UDC 517.5
Sh. Ghalandarzadeh (K.N. Toosi Univ. Technology,Tehran, Iran),
H. S. Javadi (Shahed Univ., Tehran, Iran),
M. Khoramdel (K.N. Toosi Univ. Technology,Tehran, Iran)

POLYNOMIAL EXTENSIONS OF GENERALIZED QUASI-BAER RINGS ПОЛІНОМІАЛЬНІ РОЗШИРЕННЯ УЗАГАЛЬНЕНИХ КВАЗІБЕРОВИХ КІЛЕЦЬ

In this paper we consider the behavior of polynomial rings over generalized quasi-Baer rings, and we show that the generalized quasi-Baer condition on a ring R is preserved by many polynomial extensions.

Розглянуто поведінку поліноміальних кілець над узагальненими квазіберовими кільцями і показано, що узагальнена квазіберова умова щодо кільця R зберігається при багатьох поліноміальних розширеннях.

1. Introduction. Throughout this paper all rings are associative with identity. A ring R is called (quasi-)Baer if the right annihilator of every (right ideal) nonempty subset of R is generated as a right ideal by an idempotent. It is easy to see that the Baer and quasi-Baer properties are left-right symmetric for any ring. The study of Baer rings has its roots in functional analysis. In [1] Kaplansky introduced Baer rings to abstract various properties of von Neumann algebras and complete *-regular rings. In [2] Clark uses the quasi-Baer concept to characterize when a finite-dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. The concepts of Baer and quasi-Baer have been investigated by several authors for rings. Every prime ring is a quasi-Baer ring. Since Baer rings are nonsingular, the prime rings R with $Z_{r}(R) \neq 0$ are quasi-Baer but not Baer. Another generalization of Baer rings are p.p.-rings. A ring R is called a right (resp. left) p.p.-ring if every principal right (resp. left) ideal is projective (equivalently, if the right (resp. left) annihilator of any element of R is generated by an idempotent of R). A ring R is called a p.p.-ring if it is both right and left p.p.-ring. A ring R is said to
be generalized right p.p.-ring if for any $x \in R$ the right annihilator of x^{n} is generated by an idempotent for some positive integer n. Von Neumann regular rings are p.p.-rings, and π-regular rings are generalized p.p.-rings in the same sense as von Neumann regular rings.

In [3, 4], Birkenmeier, Kim and Park introduced a principally quasi-Baer ring and used them to generalize many results on reduced (i.e., it has no nonzero nilpotent elements) p.p.-rings. A ring R is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal right ideal is generated by an idempotent. Similarly, left p.q.-Baer rings can be defined. In [5] Moussavi, Javadi and Hashemi introduced generalized (principally) quasi-Baer ring. A ring R is generalized right (principally) quasi-Baer if for any (principal) right ideal I of R, the right annihilator of I^{n} is generated by an idempotent for some positive integer n, depending on I. For example $Z_{p^{n}}, n>2$ (p is a prime number), is generalized quasi-Baer but is not quasi-Baer.

In 1974 Armendariz seems to be the first to consider the behavior of polynomial
rings over Baer rings [6] (Theorem B). In this paper we consider the behavior of polynomial rings over generalized quasi-Baer rings.

We used $R[x], R[x, \alpha, \delta], R\left[x, x^{-1}\right], r_{R}(X), l_{R}(X)$ and $\operatorname{Id}(R)$ for the ring of polynomial over R, the skew polynomial ring over R, the laurent polynomial ring over R, the right and left annihilators of X subset of R and the set of all idempotent of R, respectively.
2. Main results. In this section we prove our main result showing that the generalized quasi-Baer condition on R is preserved by many polynomial extensions.

Lemma 1. Let I be an right ideal of the ring R then we have the following assertions:
(1) $I^{n}[x]=(I[x])^{n}$;
(2) $r_{R[x]}(I[x])=r_{R}(I)[x]$.

