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A GENERALIZATION OF LIFTING MODULES
V3ATAJIbHEHHHSA NIIAOMHHAX MOIYJIIB

We introduce the notion of Z-lifting modules as a proper generalization of the notion of lifting modules and give some
properties of this class of modules. It is shown that if M is an Z-lifting direct projective module, then S/V is regular and
V = JacS, where S is the ring of all R-endomorphisms of M and V = {¢ € S | Im¢ < M}. Moreover, we prove
that if M is a projective Z-lifting module, then M is a direct sum of cyclic modules. The connections between Z-lifting
modules and dual Rickart modules are given.

BBeneHo MOHATTSA Z-miAHOMHUX MOIYIIB SIK MPUPOIHE y3araJbHEHHS MiZHOMHHX MOAyniB. HaBeneHo meski BIacTHBOCTI
pOro Kiacy Momynis. Ilokazano, mio skuo M — npsiMuii NpoeKTUBHUE Momyib Z-migiiomy, To S/V € perymspHoo i
V = JacS, ne S — xinbue Bcix R-eanomopdismis M, a V = {¢ € S | Im¢ < M}. Binpur toro, H0BEAEHO, IO
sKkio M — npoekTuBHUN Z-1iJHOMHHI MOIY/b, TO M € IPSIMOIO CYyMOIO LIUKJIIYHAX MOMYIiB. BCTaHOBIEHO 3B’S3KH MiXK
7-miJHOMHAMH MOMYJISIMH Ta JlyaJIbHUMH MoxyisiMu Pikapra.

1. Introduction. Throughout this paper, R will denote an arbitrary associative ring with identity, M
a unitary right R-module and S = End (M) the ring of all R-endomorphisms of M. We will use the
notation N < M to indicate that N is small in M (i.e., L+N # M VL < M). The notation N <% M
denotes that IV is a direct summand of M. N < M means that NV is a fully invariant submodule of
M (ie., p(N) C N V¢ € Endr(M)). We denote Dg(N) ={p € S |Im¢p C N} for N C M.

We recall that L is a cosmall submodule of K in M (denoted by L <> K in M) if K/L < M/L.
Recall that a submodule L of M is called coclosed if L has no proper cosmall submodule. It is clear
that every direct summand of M is a coclosed submodule of M. A module M is called /ifting if for
every A < M, there exists a direct summand B of M such that B C A and A/B < M/B [2].

A number of results concerning lifting modules have appeared in the literature in recent years and
many generalizations of the concept of lifting modules have been introduced and studied by several
authors (see [7-9, 17]). Motivated by the definition of a lifting module, we say that a module M
is Z-lifting if for every ¢ € Endgr(M), there exists a direct summand N of M such that N C Im ¢
and Im ¢/N < M/N. It is obvious that every lifting module is Z-lifting. In this note, we study
some properties of Z-lifting modules. In Section 2, as we state in the abstract, we show that if M is
a direct projective module, then M is Z-lifting if and only if Sg is f-lifting and V = JacS, where
V={¢€S|Im¢p < M} (Corollary 2.3). Moreover, we prove that if M is a projective Z-lifting
module, then M is a direct sum of cyclic modules (Theorem 2.6).

The notion of right Rickart rings (or right p.p. rings) initially appeared in Maeda [14, p. 510]
and was further studied by a number of authors [1, 3—-5]. A ring R is called right Rickart if the
right annihilator of any single element of R is generated by an idempotent as a right ideal. The
notion of Rickart modules was introduced by Rizvi and Roman in [16], and was studied recently (see
[10, 12, 13]). A module M is said to be Rickart if, for every ¢ € Endg (M), Ker ¢ <% M. Itis clear
that for M = Rp, the notion of a Rickart module coincides with that of a right Rickart ring. Lee,
Rizvi and Roman investigate the dual notion of Rickart modules in [11]. A module M is called dual
Rickart if for every ¢ € Endg(M), Im¢ <% M. It is easy to see that every dual Rickart module
is Z-lifting. In Section 3, we investigate the connection between dual Rickart modules and Z-lifting
modules. It is shown that M is dual Rickart if and only if M is Z-lifting and 7 -noncosingular
(Corollary 3.1). We prove that if R is a right V-ring, then an R-module M is dual Rickart if and
only if M is Z-lifting (Corollary 3.2).
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2. Z-lifting modules.

