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ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS
AND APPLICATIONS

AHI3OTPOITHI JU®EPEHIIAJIBHI OITIEPATOPH 3 TAPAMETPAMH
TA iX 3BACTOCYBAHHS

In this paper, we study the boundary-value problems for parameter-dependent anisotropic differential-operator equations
with variable coefficients. Several conditions for the uniform separability and Fredholmness in Banach-valued L,-spaces
are given. Sharp uniform estimates for the resolvent are established. They imply that the indicated operator is uniformly
positive. Moreover, it is also the generator of an analytic semigroup. As an application, the maximal regularity properties
of the parameter-dependent abstract parabolic problem and infinite systems of parabolic equations are derived in mixed
Ly-spaces.

BuBuaroTbcs TpaHNYHI 33/1a41 A7 aHI30TPOIHUX A epeHIIiaTbHO-0TepaTOPHUX PiBHAHD 31 3MiHHIMHU KoeQillieHTaMH, 110
3ajexarh Bil mapameTpis. HaBeneHo Kijbka yMOB PiBHOMIpHOT cenapadebHOCTI Ta GpearoabMOBOCTI B OaHAXOBO3HAYHUX
Ly-npoctopax. BcTaHoBIeHO TOYHI PIBHOMIpHI OIIIHKH JUIS PE30JIbBEHTH, 3 SIKMX BHUIUIMBA€, IO BKAa3aHHWI OIEpaTop
€ PIBHOMIPHO JOAATHUM. bijibIl TOro, BiH € TaKO)X TEHEPATOPOM JEsAKOl aHaNiTHYHOI HamiBrpymu. K 3acToCyBaHH,
BCTAQHOBJICHO BJIACTHBOCTI MAaKCHMAJBHOI PEryIspHOCTI abcTpakTHOI mapaboiivHOl 3a1adi, M0 3aJeXUTh Bi MapaMerpa,
Ta HECKIHUCHHHUX CHUCTEM PIiBHSIHB MapabolivHOro THIy B Lp-TIpocTOpax.

1. Introduction and notations. It is well known that many classes of PDEs, pseudo-DEs and
integro-DEs can be expressed as differential-operator equations (DOEs). DOEs have been studied
extensively in the literature (see [1-5, 8—11, 13-24, 26-29] and the references therein).

The main aim of the present paper is to discuss the uniform separability properties of BVPs for
the following higher order parameter dependent anisotropic DOE:

n

l n
Zekak (x) g;: +A(x)u+ Z H ezk/lkAa (x) D*u = f (x), (1)

k
k=1 L la:l|<1 k=1

where ¢ are small positive parameters, ay (x) are complex valued continuous functions, A (x) and
A, (z) are operator valued functions, defined for = € 2, where 2 is some region in R™ with the
operators A(z) and A, (x), acting in a Banach space E, u (z) and f (x) respectively are a £ valued
unknown and date functions. The above DOE is a generalized form of the elliptic equation with
parameters. In fact, the special case [, = 2m, kK = 1,...,n, the equation (1) reduces to elliptic
equation. Note, the principal part of the corresponding differential operator is non self-adjoint.
Nevertheless, the sharp uniform coercive estimate for the resolvent and Fredholmness are established.
Note that, maximal regularity properties for higher order anisotropic DOEs were studied, e.g., in
[3, 5, 21, 23]. Unlike to these, in the present paper, the nonlocal BVP for parameter depended
undegenerate anisotropic equation is studied and uniform separability properties is derived. In
application, the maximal regularity properties of mixed problem for the following parabolic equation:

n I
?;+;5kak(a:)g:v;:+A(x)u:f(t,x) (2)
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984 V. B. SHAKHMUROV

are obtained. Particularly, the problem (2) occur in atmospheric dispersion of pollutants and evolution
models for phytoremediation of metals from soils. Really, if £ = R3 A(z) is a 3-dimensional
functional matrices, ie., A(x) = [a;j (x)], u = (u1,u2,u3), 3,5 = 1,2,3, then we get the well
posedeness of the IVP for the system of parabolic PDE with parameters

ou; " 1 I 82lkui 3 B
5 +) 0 (—1)* epan (l’)erZaij (x)uj = fi (t, )

k=1 j=

which arises in phytoremediation process.
Let L, (€2; E) denote the space of all strongly measurable E-valued functions that are defined
on the region {2 C R" with the norm

1/p
Hfrpzufuw;@:(/ Hf(x)H%dw> Cl<p<co

The Banach space E is called a UM D-space if the Hilbert operator (Hf)(zx) =

= limg_m/ 1) dy is bounded in L, (R, E), p € (1,00) (see., e.g., [6]). UM D-spaces
le—y|>e T — Y
include e.g. L,-, [,-spaces and Lorentz spaces Ly,, p, ¢ € (1,00).

Let C be the set of complex numbers and

Se={MAeC larg\| < p}U{0}, 0< <.

Let Ey and Es be two Banach spaces. B (E1, E5) denotes the space of bounded linear operators
from F, into Fy endowed with the usual uniform operator topology. For E; = F» it denotes by
B (E).Now (E1,E2)pp, 0 <8 < 1,1 < p < oo will denote interpolation spaces defined by the K
method [25] (§ 1.3.1).