Proof. The proof is straightforward.
Recall that a ring R is called Armendariz if whenever polynomials

$$
f(x)=a_{0}+a_{1} x+\ldots+a_{m} x^{m} \quad \text { and } \quad g(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n} \in R[x]
$$

satisfy $f(x) g(x)=0$ then $a_{i} b_{j}=0$ for all i, j.
Let c_{f} denote the set of all coefficients of $f(x) \in R$.
Proposition 1. Let R be a generalized right quasi-Baer and Armendariz ring. Then $R[x]$ is a generalized right quasi-Baer ring.

Proof. Assume R be a generalized right quasi-Baer and Armendariz ring. Let I be a right ideal of $R[x]$ and I_{0} denote the set of coefficients of all elements of I in R. It is clear that I_{0} is a right ideal of R, thus there exists $e \in \operatorname{Id}(R)$ such that $r_{R}\left(I_{0}^{n}\right)=e R$ for some $n \in N$. We claim that $r_{R[x]}\left(I^{n}\right)=e R[x]$. It is clear that $I \subseteq I_{0}[x]$, then from Lemma $1 e R[x]=r_{R[x]}\left(I_{0}^{n}[x]\right) \subseteq r_{R[x]}\left(I^{n}\right)$. Conversely let

$$
g(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n} \in r_{R[x]}\left(I^{n}\right) \quad \text { and } \quad a=\sum_{i=1}^{k} a_{i_{1}} a_{i_{2}} \ldots a_{i_{n}} \in I_{0}^{n}
$$

with $a_{i_{j}} \in I_{0}$.
Then there exists $f_{i_{j}} \in I$ such that $a_{i_{j}} \in c_{f_{i_{j}}}$. Therefore $f_{i_{1}}(x) f_{i_{2}}(x) \ldots$ $\ldots f_{i_{n}}(x) g(x)=0$, then $a_{i_{1}} a_{i_{2}} \ldots a_{i_{n}} b_{i}=0$, since R is Armendariz ring. Thus $g(x) \in r_{R[x]}\left(I_{0}^{n}[x]\right)=e R[x]$.

The proposition is proved.
We know that, if R be quasi-Baer ring then $R[x]$ is quasi-Baer [3] (Theorem 1.2). By Proposition 1 we showed that, if R is an Armendariz generalized right quasi-Baer ring then $R[x]$ is a generalized right quasi-Baer ring. Also in Proposition 2 we will prove the converse of Proposition 1 is correct without Armendariz property. But in fact, we do not know of any example of generalized quasi-Baer polynomial ring such that R is a generalized quasi-Baer but R is not Armendariz.

Question: Let R be a generalized right quasi-Baer ring. Is $R[x]$ generalized right quasi-Baer ring without Armendariz property?

Proposition 2. Let $R[x]$ be a generalized right quasi-Baer ring then R is a generalized right quasi-Baer ring.

Proof. Let $R[x]$ be generalized right quasi-Baer ring and I be a right ideal of R. Then there exists an idempotent $e(x) \in R[x]$ such that $r_{R[x]}\left(I^{n}[x]\right)=e(x) R[x]$
for some $n \in N$. Let e_{0} be constant term of $e(x)$ then $e_{0}^{2}=e_{0}$. Since $I^{n} e(x)=$ $=0$, we have $I^{n} e_{0}=0$ therefore $e_{0} \in r_{R}\left(I^{n}\right)$. Thus $e_{0} R \subseteq r_{R}\left(I^{n}\right)$.

Conversely, let $b \in r_{R}\left(I^{n}\right)$ then $b \in r_{R[x]}\left(I^{n}[x]\right) \cap R=e(x) R[x] \cap R$. Therefore we have $b=e(x) h(x)$ for some $h(x) \in R[x]$. Thus $b=e_{0} h_{0}$ where h_{0} is constant term of $h(x)$ so $b \in e_{0} R$. Hence $r_{R}\left(I^{n}\right)=e_{0} R$.