Definition 2.1. A module M is called Z-lifting if for every ¢ € Endgr(M), there exists a direct
summand N of M such that N C Im ¢ and Im ¢/N < M/N.

It is clear that every lifting module is Z-lifting, while the converse in not true (the Z-module Q
is Z-lifting but it is not lifting).

Proposition 2.1. The following conditions are equivalent for a module M :

(1) M is a Z-lifting module.

(2) For every ¢ € S there exists a decomposition M = My & Ms such that M1 C Im ¢ and
My NIm ¢ < Ms.

(3) For every ¢ € S, Im ¢ can be written as Im ¢ = N @ S such that N <® M and S < M.

Proof. 1t follows from [2] (22.1).

Definition 2.2. 4 module M is called a N-I-lifting module if for every homomorphism ¢ :
M — N, there exists L <% N such that L C Im ¢ and Tm ¢/L < N/L.

In view of the above definition, a right module M is Z-lifting if and only if M is M-Z-lifting.

Theorem 2.1. Let M and N be right R-modules. Then M is N-I-lifting if and only if for all
direct summands M' <® M and coclosed submodule N' of N, M' is N'-I-lifting.

Proof. Let M' = eM for some ¢?> = e € Endp(M), and N’ be a coclosed submodule
of N. Assume that ¢y € Hom(M’, N'). Since veM = M’ C N’ C N and M is N-Z-lifting,
there exists a decomposition N = N; & Ny such that N C Ime and No N Im e < Na. As
Ny CImye C N, N' = Ny & (NN N'). By [2] (3.7(3)), N2oN N'NIm1 < N'. Again by [2]
(3.7(3)), N’ N Ny NIm1p < Ny N N'. Therefore M’ is N'-Z-lifting. The converse is clear.

Corollary 2.1. The following conditions are equivalent for a module M :

(1) M is an I-lifting module.

(2) For any coclosed submodule N of M, every direct summand L of M is N-Z-lifting.

Corollary 2.2. Every direct summand of an L-lifting module is L-lifting.

An R-module M is called T-noncosingular if, V¢ € Endr(M), Im¢ < M implies that
¢ =0[18].

Proposition 2.2. The following conditions are equivalent for a T-noncosingular module M :

(1) M is an indecomposable L-lifting module.

(2) Every nonzero endomorphism ¢ € S is an epimorphism.

Proof. Let M be an indecomposable Z-lifting module. Assume that 0 # ¢ € Endg(M). Then
there exists a decomposition M = M; & My with M} C Im ¢ and Ms NIm ¢ < Ms. Since M is
indecomposable, M7 = 0 or My} = M. If M; = 0, then Im ¢ < M. By T- noncosingularity, ¢ = 0,
a contradiction. Thus M; = M and so ¢ is an epimorphism. The converse follows easily.

Recall that a module M is said to be Hopfian if every epimorphism ¢ € Endg(M) is an
isomorphism.

Proposition 2.3. Let M be a T -noncosingular Noetherian Z-lifting module. Then there exists a
decomposition M = M, & ... & M, where M; is an indecomposable Noetherian L-lifting module
with Endg(M;) a division ring.

Proof. Since M is Noetherian, it has a finite decomposition with indecomposable Noetherian
direct summands. By Corollary 2.2, every direct summand is Z-lifting. By Proposition 2.2 and since
every Noetherian module is Hopfian, each indecomposable direct summand has a division ring.