A linear operator A is said to be p-positive in a Banach space E with bound M > 0 if D (A) is
dense on E and

ca+ AI)*HL(E) < M1+ A"

forall A € Sy, ¢ € [0, m), I is an identity operator in E. Sometimes A + A\ will be written as
A + X and denoted by Aj. It is known [25] (§ 1.15.1) that there exists fractional powers A? of the
positive operator A. Let E (A”) denote the space D (A’) endowed with graph norm

p\ 1/p
ull oy = (el + 4% "), 1<p <00, —co<o<oo

Aset W C B (Eh, E») is called R-bounded (see [6, 8, 26]) if there is a constant C' > 0 such that
for all 71,75, ..., T, € W and UL Uy -y Um € Ei,meN

1 m 1 m
/Z?‘j(y)Tjw dy<C/ Y o)) dy,
0 o [lJ=t

J=1 joR B

where {r;} is an arbitrary sequence of independent symmetric {—1, 1}-valued random variables on
[0,1].
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The smallest C' for which the above estimate holds is called a R-bound of the collection W and
is denoted by R (W) .

Let S (R™; E) denote the Schwartz class, i.e., the space of all E-valued rapidly decreasing smooth
functions on R" equipped with its usual topology generated by seminorms. Let {2 be a domain in
R C(Q;E) and C™) (Q; E) will denote the spaces of E-valued bounded uniformly strongly
continuous and m-times continuously differentiable functions on 2, respectively. Let I’ denotes the
Fourier transformation. A function ¥ € C' (R"; B (E)) is called a Fourier multiplier in L, (R"; E)
if the map u — ®u = F~1V (¢) Fu, u € S (R" E) is well defined and extends to a bounded linear
operator in L, (R"; F)) . The set of all multipliers in L, (R™; E') will denoted by M} (E).

Let

U, = {B: (ﬂl,ﬂg,...,ﬂn) e N"*: Bk € {0,1}}
Definition 1. A4 Banach space E is said to be a space satisfying a multiplier condition if, for any
U € C™ (R™; B (E)) the R-boundedness of the set {gﬁpfxp (€): €€ R\ {0},B ¢ Uni
that W is a Fourier multiplier in L, (R"; E) , i.e., V € M} (E) for any p € (1,00) .
Let U;, € M} (E) be a multiplier function dependent of the parameter h € Q. The uniform R-
boundedness of the set {£°DPW, (¢€) : £ € R™\ {0},B8 € Uy}, ie.,

implies

sup R ({€7D7w, (€)1 € € R\ {0}, B Uy }) < K

heQ

implies that U, is a uniform collection of Fourier multipliers.

Remark 1. Note that, if F is UM D-space then e.g., by virtue of [8] (Theorem 3.25) it satisfies
the multiplier condition.

Definition 2. The p-positive operator A is said to be R-positive in a Banach space E if the set
{A (A+¢el)t:ce S¢§ is R-bounded.

An operator function A () is said to be ¢-positive in E uniformly in z if domain D (A (z)) of
the A (z) is independent of z, D (A (z)) is dense in E and H(A (x) + )\I)_l‘
ANE Sy pel0,m).

The p-positive operator A (x), x € G is said to be uniformly R-positive in a Banach space E if
there exists ¢ € [0, 7) such that the set

{A(m) (A)+el) ' ce S@}

‘< M
— I0r an
=110 4

is uniformly R-bounded, i.e.,

supR([A(x) (A(x) +§I)_1} e Ss@) < M.

zeG
Let 0o (E1, E2) denote the space of all compact operators from Fy to Fy. For Ey = Fy = E it is
denoted by 0o (E) .
Let D (Q2; E') denote the class of all E-valued infinite differentiable functions on domain 2 with
compact supports. For £ = C it denotes by D ().
Let @ = (a1, 2,...,q,) is a n-tuples of positive integer, D* = D" DS5? ... D™ and |a| =

>
= Q.
k=1 k
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986 V. B. SHAKHMUROV

Definition 3. Let f € L, (Q; E). The function (D*f): Q — E is called to be generalized
derivative of f on Q if the following equality:

/ Df () p () dx = (~1)1° / f (2) D (x) da
Q Q

holds for all ¢ € D ().

Let Fy and F be two Banach spaces and Fj is continuously and densely embedded into £ and
L= (l1,l2,...,0n).

We let WIZ, (Q; Ey, E) denote the space of all functions u € Ly, (€2; E) possessing generalized

ol
derivatives iju = 7% Such that iju € L, (Q; E) with the norm

1
x,”
n
_ = : D < 00.
[l .z, = 1l @:m) + ; H RO L g S
Let e = (e1,€2,...,n) . Consider the following parameterized norm:
n
_ Uk
ol ) = Nl qenmy + Do [ D], <o

k=1

If Gx =GxRy,p=(p,p1), Lp (G1; E) will be denote the space of all p-summable E-valued
functions with mixed norm (see, e.g., [7] for £ = C), i.e., the space of all measurable F-valued
functions f defined on G for which

p1/p 1/p1

e = | [ | [Ireola] | <o

G \ Ry

Analogously, WIZ) (G+; F) denotes the E-valued anisotropic Sobolev space with corresponding mixed
norm. Let

Wy (Gy; Eo, E) = Wy, (G4 E) N Ly (G5 Ey)

endowed with norm

< 00.
LP(G-HE)

n
!
||uHWFl)(G+;EO,E) = HUHLP(G+;E0) + Z HDkk“
k=1

2. Background. The embedding theorems in vector valued spaces play a key role in the theory
of DOEs. For estimating lower order derivatives we use following embedding theorems from [24].

