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A NOTE ON SOLYMOSI’S SUM-PRODUCT ESTIMATE
FOR ORDERED FIELDS*

ПРО ОЦIНКУ ШОЛIМОШI ТИПУ СУМА-ДОБУТОК
ДЛЯ ВПОРЯДКОВАНИХ ПОЛIВ

It is proved that Solymosi’s sum-product estimate max{|A + A|, |A · A|} � |A|4/3/(log |A|)1/3 holds for any finite set
A in an ordered field F.

Доведено, що оцiнка Шолiмошi типу сума-добуток max{|A + A|, |A · A|} � |A|4/3/(log |A|)1/3 справедлива для
будь-якої скiнченної множини A у впорядкованому полi F.

For a set A of a given ring (R,+, ·), define the sum-set and the product-set to be

A+A = {a+ a′ : a, a′ ∈ A},

A ·A = {a · a′ : a, a′ ∈ A}.

When R is a field and 0 /∈ A, we also apply similar definition for A/A.
Since Z and R do not have zero divisors and finite subrings, it is expected that the sum-set and

the product-set can not be relatively small simultaneously. Erdős and Szemerédi [2] conjectured that
for any finite set A ⊆ Z, the estimate (here� and� are Vinogradov notation)

max
{
|A+A|, |A ·A|

}
� |A|2−ε

holds, where ε→ 0 when |A| → ∞. And they proved that

max
{
|A+A|, |A ·A|

}
� |A|1+δ

for some δ > 0. Later Nathanson [6] showed that δ ≥ 1/31 and Ford [3] improved this bound to
δ ≥ 1/15. For finite sets of reals (also correct for finite sets of integers), bounds were given by Elekes
[1] (δ ≥ 1/4), Solymosi [7] (δ ≥ 3/11− ε) and Solymosi [8] (δ ≥ 1/3− ε). The proofs in [1] and
[8] are quite beautiful. Geometry is taken use of in these two papers.

For sum-product estimates for the finite fields and the complex numbers, we refer the reader to
[4, 9, 10].

In this note, Solymosi’s bound is extended to finite sets of any ordered rings. The geometry proof
is transferred to a type of elementary linear algebra.

Definition. An ordered field (or ring) is a field (or ring, respectively) (F,+, ·) with a total order
≤ such that for all a, b and c in F, the following two properties hold:

(i) if a ≤ b, then a+ c ≤ b+ c,
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(ii) if 0 ≤ a and 0 ≤ b, then 0 ≤ ab.
Examples of ordered fields include Q, R, the field of fractions of R[x] with R an ordered ring,

computable numbers, superreal numbers, hyperreal numbers and so on. One can found details on
Wikipedia.

Theorem. Supose F is an ordered field. Let A ⊆ F be any finite set with sufficiently large
cardinality. Then

|A+A|2|A ·A| � |A|4

log |A|
.

From the theorem one can deduce the follow sum-product estimate.
Corollary. Supose F is an ordered field. Let A ⊆ F be any finite set with sufficiently large

cardinality. Then

max{|A+A|, |A ·A|} � |A|4/3

(log |A|)1/3
.

For a nontrivial ordered ring R, one can find a nonempty set P ⊆ R such that
(i) if a, b ∈ P, then a+ b ∈ P and ab ∈ P,
(ii) for all r ∈ R, exactly one of the following conditions holds:

r ∈ P, r = 0, −r ∈ P.

P is called the positive elements of R and we say r is negative if −r ∈ P. This can be viewed as
an alternative definition of an ordered ring. Now we fix an A ⊆ F and begin to prove the theorem.
Without loss of generality, we suppose that all the elements in A are positive. (Either the set of
positive elements of A or the set of negative ones has cardinality no less than (|A| − 1)/2� |A| and
we can substitute it for original A.) Put Sλ = {(a, b) ∈ A × A : a/b = λ} and rA/A(λ) = |Sλ|. A
trivial bound is rA/A(λ) ≤ |A|. Define the energy by

E×(A) = #{(a, b, c, d) ∈ A4 : ab = cd},

E÷(A) = #{(a, b, c, d) ∈ A4 : a/b = c/d}, 0 /∈ A.

It can be asserted that E×(A) = E÷(A). The energy inequality shows that

|A|4

|A ·A|
≤ E×(A) = E÷(A) =

∑
λ∈A/A

r2A/A(λ).

Let t = dlog |A|/ log 2e, where the notation dxe denote the smallest integer larger than or equal
to x. For 0 ≤ j ≤ t, denote

Mj := {λ ∈ A/A : 2j ≤ rA/A(λ) < 2j+1}, mj := |Mj |.