An R-module M is called direct projective if, for every direct summand X of M, every epi-
morphism M — X splits. A module M is called finitely lifting, or f-lifting for short, if for every
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finitely generated submodule A of M, there exists a direct summand B of M such that B C A and
A/B < M/B.

Proposition 2.4. Let M be an I-lifting direct projective module. Then:

(1) S/V is regular and V = JacS, where V.= {¢p € S |Im¢ < M}.

(2) Sg is f-lifting.

Proof. (1) Let f be an arbitrary element of S. As M is Z-lifting, there exists a decomposition
M = M; @ My with My C Im f and Im f N Mo < M. Let 7 denote the projection My & My — M;.
Since wf: M — M is an epimorphism and M is direct projective, Kernf <% M. So M =
= Kernmf & U for some U C M. The restriction of wf to U is an isomorphism onto M; and the
inverse isomorphism of M to U can be extended to an element g € S. Note that grf = 1. Now
(f = Fgrf)M = (f — fgrf)(Kernf @U) = f(Kernf) < f(M)N M. Hence (f — fgn )M < M
and so f — fgmf € V. Therefore S/V is a regular ring. It follows that JacS C V. Now we want to
show that V C JacS. Let f € V. Since M = fM + (1 — f)M and Im f < M, (1 — f)M = M.
As M is direct projective, 1 — f is right invertible. But V is an ideal, so V C JacS.

(2) Let f € S and fS be an arbitrary cyclic right ideal of S. Consider the proof of (1). Set
h = fgm € S. Itis clear that h? = h and hS C fS. Since (f — fgrf)M < M, (f — fgnf) €V =
= JacS. So (1 — h)fS <« S. By [2] (22.7), Sg is f-lifting.

Corollary 2.3. Let M be a direct projective module. Then M is ZL-lifting if and only if Sg is
f-lifting and V = JacS.

Proof- Let M be an Z-lifting direct projective module. Then, by Proposition 2.4, Sg is f-
lifting and V = JacS. Conversely, let Sg be f-lifting and V = JacS. Assume that f € S. Then
there exists an idempotent e € S such that eS C fS and (1 —e)fS C JacS = V. Therefore
M=eM+(1—e)M,eM C fM and (1 —e)fM < M.

Let K and N be submodules of M. K is called a supplement of N in M if M = K + N and K
is minimal with respect to this property, or equivalently, M = K + N and K " N < K. A module
M is called supplemented if every submodule of M has a supplement in M. We say a module M
is Z-supplemented if for every f € S, Im f has a supplement in M. Recall that a submodule U of
the R-module M has ample supplements in M if, for every V. C M with M = U + V, there is a
supplement V'’ of U with V' C V. We call M amply T-supplemented if, for every f € S, Im f has
ample supplements in M.

Proposition 2.5. Let M be an amply T-supplemented R-module. Then every direct summand of
M is amply T-supplemented.

Proof. Let V be a direct summand of M. Then M = V @ U for some U C M. Assume
that f € Endg(V) and V = Im f + X. Thus M = Im f + X + U. Note that Im f = Im¢f,
where ¢ is the injection map from V to M and 7 is the projection map from M onto V. Since
M is amply Z-supplemented, there exists a supplement Y of U + X with Y C Im f. We get
XNYCU+X)NY<«YandM =Y+ X+U. Thus X +Y =V and X NY <« Y. Therefore
V' is amply Z-supplemented.

Proposition 2.6. Let M be an amply I-supplemented module and let for every supplement
submodule X of M we have X <% M, then M is I-lifting.

Proof. Let f € S and V be a supplement of Im f in M and X a supplement of V' in M with
X C Im f. By hypothesis, M = X & X’ for some X’ < M. Since Im f NV <« M, this X' is a
supplement of X + (Im f N V) = Im f (see [19] (41.1)). Hence Im f N X’ <« X"'.