Theorem A;. Let oo = (a1, 2, ...,ay) and DY = D' D3? ... D3 and suppose the following
conditions are satisfied:

(1) E is a Banach space satisfying the multiplier condition;

(2) A is an R-positive operator in E;
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ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 987

B)a = (aq,a2,...,a,) and | = (ly,12,...,1,) are n-tuples of nonnegative integer such that
K:Z: 1% <L,0<u<l—kK,1<p<oo,0<h < hg, hg is a fixed positive number and €y,
=1 g

are small positive parameters;

(4) Q C R™ is a region such that there exists a bounded linear extension operator from
WL (QE(A),E) 1o WL (R"; E(A),E).

Then the embedding DaWII, (QE(A),E) C L, (% E (A'"F"1)) is continuous and for all
u e W) (9 E(A), E) the following uniform estimate holds:

n

ag/l o R
L 10wl o pansay < B Il @z + A0l @) -
k=1

Remark 2. 1If Q) C R" is a region satisfying the strong [-horn condition (see [7], § 7), £ = R,
A = I, then for p € (1,00) there exists a bounded linear extension operator from Wll, Q) =
= W} (9 R,R) to W) (R") = W.(R";R,R).

Theorem As. Suppose all conditions of Theorem A1 are satisfied for 0 < p < 1 — k. Moreover,
let Q) be a bounded region and A~' € o+, (E). Then the embedding

DYW, (2 E (A),E) C L, (O E (A1)

is compact.
Theorem Ag. Suppose all conditions of Theorem A, satisfied. Let 0 < p < 1 — k. Then the
embedding

DQWII) (Q, FE (A) ,E) C Lp (Q, (E (A) ’E)n,p>

is continuous and there exists a positive constant C,, such that for all u € Wzﬁ (G E(A),E) the
uniform estimate holds

n o l o —(1—
[T 1D ully, (eea.m), ) < Cn [h“ lullwy .z + B ul @ | -
k=1

3. Statement of the problem. Consider the nonlocal BVP for the following parameter dependent
anisotropic DOE with variable coefficients:

> erak (z) Djfu (@) + [A(z) + Nu(z) + Y Hez’“/lkAa () D%u(z) = f (z), (3)
k=1

locl|<1 k=1
> ept [angiDju (Gro) + BrjiDyu (Go)] =0, j=1,2,...,0, k=12,...,n, (4
i=0
where
1/ 1 -
Oik=— 1|1+ — ,a:(al,ag,...,an), l:(ll,lg,...,ln), ’Oz:l|: %,
Ik p —
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988 V. B. SHAKHMUROV
G={zx=(r1,22,...,2n), 0 <mp <br}, Gro=(z1,22,..., 21,0, Tps1,.-,Tn),
Gy = (T1,%2, - o, Th—1, by Thg1, - - -, Tn), My € {0,1,..., 1 — 1},

z (k) = (21,22, .., Tk—1,Tht1y---,Tn), Gr= H 0,b5), Jj,k=1,2,...,n,
i#k

Qkjis Brji are complex numbers, A is a complex and e, are small positive parameters; ay, are complex-
valued functions on G, A (z) and A, (=) are linear operators in E for z € G. We assume that the
domain D (A (z)) of operator valued function A (x) is independent of x. So, it will be denote by
D (A). The same time, the graphical norm E (A (x)) will be denote by £ (A).

A function v € WIZ, (G;E(A),E,Ly;) = {ue Wé (G;E(A),E), Liju =0} satisfying (3)
a.e. on (G is said to be solution of the problem (3), (4).

We say the problem (3), (4) is Lj-separable, if for all f € L, (G;E) there exists a unique
solution u € W]ﬁ (G; E (A), E) of the problem (3), (4) and a positive constant C' depending only on
G, p,l, E, A such that the following uniform coercive estimate holds:

n
Z l
Ek HDkk“

k=1

‘LP(G;E) T HAUHLIJ(G;E) S C ”fHLp(G;E) .

By applying the trace theorem [25] (§ 1.8.2) we have the following theorem.

P+

1
Theorem Ay. Let m and j be integer numbers, 0 < j < m —1,0; = ——, 0 < e < 1,
m

wo € [0,b]. Then, for u € Wi (0,b; Eo, E) the transformations u — u) (xq) are bounded linear
Sfirom W (0, b; Eo, E) onto (Ey, E)9j7p and the following inequality holds:

gl

e T

+ |lu . .
(Eo,B)g; Lyp(0,b;E) I HLp (U:b,E0)>

Proof. By virtue of [25] (§ 1.8.2), for u € W (0,b; Ep, E) the following inequality holds:

[ ey, , <l

+ ||u i .
(Eo,E)g; Lp(0,b;E) I HLp (O,b,Eo))

Putting @ (z) = u (ux) for 0 < p < 1 and by applying the above estimate to @ (z) we have

i Hu(j) (xo)H(EO,E)QJ_J, =

1 1/p

b /P b
<clu{ [l ol az )+ | [t do
0 0

Substituting y = px, in view of p < 1 we get

i Huo‘) (930)” <C [Mm—l/p Hu<m>‘

-1
+ /pHUHLp (O,ubiEo) | =

(E07E)9j7p L,(0,ub;E)
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<C [Mm—l/p H“(m)‘

—1/p
Lp(0,b;E) T HUHLP (0,b5E0) | -

By chousing ™ = ¢ we obtain the assertion.