The proposition is proved.
Proposition 3. Let Δ be a multiplicatively closed subset of R consisting of central regular element. Then:
(1) If R is generalized right quasi-Baer ring then $\Delta^{-1} R$ is generalized right quasi-Baer ring.
(2) Let $\operatorname{Id}(R)=\operatorname{Id}\left(\Delta^{-1} R\right)$. If $\Delta^{-1} R$ is generalized right quasi-Baer then R is generalized right quasi-Baer ring.
(3) If $R[x]$ is generalized right quasi-Baer ring then $R\left[x, x^{-1}\right]$ is generalized right quasi-Baer ring.
(4) Let $\operatorname{Id}(R)=\operatorname{Id}\left(\left[x, x^{-1}\right]\right)$. If $R\left[x, x^{-1}\right]$ is generalized right quasi-Baer then R is generalized right quasi-Baer ring.

Proof. (1) Assume that R is a generalized right quasi-Baer ring. Let I be a right ideal of $\Delta^{-1} R$ and $I_{0}=\left\{a \in R \mid b^{-1} a \in I\right.$, for some $\left.b \in \Delta\right\}$. It is clear $I_{0} \neq$ $\neq \varnothing, I_{0} \neq R, I_{0} \triangleleft R$ and $\left(\Delta^{-1} I_{0}\right)^{n}=\Delta^{-1} I_{0}^{n}$.

We know $I \subseteq \Delta^{-1} I_{0}$. Now let $c^{-1} d \in \Delta^{-1} I_{0}$ such that $c \in \Delta, d \in I_{0}$. Thus there exists $k \in \Delta$ such that $k^{-1} d \in I$. Since $d \in I_{0}$, therefore $c^{-1} d=$ $=k^{-1} d c^{-1} k \in I$ hence $\Delta^{-1} I_{0} \subseteq I$.

Now we claim $\Delta^{-1} r_{R}\left(I_{0}\right)=r_{\Delta^{-1} R}\left(\Delta^{-1} I_{0}\right)$. Let $a^{-1} b \in \Delta^{-1} r_{R}\left(I_{0}\right)$ then $\left(c^{-1} d\right)\left(a^{-1} b\right)=0$ for all $c^{-1} d \in \Delta^{-1} I_{0}$, since $d b=0$. Thus $a^{-1} b \in r_{\Delta^{-1} R}\left(\Delta^{-1} I_{0}\right)$, therefore $\Delta^{-1} r_{R}\left(I_{0}\right) \subseteq r_{\Delta^{-1} R}\left(\Delta^{-1} I_{0}\right)$.

Conversely, let $a^{-1} b \in r_{\Delta^{-1} R}\left(\Delta^{-1} I_{0}\right)$ then $c^{-1} d\left(a^{-1} b\right)=0$, for all $c^{-1} d \in \Delta^{-1} I_{0}$. Thus $d b=0$ then $b \in r_{R}\left(I_{0}\right)$. Therefore $a^{-1} b \in \Delta^{-1} r_{R}\left(I_{0}\right)$.

By hypothesis, $r_{R}\left(I_{0}^{n}\right)=e R$ for some $e^{2}=e \in R$. Thus $I_{0}^{n} e=0$ and so $0=$ $=\Delta^{-1} I_{0}^{n} e=\left(\Delta^{-1} I_{0}\right)^{n}=I^{n} e$. Hence $e \Delta^{-1} R \subseteq r_{\Delta^{-1} R}\left(I^{n}\right)$. Let $a^{-1} b \in r_{\Delta^{-1} R}\left(I^{n}\right)$. Then $0=I^{n} a^{-1} b=\left(\Delta^{-1} I_{0}\right)^{n} a^{-1} b=\Delta^{-1} I_{0}^{n} a^{-1} b$ and so $b \in r_{R}\left(I_{0}^{n}\right)=e R$. Hence $a^{-1} b \in e \Delta^{-1} R$. Therefore $r_{\Delta^{-1} R}\left(I^{n}\right)=e \Delta^{-1} R$.
(2) Let $\Delta^{-1} R$ is generalized right quasi-Baer. We prove that R is generalized right quasi-Baer ring. Let I be a right ideal of R then $\Delta^{-1} I$ is right ideal of $\Delta^{-1} R$, thus there exists $e \in R$ such that $e^{2}=e$ and $r_{\Delta^{-1} R}\left(\left(\Delta^{-1} I\right)^{n}\right)=e\left(\Delta^{-1} R\right)$ for some $n \in N$. We prove $r_{R}\left(I^{n}\right)=e R$. We show that $r_{R}\left(I^{n}\right) \subseteq e R$. Let $b \in r_{R}\left(I^{n}\right)$ then
$I^{n} b=0$, thus $0=\Delta^{-1} I^{n} b=\left(\Delta^{-1} I\right)^{n} b$ and so $b \in r_{\Delta^{-1} R}\left(\left(\Delta^{-1} I\right)^{n}\right)=e\left(\Delta^{-1} R\right)$. It follows that $b=e b \in e R$. The other side is similarly.
(3), (4) Let $\Delta=\left\{1, x, x^{2}, \ldots\right\}$, then $\Delta^{-1} R[x]=R\left[x, x^{-1}\right]$, and so proof is complete.