Proposition 2.7. Let M be an I-lifting module and N be a submodule of M invariant under all
maps € Endg(M) with Im f a direct summand of M. Then N is a fully invariant submodule of M.
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Proof. Let f € Endgr(M). Since M is Z-lifting, M = M; & My where M; C Im f and
MyNnIm f < My. We have Im f = M; @& (MaNIm f). Consider the projection maps may, : M — M
and mp, 0 M — M of M onto M; and Mo, respectively. Note that Im(was, f) = M is a direct
summand of M. By hypothesis, was, f(IV) C N. As Im(mps, f) < M, we have Im(1ps—7ar, f) = M.
By assumption, (157 — 7ar, f)(IN) € N. So mar, f(IN) € N. Therefore f(N) C N.

An element a of the ring R is called (von Neumann) regular if axa = a for some x € R.

Corollary 2.4. Suppose that M is a direct projective Z-lifting module and N C M. Then the
following are equivalent:

(1) N is invariant under all (von Neumann) regular elements of Endr(M);

(2) N is invariant under all f € Endr(M) with Im f a direct summand of M;

(3) N is a fully invariant submodule of M.

Proof: (1) = (2). Let f: M — M be any homomorphism with Im f a direct summand of M.
Since M is direct projective, Ker f is also direct summand. By [19] (37.7), f is a (von Neumann)
regular element of Endgr(M).

(2) = (3). By Proposition 2.7, N is a fully invariant submodule of M.

3) = (1). It is clear.

A module M is called a N-Z-supplemented module if for every homomorphism ¢: M — N,
there exists L < N such that Im¢ + L = N and Im¢ N L < L. It is clear that a right module M is
Z-supplemented if and only if M is M-Z-supplemented.

Theorem 2.2. Let My, Ms and N be modules. If N is M;-Z-supplemented for i = 1,2, then N
is My & Ms-T-supplemented. The converse is true if M1 @ Mo is a duo module.

Proof. Suppose N is M;-Z-supplemented for i« = 1,2. We will prove that N is My & My-Z-
supplemented. Let ¢ = (m1¢, m2¢) be any homomorphism from N to M; & My, where 7; is the
projection map from M; & My to M; for ¢+ = 1,2. Since N is M;-Z-supplemented, there exists
a submodule K; of M; such that m;¢ N + K; = M; and m;¢ N N K; <« K;, fort+ = 1,2. Let
K = K{® Ks. Then M1 & Ms = mi¢N +mo¢N + K1 + Ko = ¢N + K. Since ¢ N N (Kl +K2) <
< (pN+K1)NKo+ (¢ N+ Ko)NKq, we have pNN(K1+K2) < (N +Mi)NKa+(pN+Ma)NK;.
As ¢N + My = ma¢p N @ M7 and ¢ N + My = w1 N @ My, thus pN N K C (mep N N Ka) + (71N N
N Kj). Since mi¢oN N K; < K; fori = 1,2, pNNK < K; + Ky = K. Hence N is My ® Ms-
Z-supplemented. Conversely, let N be My & My-Z-supplemented. Let ¢ be a homomorphism from
N to M;. Then Imwtp = Im ¢, where ¢ is the canonical inclusion from M; to My & Ms. Since
N is My ® Ms-Z-supplemented, there exists K C Mj; @& Mo, such that My & My = Im¢ + K
and Im¢p N K < K. Thus M} = Im¢ + (KN M;) and Im¢p N KNM; = ImoN K < K.
As My & M is a duo module, K < My @& M5 and so K N M is a direct summand of K. Hence
Im¢ N KN M < (KN M). Therefore N is M;-Z-supplemented.

Corollary 2.5. Suppose M = My & My and M is M;-T-supplemented module for i = 1,2.
Then:

(1) M is T-supplemented and for every f € S, Im f has a supplement of the form K1 + Ko with
K1 g M1 and K2 Q MQ.