Let

G]mo = (;Ul,:vg,...,:L‘k_l,xg,xkﬂ,...,xn), xo € (O,bk), k=1,2,...,n,

Xk:Lp(GkvE)v Yk:ng(k) (GkaE(A)7E)7 l(k) :(ll)l27"‘7lk—17lk+17"'7ln)‘

By virtue of Theorem A4 we obtain the following theorem.
1+pj+1

plk ,
— 1,k =1,2,...,n. Then, for any u € Wé (G; Eo, E) the transformation w — Dju (Gra,) is
bounded linear from Wzﬂ (G; Eo, E) onto Fy; and the following uniform estimate holds:

Theorem As. Let I, and j be integer numbers, 0, = ko € [0,bk],7=0,1,...,lx—

0k

€k Diu (leo)

l
| <O |l + o || Diful

kj

l.
Dl ‘
Ly(G;E) +§c H it Ly(G;E)

Proof. 1t is clear that
W, (G; Eo, E) = W}k (0, bg; Yi, Xp,) -

Then by applying the Theorem Aj to the space W},k (0, by; Yy, Xj.) we obtain the assertion.
4. BVP for partial DOE with parameters. Let us first consider the BVP for the parameter-
dependent DOE with constant coefficients

(Le+ Nu=_eparDfu(z) + (A+ N u(z) = f (z), (5)
k=1
iju = Zé‘zm [OlkjiDi;u (Gko) + 5ka‘DligU (Gkb)] = fkjv (6)
1=0

where o, Gro and Gy are defined by (4), ar are complex numbers, A is a complex and e, are
small positive parameters and A is a linear operator in a Banach space E. Let wy1, w2, - . ., wg, be
the roots of the characteristic equations

apw*+1=0, k=1,2,...,n.

Let [Ugy,;] be [;-dimensional matrix, and 7, = |[vUgn;]| be determinant of matrix [vy,;] , where
l . l
Ukij = Qkjm; (—wii) ™, 1=1,2,...,dr,  Ukij = Brjm, Wi

t=dp+1,dg+2,...0, 0<dp<lg, 4,7=1,2,... 1.
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990 V. B. SHAKHMUROV

Condition 1. Assume the following conditions are satisfied:
(1) E is a Banach space satisfying the multiplier condition;
(2) A is an R-positive operator in E for ¢ € [0, 7);

(3) ax 7& 0, O‘k:jmj‘ + |Bkjmj| >0, 1k 7& 0 and

™ . ™ .
|a‘rgwkj_7r|§§_907 321727‘°'7dk7 |arng]|§§—g0, ]:dk+17)lk

forO<dp <lg, k=1,2,...,n.
Consider at first, the homogenous BVP

(Le + Nu =Y exarDjfu () + (A+ N u(z) = f(z), (7)
k=1
iju:0, j:1,2,...,lk. (8)

Let B (e) denote the operator in L, (G; E') generated by BVP (7), (8), i.e., the operator defined
as

D(B(e) = Wp(G; E(A), B, Lj) = {u € WG E (A), E),  Liju=0,

n
j:1,2,...,lk,k::1,2,...,n,B(z~:)u:Zekakchku—i—Au}.
k=1

In a similar way as [5] (Theorem 5.1), [18] and [24] we obtain the following theorem.

Theorem Ag. Let Condition 1 be satisfied. Then:

(a) problem (7), (8) for f € L, (G, E), A € Sy, ¢ € [0, m) and sufficiently large |\| has a unique
solution w that belongs to Wll) (G; E (A), E) and the following coercive uniform estimate holds:

n

Ik
—ifly i/l || i
ZZ AP Ek/ * HDk“HLp(G;E) + [ Aull ey < ML cim) s )
k=1 i=0

(b) the operator B (¢) is uniformly R-positive in L, (G; E) .
Now let

Fij = (Yi, Xi) 140my,

ply

).

From Theorems A5 and Ag we have the following theorem.

Theorem A7. Suppose Condition 1 is satisfied. Then for sufficiently large |\| with |arg A| < ¢
problem (5), (6) has a unique solution u € W]i (GiE(A),E) forall f € L, (G;E) and fi; € F;.
Moreover, the following uniform coercive estimate holds:

n lk
—1 i/l )
STS A ifls 1Dkull ey + 14Ul (i) <
k=1 =0
n g
<M (L, + D2 Maillg, |- (10)
k=1 j=1
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ANISOTROPIC DIFFERENTIAL OPERATORS WITH PARAMETERS AND APPLICATIONS 991

Consider the BVP (3), (4). Letwy () ,wi2 (), . .., wki, («) denote the roots of the characteristic
equations

ap () W*+1=0, k=1,2,...,n.

Let [Ugn;] be l-dimensional matrix, and 7y, () = |[Ukn;]| be determinant of matrix [vy;;] , where
. !
Ukij = Qkjm, (—wr)®, i=1,2,... dp,  Ukij = Brjm; Wi

t=dp+1,dp+2,...0, 0<dp<lg, 1,7=12,... 1.

