  R x[ ]   and  I0  denote the set of coefficients of all elements of  I  in
R  .  It is clear that  I0  is a right ideal of  R  ,  thus there exists  e R∈ Id( )   such that

r IR
n( )0   =  eR  for some  n N∈ .  We claim that  r IR x

n
[ ]( )   =  eR x[ ] .  It is clear that

I I x⊆ 0[ ] ,  then from Lemma 1  eR x[ ]   =  r I xR x
n

[ ]( )[ ]0   ⊆  r IR x
n

[ ]( ) .  Conversely let 

g x( )   =  b b x b x r In
n

R x
n

0 1+ + … + ∈ [ ]( )     and    a  =  a a a Ii i ii

k n
n1 21 0… ∈

=∑
with  a Ii j

∈ 0 . 

Then there exists  f Ii j
∈   such that  a ci fj i j

∈ .   Therefore  f x f xi i1 2
( ) ( )…

… f x g xin
( ) ( )   =  0,   then   a a a bi i i in1 2

…   =  0,  since  R  is  Armendariz ring.   Thus

g x( )  ∈ r I xR x
n

[ ]( )[ ]0   =  eR x[ ] . 

The proposition is proved. 
We know that, if  R  be quasi-Baer ring then  R x[ ]   is quasi-Baer [3] (Theorem 1.2).

By Proposition 1 we showed that, if  R  is an Armendariz generalized right quasi-Baer
ring then  R x[ ]   is a generalized right quasi-Baer ring.  Also in Proposition 2 we will
prove the converse of Proposition 1 is correct without Armendariz property.  But in
fact, we do not know of any example of generalized quasi-Baer polynomial ring such
that  R  is a generalized quasi-Baer but  R  is not Armendariz. 

Question:  Let  R  be a generalized right quasi-Baer ring.  Is  R x[ ]   generalized
right quasi-Baer ring without Armendariz property?

Proposition 2.  Let  R x[ ]   be a generalized right quasi-Baer ring then  R   is a
generalized right quasi-Baer ring. 

Proof.  Let  R x[ ]   be generalized right quasi-Baer ring and  I  be a right ideal of

R .  Then there exists an idempotent  e x R x( ) [ ]∈   such that  r I xR x
n

[ ]( )[ ]   =  e x R x( ) [ ]
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for some  n N∈ .  Let  e0   be constant term of  e x( )   then  e0
2   =  e0 .  Since  I e xn ( )   =

=  0,  we have  I en
0   =  0  therefore  e r IR

n
0 ∈ ( ) .  Thus  e R r IR

n
0 ⊆ ( ) . 

Conversely,  let  b r IR
n∈ ( )   then  b r I x RR x

n∈ [ ]( )[ ] ∩   =  e x R x R( ) [ ] ∩ .  There-

fore we have  b  =  e x h x( ) ( )   for some  h x R x( ) [ ]∈ .  Thus  b   =  e h0 0   where  h0   is

constant term of  h x( )   so  b e R∈ 0 .  Hence  r IR
n( )   =  e R0 . 

The proposition is proved. 

Proposition 3.  Let  ∆  be a multiplicatively closed subset of  R   consisting of
central regular element.  Then: 

(1)  If  R  is generalized right quasi-Baer ring then  ∆−1R   is generalized right
quasi-Baer ring. 

(2)  Let  Id( )R   =  Id( )∆−1R .  If  ∆−1R   is generalized right quasi-Baer  then  R
is generalized right quasi-Baer ring. 

(3)  If  R x[ ]   is generalized right quasi-Baer ring then  R x x[ , ]−1   is generalized
right quasi-Baer ring. 

(4)  Let   Id( )R   =  Id( )[ , ]x x−1 .  I f   R x x[ , ]−1   is generalized right quasi-Baer
then  R  is generalized right quasi-Baer ring. 

Proof.  (1)  Assume  that  R  is a generalized right quasi-Baer ring.  Let  I   be a

right ideal of  ∆−1R   and  I0   =  { },a R b a I b∈ ∈ ∈−1 for some ∆ .  It is clear  I0   ≠

≠  ∅,  I0   ≠  R ,  I0   �  R   and  ( )∆−1
0I n   =  ∆−1

0I n . 

We know  I  ⊆  ∆−1
0I .  Now  let  c d I− −∈1 1

0∆   such that  c ∈∆ ,  d I∈ 0 .  Thus

there exists  k ∈∆   such that  k d I− ∈1 .   Since  d I∈ 0 ,  therefore  c d−1   =

=  k dc k I− − ∈1 1   hence  ∆− ⊆1
0I I . 