(2) Let f € S and Im f be a supplement submodule of M. Then K1 and Im f + Ko are mutual
supplements in M and the same is true for Ko and Im f + K.

Proof. (1) By using the proof of Theorem 2.2.

(2) Let f € S and Im f be a supplement submodule of M. Consider the proof of Theorem 2.2.
Then, by [2] (20.2(c)), since Im f N (K7 + K3) < M we have Im f N (K; + K2) < Im f.
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Hence K1 N (Imf + K2) - [Imf N (Kl + Kg)] + [K2 N (Imf + Kl)] < Im f + Ks. Similarly,
Kon(Imf+K;) <Im f+ Kj.

A module K is said to be generalized M-projective if, for any epimorphism ¢g: M — X and
morphism f: K — X, there exist decompositions K = K1 @ Ko, M = My & Ms, a morphism h; :
K1 — M, and an epimorphism hy: My — Ko, such that hyg = f|x, and haf = g|u,-

Lemma 2.1. Assume that M is a module, N <® M and N = K ® L. Let M be a L-I-lifting
module. If K is generalized L-projective, then for every homomorphism f: M — N such that
N =Im f+ L and m(Im f) = Im f NIm 7 where 7 is an arbitrary projection map of N, there exist
XE ImfinN,K' CKand L' C L suchthat N =X &K' & L.

Proof. Let f: M — N be a homomorphism such that N = Im f + L. Consider the homomor-
phism 7y, f : M — L, where 7y, is the projection map from N onto L. Note that Im7 f =Im fN L
by hypothesis. Since M is L-Z-lifting, there exists a decomposition L = L; & Lo such that
LoCLnImfand (LNImf)NL; =LiNImf < L. Thusweget N =Imf+L=1Im f+ [
and L1NImf < L1. As Lo CIm f, Imf = Lo ® ((L1 @ K) NIm f). Set U = L; & K. Since
N =Imf+ L, U = (UnNImf)+ L. By [2] (443 and 4.42), there exists a decomposition
U=ToK oL =T+LwithT CUNImf, K CKand L) C L;. AsT C UNIm f and
Imf=Lo+(UNIm f), we have Lo T C Im f. Since N = (Ls+T)+ Ly and Im f N L; < N,
we have, by [2] (3.2(6)), that (Lo ®T) <> Im fin N. As N = Ly @ U.

Lemma 2.1 is proved.

Theorem 2.3. Suppose M = My & My and M is M;-I-lifting for 1 = 1,2. Let My and My be
relatively generalized projective modules. Then for every f € S, Im f is a direct summand of M if
Im f is a coclosed submodule of M and w(Im f) = Im f N Im 7, where 7 is any projection map of
M. Moreover, M = My & My is an exchange decomposition.

Proof. Let f € S such that Im f is a coclosed submodule of M. Since M is M;-Z-supplemented,
M is a Z-supplemented module and Im f has a supplement M{ & M), where M| C M; and
M/ C My (see Corollary 2.5). As M is Z-supplemented, the coclosed images of M are precisely
the supplement images and Im f + M] and Im f + M/ are supplement submodules of M (see
Corollary 2.5 again). Since M is My-Z-lifting, M; is generalized Ma-projective and Im f + M7 is
a supplement, it follows that there exists a decomposition M = (Im f + M7) & M{ & M}, with
M{" € My and MJ C M, (see Lemma 2.1). Set U = M; +Im f and N = M{ @& MJ. Then
M=U&NandM/Im f=U/Im f@®(N+Im f)/Im f. Hence (N +Im f)/Im f is a supplement
of M/Im f. By [2] (20.5(2)), N + Im f is a supplement of M because Im f is a supplement of
M. Since N +Im f = Im f & M{ & M}, by [2] (20.5(1)), Im f & MY is a supplement of M
and M = Im f + My + M{ + M C (Im f & M) + M. By using Lemma 2.1 again, we have
M = (Im feMy)dM;®M;, with My C M; and My C M. Hence M = Im f&M{®(MyoMY),
where M C M; and M3 & MY C M. Therefore Im f <% M and since any direct summand of M
is a coclosed epimorphic image of M, M = M; & M> is an exchange decomposition.