Condition 2. Assume:
(1) E is a Banach space satisfying the multiplier condition;
(2) operator valued function A (x) is a uniformly R-positive operator in E for ¢ € [0, 7);

(3) ax 7& 0, ak:jmj‘ + ’Bkjmjl > 0, n (l') 7& 0 and
T , U .
|a’rgw/€j_ﬂ-|§§_$0> ]:1323---7dk3 |a’rgwkj|§§_§07 ]:dk+1aalka
forr e G,0<d <lg, k=1,2,...,n.
Remark 3. Let l;; = 2my, k = 1,2,...,n, and a; = (—1)""* by, (z) , where by are real-valued

positive functions and my, are natural numbers. Then Condition 2 is satisfied for ¢ € [0, 7).
Theorem 1. Suppose Condition 2 is satisfied and the following hold:
(1) ax (x) are continuous functions on G, a; (0,z (k)) = a; (b, z (k));
@) A@) A~ (2) € C (G B(E)) , A(0.2 (k) = A (b, (k)):
(3) Ag (x) AO—Il=1) () € Lo, (G; B(E)) for 0 < <1 — |a: ].
Then problem (3), (4) has a unique solution u € Wé (G;E(A),E)for f € L, (G;E)and A € S,

with large enough |\| . Moreover, the following coercive uniform estimate holds:

n I

—1 i/l 7
DSOS A itk HDkuHLP(G;E) +1Aull ) < C AL, - (11)
k=1 =0

Proof. First we will show the uniqueness of the solution. For this aim we use microlocal analysis.
Let Dy Do, ..., Dy be rectangular regions with sides parallel to coordinate planes covering G' and
let ¢1,¢2,...,¢nN be a corresponding partition of unity, i.e., ¢; € C§° (G), 0; = supp ¢; C D, and

N
> @i (x) =1, where G§° (G) denotes the space of all infinitely differentiable functions on G
]:

with compact support. Now for u € W]ﬁ (G;E(A),E, Ly;) , being solution of the equation (3) and
uj (x) = u(x)pj (x) we get

(Le+ N uj = epap (z) DiFuj () + (A(2) + Ny () = f (), Lpgu; =0, (12)
k=1
where
I—1

fi (@) = (@) gs () + 3 erax (2) Y O (D () (D () -
k=1 =0
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n
=N I ™¢s (@) Aa (@) Du(x), i=1,2,... 1 (13)
ol <1 k=1
Freezing the coefficients of the equation (12), extending u; (x) in outside of o; we obtain the BVP
n
D exar (z0;) Difus () + (A(wog) + Ny (2) = Fy (x) . w € Dy, (4
k=1
L]ﬂ'uj‘:(), iZl,Q,...,lk, k:1,2,...,n,

where
Fy = fj+ [A(z0;) — A@)]u; + Y ex lak (wo;) — ar, (2)] DyFuj (), (15)
k=1

and CF-are usual coefficients of binomial. By applying Theorem Ag for all u € Wzl) (Dj; E(A),E)
we obtain the following a priori estimate:

i/l Z l i
ZZWI e 1 Dis . i) + 1AL 0,5y < CIES 1y, (16)
k=1 :=0

for problems (14) defined on domains D; containing the boundary points. In a similar way we obtain
the same estimates for domains D; C G. By using the representation of F;, by Theorem A1, in view
of the continuity of coefficients, choosing diameters of supp ¢, sufficiently small we get that for all
small § there is a positive continuous function C (9) so that

”FjHLp(Dj;E) < Hf'SOjHLp(Dj;E) +0 HujHWAS(Dj;E(A)E) +C(9) ||uj||Lp(Dj;E) . (17)

Consequently, from (15)—(17) we have
n g I
1—i/ly, i ;
> T Dk i,y 14,5y < CNFlyyim) +
k=1 i=0

+0 HUJ'HWZ{}E(DJ-;E(A),E) + M (5) ||uj||Lp(D]-;E) . (18)
Choosing ¢ < 1 from (18) we obtain

n

I ] )
Z Z |)\|1—Z/lk 6;/lk HDIZCUJ‘HLP(D]-;E) + HAujHLp(Dj;E) <
k=1 1=0

< C 1oy + 141y, |- (19)

N

Then by using the equality u (z) = Z L U () and (19) we get (11). Let O, denote the operator
]:

generated by problem (3), (4) for A =0, i.e.,

D (O.) =W\ (G;E(A), E, L),
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Ou-Zskak Dl’“u—l—A Yu+ Z Hsz"‘A

|l <1 k=1

It is clear that

1
Jully @) = 37 10+ X = Outil i) <

1
< 137 10+ Nl 6, + 10zl 61m) | -

Hence, by using the definition of Wli (G; E(A), E) and applying Theorem A; we obtain

Jull, < w““ e+ Nl m + el @mm)] -

From the above estimate we have

n g

V—i/ly i/l || i
ZZ M é‘k/ g HDkuHLP(G;E) + [ Aull,cpy < C IO + N ull ) - (20)
k=1 i=0