Now we claim  ∆−1
0r IR( )   =  r I

R∆ ∆−
−

1
1

0( ) .  Let  a b r IR
− −∈1 1

0∆ ( )   then

( )( )c d a b− −1 1   =  0  for all  c d I− −∈1 1
0∆ ,  since  db  =  0.  Thus  a b r I

R
− −∈ −

1 1
01∆ ∆( ) ,

therefore  ∆−1
0r IR( )   ⊆  r I

R∆ ∆−
−

1
1

0( ) . 

Conversely,  let  a b r I
R

− −∈ −
1 1

01∆ ∆( )   then  c d a b− −1 1( )   =  0,  for all

c d I− −∈1 1
0∆ .  Thus  db  =  0  then  b r IR∈ ( )0 .  Therefore  a b r IR

− −∈1 1
0∆ ( ) . 

By hypothesis,  r IR
n( )0   =  eR  for some  e2   =  e R∈ .  Thus  I en

0   =  0  and so  0  =

=  ∆−1
0I en   =  ( )∆−1

0I n  = I en .  Hence  e R∆−1   ⊆  r I
R

n
∆−1 ( ) .  Let  a b r I

R
n− ∈ −

1
1∆ ( ) .

Then  0  =  I a bn −1   =  ( )∆− −1
0

1I a bn   =  ∆− −1
0

1I a bn   and so  b r I eRR
n∈ =( )0 .  Hence

a b e R− −∈1 1∆ .  Therefore  r I
R

n
∆−1 ( )   =  e R∆−1 . 

(2)  Let  ∆−1R   is generalized right quasi-Baer.  We prove that  R  is generalized

right quasi-Baer ring.  Let  I  be a right ideal of  R  then  ∆−1I   is right ideal  of  ∆−1R ,

thus there exists  e R∈   such that  e2   =  e  and  r I
R

n
∆ ∆−

−
1

1(( ) )   =  e R( )∆−1   for some

n N∈ .  We prove  r I eRR
n( ) = .  We show that  r I eRR

n( ) ⊆ .   Let   b r IR
n∈ ( )   then
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I bn   =  0,  thus  0  =  ∆−1I bn   =  ( )∆−1I bn   and so  b r I e R
R

n∈ =−
− −

∆ ∆ ∆1
1 1(( ) ) ( ) .  It

follows that  b  =  eb eR∈ .  The other side is similarly.

(3), (4)  Let  ∆   =  { }, , ,1 2x x … ,  then  ∆− −=1 1R x R x x[ ] [ , ] ,  and so proof is
complete. 

Recall that for a ring  R  with a ring endomorphism  α : R R→   and  α-derivation
δ : R R→ ,  the Ore extension  R x[ , , ]α δ   of  R  is the ring obtained by giving the po-
lynomial ring over  R  with the new multiplication  xr  =  α δ( ) ( )r x r+   for all  r R∈ .
If  δ  =  0,  we write  R x[ , ]α  for  R x[ , , ]α 0   and is called an Ore extension of endo-
morphism type (also called a skew polynomial ring).  In [7] Kerempa defined the rigid
rings.  Let  α  be an endomorphism of  R,  α  is called a rigid endomorphism if r rα( )  =

= 0  implies  r  =  0  for  r R∈ .  A ring  R  is called to be  α-rigid if there exist a rigid
endomorphism  α   of  R .  If  R   be  a  α-rigid then  Id( )R   =  Id( )[ , , ]R x α δ   = 

= Id( )[ , ]R x α   (Corollary 7).  Let  R  be a rigid ring.  It is clear that generalized quasi-

Baer and quasi-Baer conditions are equivalent. Then if  R  be  α-rigid ring,  R   is
generalized quasi-Baer if and only if  R x[ , ]α   is generalized quasi-Baer ring [8]
(Corollary 12).  In Example 1 we show that rigid condition is not superfluous. 

Example 1.  Let  Z  be the ring of integers and consider the ring  Z Z⊕   with the

usual addition and multiplication.    Then  the subring  R   =  {( , )a b Z Z a∈ ⊕ ≡
≡ b (mod )}2   of  Z Z⊕   is commutative reduced ring.  Note that only idempotents of
R  are  (0, 0)  and  (1, 1).  Hence from [5] (Example 2.1)  R  is not generalized right
quasi-Baer.  Now let  α : R R→   be defined by  α(( , ))a b   =  ( , )b a   Then  α  is an au-
tomorphism of  R.  Hence  R x[ , ]α   is quasi-Baer from [8] (Example 9). 
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