Theorem 2.4. Let My and Ms be modules and M = My & Moy such that M is M;-I-lifting for
i = 1,2 and let for every f € S we have m(Im f) = Im f N Im «, where 7 is any projection map of
M. If any direct summand of M is generalized May-projective and vice versa, then M is Z-lifting.

Proof. Let f € S. Since M is M;-Z-lifting, there exists a decomposition M = M@ M/ such that
M{ CIm fNM; =Im(may, f) and Im(mpy, f) N M < MY (7 will denote the obvious projections).
Set K1 = Im f N (M{ & Ma). Note that Im(W(M{/@MQ)f) = K. Since M is My-Z-lifting, there
exists a decomposition My = M5 @ MY such that MS C 7pr, (K) and MY Nrpg, (K1) < MY Setting
Ky = (M{'&M3)NIm f, we get that 7y, (K2) < M fori = 1,2, M = mpy (Im f) + M + Ms =
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=Im f+ M{'+Ms = Im f+ M{' + 7, (K1) + My = Im f+ M{' + Ky + My = Im f + (M} © Mj)
and Ky C myp(K2) @ myy (K2) < MY @ Mj. By hypothesis and [2] (4.43), direct summands of
M and M, are relatively generalized projective and by Theorem 2.1, direct summands of M and M;
are relatively Z-lifting for i = 1,2. Set N = M{ & M. Then N = MY + [(Im f + M{") N N]. Define
L = (Im f+M{)NN. Then N = L+ M} . Consider the endomorphism g: M;® M{ & M,d> MY —
— M| & M7 & M) & My defined by g(m/ +m/ +mb+mf) = f(m) +m] +m,+mf)+m]. Note
that Img = Im f + M{ and L = Im wyg. By using the Lemma 2.1, we have N = U @ ]\A/I/{ & K/Iz,
where U <3 L in N, M! C M! and MJ C MY. By [2] (3.2(1)), we get N = U + M. Let
My :ﬁ{@]\z and MY :W@]’WZ. Now, we get M = M{’@Mé@U@]\Z@MZ. Next,
set T'=U @& M{ @& M. Then T is a direct summand of M. Now M} C 7y, (K1) € Im f + M.
Then M = N @ M{ & M) and M{ & M; C (Im f + M{') imply Im f + M{ = L & M’ & M.
Since U <% L in N and N is a direct summand of M, we have T <3 (Im f + M) in M. Also
T=M+(ImfNT)and M =T+ MJ. Hence M = ImfNT)+ M{ + M). AsIm f =
=(ImfNT)+ImfNn(M/®MJ)=ImfNT)+ K and Ko < M, by [2] (3.2(6)), we get
that Tm f N T) <3 Tm f in M. Now, set A = M} @ M, and B = M} @ M. Then A and B are
relatively generalized projective and M is A-Z-lifting. Let ¢ = magp|r. Then ¢p: T'— A @ B is an
isomorphism and A® B = ¢(T) = ¢(Im fNT)+ M{ = ¢(Im f NT) + A = ¢(npf(M)) + A.
Using the Lemma 2.1 again, then there exists a direct summand 7" C T such that 7/ <% (Im f N T)
in M. Since (Im f N T) £ Im f in M, we have T" <3 Im f in M by [2] (3.2(2)). Therefore M is
an Z-lifting module.

Corollary 2.6. Let M be M;-T-lifting fori € {1,2,...,n} and put M = M1 &...® M,. Assume
that M and T are relatively generalized projective for any direct summand M, of M; and any direct
summand T of @j+; M, for any 1 < i < n and let for every f € S we have n(Im f) = Im f NIm,
where T is any projection map of M. Then M is Z-lifting.