The estimate (20) implies that uniqueness of solution of the problem (3), (4). It implies that the
operator O + A has a bounded inverse in its rank space. We need to show that this rank space
coincides with the space L, (G; E) , i.e., we have to show that for all f € L, (G; E) there is a unique
solution of the problem (3), (4). We consider the smooth functions g; = g; () with respect to a
partition of unity ¢; = ¢; (y) on the region G that equals 1 on supp ¢;, where supp g; C D; and
lgj ()| < 1. Let us construct for all j the functions u; that are defined on the regions ; = G N D;
and satisfying problem (3), (4). The problem (3), (4) can be expressed as

> era (z05) Difuj () + Ax (w05) uy () = gj{f + [A(zoj) — A(@)] uj+

k=1
+Z£k a (zo;) — ai (x Z Haak/lkA } x € Dj, (21)
k=1 la:l|<1 k=1

Lkiuj:O, j:1,2,...,N.
Consider operators O; (¢) = Oj (¢) + X in L, (Dy; E) that are generated by BVPs (14), i.e.,
D(0j(e)) =W (Dj; E(A),E, L), i=12,....0s, k=12,...n

Ojx (e U—Zskak mOJ)D uj (x) + [A(zo;) + N u; (), ze€Dj, j=1,...,N.
k=1

By virtue of Theorem Ag, the local operators O, have inverses Oj_/\1 for |arg A| < ¢ and for suffi-
ciently large || . Moreover, the operators Oj_A1 are bounded from L, (Dj; E) to Wé (D;j; E(A),E)
and for f € L, (D;; E) we have the following uniform estimate:
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n

Z >\|1 i/ly Z/lk

k=1 i=0

D;0;, f’

03|

<O,y - (22)

Ly(D;;E) H Lp(Dj;E)

Extending solutions u; of problems (21) zero on outside of supp ¢; and using the substitutions
u; = Oj_)\lvj we obtain the operator equations

UJZK])\UJ+g]fa ]:1727aN7 (23)

where K, = Kj) () are bounded linear operators in L, (D;; E') defined by

Kjx = Kj\ () = gj{f +[A (z0j) — A (2)] O3 +

—i—ZEk[ak(azgj)—ak( Dl’“OJ_A - Z Haz’“/l’“A DaO]A}

k=1 la: l]<1 k=1

In fact, due to smoothness of the coefficients of the expression K and in view of the estimate (22),
for sufficiently large |A| there is a sufficiently small 6 > 0 such that

|14 (@0)) = A @) 0531,

<0 ||v4
Lp(Dj;E) Fesllzypssm

> ek lax (wog) — ar N DEOR s | < Bl ey
k=1 P

Moreover, from the assumption (2) and by Theorem A; we obtain that for all § > 0 there is a constant
C (0) > 0 such that

Z H gak/lk

|a:l]<1 k=1

) DORw |, o S0l e + €O il

Hence, for |argA| < ¢ with sufficiently large |A| there is a v € (0,1) such that ||Ky| < 7.
Consequently, equations (23) for all j have a unique solution v; = [I — K ] g; f. Moreover,

<fllz, o,z

||Uj||Lp(Dj;E) = H [ = Kpl™ g’ p(Dj;E)

Thus, [I — K; ]! g; are bounded linear operators from L, (G; E) to L, (D;; E) . Thus, the functions

wj = Upf = 05 [T = K| g;f
are solutions of (21). Consider the following linear operator U = U, in L, (G; E) defined by

D(U)=W}(GiE(A),E,Ly;), j=12...0 k=12...n,

N
Uf:z%( ])‘f O])\ [I K ] g]f7 ]:17277N
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It is clear from the constructions Ujyand from the estimate (22) that the operators U, are bounded
linear from L, (G; E) to Wé (Dj; E(A), E) and for |arg A| < ¢ with sufficiently large |A| we have

n

Uk
1—i/1 A
E § ‘)" & €k HDkUj)\fHLp(Dj;E) + HAUj)\fHLP(Dj;E) <C Hf”Lp(G;E) : (24)
k=1 1i=0

Therefore, U is a bounded linear operator in L, (G; E) . By contraction of solution operators U

N
of local equations (21), acting O; + A to u = ZFI ©;Ujrf gives

N
= (0 + N (9Uppf) =

=1

N
= [ (Ujnf) + ®jaf] = Z pigif + Z inf=f+ Z @, f,

Jj=1

where ®;) = ®;, (¢) are bounded linear operators defined by

lp—1
(I)])\f:{ZEkakZCk Dz ])\f)Dk Z(,O]
k=1 =0

ap—1
+ 3 A Haak/’k > O (DL (U)) D?’“_iw}‘

Jol|<1 1=0

Indeed, from Theorem A1, the estimate (24) and from the expression ®;) we obtain that the operators
®, are bounded linear from L, (G; E) to L, (G; E) and for |arg A\| < ¢ with sufficiently large ||
there is an ¢ € (0, 1) such that [|®;,]| < é. Therefore, there exists a bounded linear invertible operator

N z
(1 + ZFI D, A) ,i.e., we infer for all f € L, (G; E) that the BVP (3), (4) has a unique solution

-1
u(@)=(0-+N)7"f = Zsoj O [I— K™ g; I+Z<1>JA f.