Recall that for a ring R with a ring endomorphism $\alpha: R \rightarrow R$ and α-derivation $\delta: R \rightarrow R$, the Ore extension $R[x, \alpha, \delta]$ of R is the ring obtained by giving the polynomial ring over R with the new multiplication $x r=\alpha(r) x+\delta(r)$ for all $r \in R$. If $\delta=0$, we write $R[x, \alpha]$ for $R[x, \alpha, 0]$ and is called an Ore extension of endomorphism type (also called a skew polynomial ring). In [7] Kerempa defined the rigid rings. Let α be an endomorphism of R, α is called a rigid endomorphism if $r \alpha(r)=$ $=0$ implies $r=0$ for $r \in R$. A ring R is called to be α-rigid if there exist a rigid endomorphism α of R. If R be a α-rigid then $\operatorname{Id}(R)=\operatorname{Id}(R[x, \alpha, \delta])=$ $=\operatorname{Id}(R[x, \alpha])$ (Corollary 7). Let R be a rigid ring. It is clear that generalized quasiBaer and quasi-Baer conditions are equivalent. Then if R be α-rigid ring, R is generalized quasi-Baer if and only if $R[x, \alpha]$ is generalized quasi-Baer ring [8] (Corollary 12). In Example 1 we show that rigid condition is not superfluous.

Example 1. Let Z be the ring of integers and consider the ring $Z \oplus Z$ with the usual addition and multiplication. Then the subring $R=\{(a, b) \in Z \oplus Z \mid a \equiv$ $\equiv b(\bmod 2)\}$ of $Z \oplus Z$ is commutative reduced ring. Note that only idempotents of R are (0,0) and (1, 1). Hence from [5] (Example 2.1) R is not generalized right quasi-Baer. Now let $\alpha: R \rightarrow R$ be defined by $\alpha((a, b))=(b, a)$ Then α is an automorphism of R. Hence $R[x, \alpha]$ is quasi-Baer from [8] (Example 9).

1. Kaplansky I. Rings of operators. - New York: Benjamin, 1965.
2. Clark W. E. Twisted matrix units semigroup algebras // Duke Math. J. - 1967. - 34. - P. 417-424.
3. Birkenmeier G. F., Kim J. Y., Park J. K. Polynomial extensions of Baer and quasi-Baer rings // J. Pure and Appl. Algebra. - 2001. - 159. - P. 25-42.
4. Birkenmeier G. F., Kim J. Y., Park J. K. Principally quasi-Baer rings // Communs Algebra. - 2001. - 29, № 2. - P. 639 - 660 .
5. Mousssavi A., Javadi H. S., Hashemi E. Generalized quasi-Baer rings // Communs Algebra. 2005. - 33. - P. 2115-2129.
6. Armendariz E. P. A note on extensions of Baer and p.p.-rings // J. Austral. Math. Soc. - 1974. 18. - P. 470-473.
7. Kerempa J. Some examples of reduced rings // Algebra Colloq. - 1996. - 3, № 4. - P. 289 - 300.
8. Hong C. Y., Kim N. K., Kwak T. K. Ore extensions of Baer and p.p.-rings // J. Pure and Appl. Algebra. - 2000. - 151. - P. 215-226.