Proof. 1t follows from Theorem 2.4 by induction on n.

Corollary 2.7. Let M be M;-I-lifting for i € {1,2,...,n} and set M = My © ... & M,
Suppose that M; and M; are relatively projective for each 1 < i,j < n, i # j and let for every
f €S we have n(Im f) = Im f N Im «, where w is any projection map of M. Then M is Z-lifting.

Theorem 2.5. Let M = @} | M; be a module and M; < M for all i € {1,...,n}. Then M is
an Z-lifting module if and only if M; is Z-lifting for all i € {1,...,n}.

Proof- The necessity follows from Theorem 2.1. Conversely, let M; be an Z-lifting module for
alli € {1,...,n}. Let ¢ = (¢ij); je(1,..ny € Endr(M) be arbitrary, where ¢;; € Hom (M, M;).
Since M; < M for all i € {1,...,n}, Im¢ = & Im¢;;. As M; is Z-lifting, there exists a
direct summand X; of M; and a submodule Y; of M; with X; C Im¢;;, Im¢;; = X; +Y; and
Y; < M;. Set X = @} X;, then X is a direct summand of M. Moreover, Im ¢ = @©7_; Im ¢;; =
=3 X+ 3 Yiand &Y, < @, M; = M. Therefore M is Z-lifting,

1= 1=
Proposition 2.8. Let M be an Z-lifting projective module. Then Rad(M) < M.

Proof. Let N C M be any submodule with N +Rad(M) = M. Then Rad(M) - M — M/K
is epimorphism and there exists f: M — Rad(M) with M = Im f + N. Since M is Z-lifting,
there exists a decomposition M = M; & My with My C Im f and Ms N Im f <« Ms. Note
that M; C Rad(M). By [19] (22.3), M; = 0 and so Im f < M. Hence N = M. Therefore
Rad(M) < M.

Theorem 2.6. Let M be a projective L-lifting module. Then M is a direct sum of cyclic modules.
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Proof. 1f M is a projective module, then, by Kaplansky’s Theorem [19] (8.10), M is a direct sum
of countably generated module. Hence it is enough to prove the assertion for countably generated
modules. We prove by induction. First, consider M = ZieN Rm;, m; € M. Since the canonical
map f: &y Rm; — M splits, there exists g: M — GyRm; with g f = idjs. Consider the morphisms
gi = mig € Endg(M), where ; is the canonical projection. Then M = ZN gi(M). Since M is
T-lifting, there exists a decomposition M = P; & @1 with P CImg; and K1 =Img; N Q1 < M.
So Img; = P, + K;. Note that P; is cyclic because P; is a direct summand of Rm. Suppose, for
k € N, we have found cyclic modules P; C M with M = (Zzgk B) @ @y and Zigk Img; =
= (®i<kPi) + Ky, Ki, < M. Since M is Z-lifting, by Theorem 2.1, M is Q-Z-lifting. Hence there
exists a decomposition Q; = P11 & Qkr1, With Py C Imggy1, Imgryr1 = Pryq + K,’c+1, and

K, =Imgr1 NQry1 < M. Thus we have M = (©i<p11F;) ® Qry1 and Zi<k+l Img;, =

= (@Di<k+1P) + Kiy1 with K1 = K,’C+1 + K} < M. By Proposition 2.8, Rad(M) < M and so
ZiEN K; C Rad(M) < M. Therefore M = ZZEN Img; = (BienPi) + ZZEN K; = ®ien P

A ring R is called f~semiperfect if, every finitely generated R-module has a projective cover. A
module M is said to be principally lifting if, for every cyclic submodule N of M, there exists a
decomposition M = M; & My such that M; C N and N N My < M.

The following theorem gives a characterization of f-semiperfect rings.