7j=1

Result 1. Theorem 1 implies that the resolvent (O, + )\)_1 satisfies the following anisotropic
type uniform sharp estimate

n

Z i ‘)\ll_i/lk Ez/lk

k=1 1=0

D (041

+ HA(Oa +>\)_1H <cC

HB(L,,(G,E)) B(Ly(G;E)) —

for larg \| < @ and o € [0, 7).
Theorem 2. Let all conditions of Theorem 1 hold and A~ € o, (E). Then the operator O is
Fredholm from WZZ) (G;E(A),E) into L, (G;E).
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Proof. Theorem 1 implies that the operator O.+\ for sufficiently large |A| has a bounded inverse
(O-4X\)"" from L, (G;E) to WIZ, (G;E(A),E), that is the operator Q.+ is Fredholm from
W;é (G;E(A),E) into L, (G;E). Then, by Theorem Ap and the perturbation theory of linear
operators we obtain that the operator O, is Fredholm from Wzl) (G;E(A),E)into L, (G; E).

Example 1. Now, let us consider a special case of (3), (4). Let E = C, Iy = 2 and [, = 4,
n=2 G=(0,1) x (0,1) and A = a(z,y) > 0, i.e., consider the problem

62u 84’& 1/2 1/4 82u
L.ou= —slalw + Egaga—gfl + bz’:‘l/ 82/ 920y +au=f(z,y),
mij 4 mi; '
> e [aﬁuﬁs’ (0.9) + > _ Bjiu) <1,y)] —0, j=12 (25)
i=0 i=0

maj mij
> 5 [aﬂué” (0,9) + > By (1, y)] —0, j=1,2,34,
=0 =0

where ¢ and €9 are positive parameters, a = ay (x,y) , k = 1,2 are real-valued functions on G and
1/ 1 1/, 1
O-i1:§ 7’+§ ) O-’iQZZ /L+;9 P m1]€{071}, m2j€{0)17253})

ag 7é 07 ‘akjmj‘ + ‘5k]mj‘ > 07 Nk 7é 07
a,ap >0, a,a1,a2€C(G), beLw(G), a(0,y)=a(l,y), a(x,0) =a(z1),

ai (0,y) = ax (1,y), ag(z,0)=ak(z,1), z,yeG, k=12

Result 2. Theorem 1 implies that for each f € L, (G) and sufficiently large a the problem (25)
has a unique solution u € W}(G) satisfying the uniform coercive estimate

L l|DZull ) + 22| P, o+ Bllyo) < O i

Example 2. Consider the following BVP for the system of anisotropic PDEs with variable
coefficients

n

Y (=)™ by () DY g () + (din () + A) i (2) = fru ()

k=1
Mj mE;
>~ anjick Dy (Gro) + Y Brjick Ditm (Gro) =0, k=1,2,...,n,
=0 i=0
7=12,...,2mg, m=12 ...y,
where by are positive continuous function on G, E = C¥, A is a complex, €, k = 1,2,...,n, are
positive parameters and d,, (z) >0, m =1,2,...,v.
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Result 3. Letby, dy, € C (G) by # 0, |agjm, |+ |Bkjmj‘ > 0, # 0and b; (Gro) = b; (Grp)
dm (Gro) = dm (Gip) - Then, Theorem 1 implies that for each f € L, (G;C") and for all A € S ()
with sufficiently large |A| the above problem has a unique solution u € Wé(G;(C”) satisfying the
uniform coercive estimate

n 2my

SO e g 1Dkl ey < C Il 60 -
k=1 i=0

5. Abstract Cauchy problem for parabolic equation with small parameters. Consider now
mixed BVP for the following parabolic equation with small parameters, i. e.,

n

%@L + D enax (2) Dfut+ A()u = f(t,2), (26)
k=1
M ‘ 4
> etk [angiDiu (t, Gro) + BrjiDyu (t,Grp)] =0, j=1,2,... 1, @7
=0

U(O,.T):O, Uki:1<i+1>7 te Ry, ze€d,
U P
where A (z) is an operator function in a Banach space FE for = € G, aj, are complex valued functions,
€ are small positive parameters, G, G and Gy, are domains defined in the problem (3), (4).
In this section, we obtain the existence and uniqueness of the maximal regular solution of problem
(26), (27) in mixed Lp-norms.
Let O, denote differential operator generated by (3), (4) for A = 0.

Theorem 3. Let all conditions of Theorem 1 are hold for A, = 0 and ¢ € (g, 77) . Then:

(a) the operator O. is an R-positive in L, (G; E) ;

(b) the operator O; is a generator of an analytic semigroup.

Proof. Really, by virtue of Theorem 1 we obtain that for f € L, (G; E) the BVP (3), (4) have a
unique solution expressing in the form

-1

N N
w(@) =0+ N fF = 0O T =Kpl g [T+D @ |
i=1 i=1

where O;) = O, (¢) + A are local operators generated by BVPs with constant coefficients of type
(7), 8) and K, = Ky (¢),®;» = ®;x (¢) are uniformly bounded operators defined in the proof of
the Theorem 1. By virtue of Theorem Ag operators O; (¢) are R-positive. Then by using the above
representation and by virtue of Kahane’s contraction principle, product and additional properties of
the collection of R-bounded operators (see, e.g., [8], Lemma 3.5, Proposition 3.4) we obtain the
assertions.