It follows that

E÷(A) =
t∑

j=0

∑
λ∈Mj

r2A/A(λ) ≤
t∑

j=0

22j+2mj .
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Hence

|A|4

|A ·A| · log |A|
≤ sup

0≤j≤t
{22j+2mj} := 22J+2mJ . (1)

If mJ = 1, then trivial bound gives

22J+2mJ � 22t � |A|2.

By (1), one has |A · A| · log |A| ≥ |A|2. Combining the trivial bound |A+ A|2 ≥ |A|2, the theorem
follows. Now we suppose that mJ ≥ 2. For µ1, µ2 ∈MJ , we construct a map πµ1,µ2 : Sµ1 × Sµ2 →
→ (A+A)× (A+A):

πµ1,µ2(a1, b1, a2, b2) = (a1 + a2, b1 + b2).

Lemma 1. When µ1 6= µ2, the map πµ1,µ2 is an injection.

Proof. Suppose there exist (a1, b1, a2, b2) and (a′1, b
′
1, a
′
2, b
′
2) in Sµ1 × Sµ2 such that

πµ1,µ2(a1, b1, a2, b2) = πµ1,µ2(a
′
1, b
′
1, a
′
2, b
′
2).

Then we have the following linear equations:

a1 + a2 = a′1 + a′2, (2)

b1 + b2 = b′1 + b′2, (3)

a1/b1 = a′1/b
′
1 = µ1, (4)

a2/b2 = a′2/b
′
2 = µ2. (5)

Substituting (4) and (5) into (2), we obtain

µ1b1 + µ2b2 = µ1b
′
1 + µ2b

′
2.

Then subtract µ1 times (3), we get

(µ2 − µ1)b2 = (µ2 − µ1)b′2.

Since µ1 6= µ2, it appears that b2 = b′2. Now from (2), (4) and (5), we conclude that

(a1, b1, a2, b2) = (a′1, b
′
1, a
′
2, b
′
2).

Lemma 1 is proved.

Lemma 2. If µ1 < µ2 ≤ µ3 < µ4, then

πµ1,µ2(Sµ1 × Sµ2) ∩ πµ3,µ4(Sµ3 × Sµ4) = ∅.
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Proof. Suppose on the contrary, there exist (a1, b1, a2, b2) ∈ Sµ1 × Sµ2 and (a′1, b
′
1, a
′
2, b
′
2) ∈

∈ Sµ3 × Sµ4 such that

πµ1,µ2(a1, b1, a2, b2) = πµ3,µ4(a
′
1, b
′
1, a
′
2, b
′
2).

Then we have the following linear equations:

a1 + a2 = a′1 + a′2, (6)

b1 + b2 = b′1 + b′2, (7)

a1/b1 = µ1, (8)

a2/b2 = µ2, (9)

a′1/b
′
1 = µ3, (10)

a′2/b
′
2 = µ4. (11)

Substituting (8) – (11) into (6), we obtain

µ1b1 + µ2b2 = µ3b
′
1 + µ4b

′
2.

Combining (7), yields

(µ2 − µ1)b2 = (µ3 − µ1)b′1 + (µ4 − µ1)b′2.

Since µ1 < µ2 ≤ µ3 < µ4, one deduces that

(µ2 − µ1)b2 > (µ2 − µ1)b′1 + (µ2 − µ1)b′2,

i.e., b2 > b′1 + b′2, which is a contradiction to (7) and the fact b1 > 0.

Lemma 2 is proved.

Recall mJ ≥ 2. Write MJ := {λ1, λ2, . . . , λmJ}, where λ1 < λ2 . . . < λmJ . Then

mJ−1⋃
i=1

πλi,λi+1

(
Sλi × Sλi+1

)
⊆ (A+A)× (A+A).

In view of Lemmas 1 and 2, one has∣∣πλi,λi+1
(Sλi × Sλi+1

)
∣∣ = |Sλi | · |Sλi+1

| ≥ 22J

for 1 ≤ i ≤ mJ − 1 and

πλi,λi+1

(
Sλi × Sλi+1

)
∩ πλj ,λj+1

(
Sλj × Sλj+1

)
= ∅

for 1 ≤ i < j ≤ mJ − 1. As a result,
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|A+A|2 ≥

∣∣∣∣∣
mJ−1⋃
i=1

πλi,λh+i

(
Sλi × Sλh+i

)∣∣∣∣∣ =
=

mJ−1∑
i=1

∣∣∣πλi,λmJ−1

(
Sλi × Sλh+i

)∣∣∣ = (mJ − 1) · 22J � mJ · 22J . (12)

Combining (1) and (12), gives

|A+A|2|A ·A| � |A|4

log |A|
.

Remark. For the sum-division estimate, the log |A|-term in the denominator can be eliminated,
using the method from Li [5].
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