Theorem 2.7. The following are equivalent for a ring R:

(1) R is f~semiperfect,

(2) Rp is finitely supplemented,

(3) every cyclic right ideal has a supplement in Rp;

(4) Rp is I-supplemented,

(5) Rp is principally lifting;

(6) Rp is Z-lifting.

Proof. (1) = (2) & (3) & (5) by [19] (42.11).

(3) = (4) and (5) = (6) are clear because Im ¢ is cyclic for every ¢ € Endg(RRg).

(4) = (3). Assume that [ = aR is any cyclic right ideal of R. Consider the R-homomorphism ¢ :
Rr — Rp defined by ¢(r) = ar, where r € R. Then Im ¢ = I. By (4), Im ¢ = I has a supplement
in R R

(6) = (5). It is similar to the proof of (4) = (3).

3. Relation between dual Rickart modules and Z-lifting modules. It is clear that if M is a
dual Rickart module, then M is Z-lifting, while the converse is not true (the Z-module Z4 is Z-lifting
but it is not dual Rickart).

Lemma 3.1. Let M be a module. Then M is a dual Rickart module if and only if for every
g € S, there exists an idempotent e € S such that Dg(Im g) = eS.

Proof. Let M be a dual Rickart module and g € S. Then there exists an idempotent e € S
such that Img = eM. Hence e € Dg(Img) and so eS C Dg(Img). Now if f € Dg(Img), then
Im f C Img = eM. Moreover, since S = ¢S @ (1 — )5, we have f = es; + (1 — e)s2 for some
s1,82 € S. Since Im f C eM, f = esy. Therefore f € eS and so eS = Dg(Img). Conversely,
let for every g € S, there exists an idempotent e € S such that Dg(Im g) = eS. Then for g € S,
eM C Img. On the other hand, we have g € Dg(Img) = eS. Thus there exists s € S such that
g = eS. It follows that Im g C eM. Therefore Im g = e M.

Lemma 3.2. An T-noncosingular Z-lifting module M is a dual Rickart module.
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Proof. Let g € S. Since M is Z-lifting, Img = eM @ B, where > = e € S and B < M.
Hence eS = Dg(eM) C Dg(Img). Now, let ¢ € Dg(Img). We want to show that ¢ € eS. Note
that M = eM @ (1—e)M andImgN(1—e)M = (eM@®B)N(1—e)M C (1—e)B. Since B < M,
we have (1 —e)B < M. ThusImgnN(1—e)M < M. As S =eS® (1 —e)S, there exists s; and s2
in S such that ¢ = es; + (1 — €)sg. Thus Im(1 —e)se < ImgnN (1 —e)M < M. By hypothesis, we
have (1 —e)s2 = 0 and so ¢ = es; € eS. Thus Dg(Im g) = eS. By Lemma 3.1, M is dual Rickart.

The following results exhibits the connection between dual Rickart modules and Z-lifting modules.

Corollary 3.1. Let M be a module. Then M is dual Rickart if and only if M is I-lifting and
T -noncosingular.

Proposition 3.1. Let M be a module with Rad(M) = 0. Then M is Z-lifting if and only if M
is dual Rickart.

Proof. Let M be an Z-lifting module and let ¢ € S. Then there exists a direct summand X of
M and a submodule Y of M such that In¢p = X @Y and Y < M. Hence Y C Rad(M) = 0 and
so Im ¢ is a direct summand of M, this means that M is dual Rickart. The converse is clear.

Recall that a ring R is said to be a right V-ring if every simple right R-module is injective.

Corollary 3.2. Let R be a right V-ring and M be an R-module. Then M is dual Rickart if and
only if M is I-lifting.

Proof. By [19] (23.1), Rad(M) = 0 for right R-module M. Thus, by Proposition 3.1, every
Z-lifting R-module is dual Rickart.

Corollary 3.3. Let R be a commutative regular ring and M be an R-module. Then M is T-lifting
if and only if M is dual Rickart.

Proof. 1t is clear by Corollary 3.2 and [19] (23.5(2)).
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