Theorem 4. Let all conditions of Theorem 3 hold. Then for f € Ly (Gy; E) problem (26), (27)

has a unique solution u € Wg’l (G4+; E(A), E) and the following uniform coercive estimate holds:
3u " 1
15,0l
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Proof. The problem (26), (27) can be expressed as the following Cauchy problem:
— +O0u(t)y=f(t), u(0)=0. (28)

The Theorem 3 implies that the operator O, is R-positive and also is a generator of an analytic
semigroup in I’ = L, (G; E). Then by virtue of [1] or [26] (Theorem 4.2) we obtain that for all
f € Ly, (Ry); F) problem (28) has a unique solution u € W}, ((0,1); D (O), F) and the following
uniform estimate holds:

Since Ly, (0,1; F) = Lp (G4; E), by Theoreml we have H05u||Lp1(R+;F) = D (O;). This
relation and the estimate (29) implies the assertion.

6. BVPs for quasielliptic PDE with small parameters. In this section, maximal regularity
properties of anisotropic PDE with small parameters are studied. Maximal regularity properties for
PDEs have been studied, e.g., in [8] for smooth domains and in [12] for nonsmooth domains. In this
section, consider the following BVP with small parameters:

du

dt

110l (rry < C My ryor 29)
Lo, (Ry.F) el Ly, (R4;F) Ly, (R4 :F)

Lu = Z erpa () Dfﬂ’“u (z,y) + Z aa (y) Dyu (z,y) +
k=1

jal<2m

+ Z Hezk/lkbg(x,y)Dgu(x,y)+)\u(x,y):f(x,y), relG, ye, (30)

|8:l|<1 k=1
mEj
Liju = ZEZ’“ lajiDju (Gro, y) + BrjiDju (G, y)] =0, y €€, (31
i=0
J=12,. ., Q;(k)EGka
Bju: Z b],B (y)Dgu($7y) |yeaQ: 0, ze€G, j=12,...,m, (32)
|B]<m;
.0 . .
where D; = —za—, Qkji, Brji are complex number, A is a complex and ¢ are small positive
Yj

parameter, y = (y1,...,y,) € 2 C R* and

1 1
aki:l<i+p>, G={x=(x1,22,..., %), 0 < <bp},
k

Gro = (z1,22, ..., Zp—1,0,Tpg1, .-, &), Grp = (T1,22,..., Th—1, bk, Tht1,. .., Tn),
mi; € {0, 1, e = 1}, |ogm, |+ |Brjm, | >0, G=1,2,... 1,

:L‘(k:):(xla:EQa-'ka—l)xk—&-la"'vl‘n)a Gk’:H(Ovbj)a jak:172a"'7n'
J#k
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Let wyj = wij (), 5 =1,2,..., 1k, k=1,2,...,n, denote the roots of the equations
ax (r) W +1 = 0.
Let . denote the operator generated by BVP (30)—(33). Let
F:B(LP<Q)>, Q=0xQ.

Theorem 5. Let the following conditions be satisfied:
(1) aa € C(Q) for each || = 2m and ao € [Loo + Ly, ] () for each o] = k < 2m with
l ~
T > p1,p1 € (1,00), 2m — k > - and bg € Lo (Q);
k
(2) bjg € C?™=™3 (9Q) for each j, 3, mj < 2m, p € (1,00);

— m
(3)f01"y€Q,€€R“,7763((,01),(,01E [0,5),|§|+|77|75016t

n+ Y aa(y)E* #£0;

|a|=2m
(4) for each yo € 0N the local BVPs in local coordinates corresponding to g
n+ > aa(yo) D™ (y) =0,

|ar|=2m

|B|=m;

has a unique solution 9 € Co (Ry) for all h = (hy,ha, ..., hy) € R™ and for £ € R*1 with
1€ +Inl #0;
(5) ap € C (G) y Ak (Z‘) 7& 0, ‘akjmj‘ + ‘ﬁk]m]‘ >0, Nk (l’) 7& 0 and

™ .
larg wy; — 7| < 5—90, i=1,2,...,dy,

T T
‘argwkj S 5 — @, 2 S |:07 5) )

j=dp+1,.. ), 0<dp<ly, k=12...,n, z€G.

Then:
(a) problem (30)—(33) has a unique solution u € Wf,’2m((~2) for f € L,(Q) and \ € S, with
large enough |\| . Moreover, the following coercive uniform estimate holds:

zn: lzk |)\‘17’i/lk 52/lk

k=1 1=0

Iy
Difu

@t mz;m Rt e L PRl F{PREE

(b) for X € S () and for sufficiently large | \| there exists a resolvent (Q. + \) ™' and

n I

> > AT,

k=1 1=0

(c) the problem (30)—(33) is Fredholm in LP(Q)for A=0.

pii@er ], +ac@ e, <o
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Proof. Let E = Ly, (). Then by [8] (Theorem 3.6), part (1) of Condition 2 is satisfied. Consider
the operator A which is defined by

D(A) =Wy (% Bju=0), Au= Y as(y)D’u(y).
|8 <2m

For x € () we also consider operators
Ay () u=bq (z,y) D*u(y), |a:l|<1.

The problem (30)—(33) can be rewritten as the form of (3), (4), where u (z) = u (z,.) and f (z) =
= f (z,.) are functions with values in E = L, (€2). From [8] (Theorem 8.2) problem

mu(y)+ D agy)Dluly) = f(y),

|81<2m

S bs) DPuly) =0, j=12,....m,

|B|<m;

has a unique solution for f € L, (2) and argn € S (¢1), |n| — oo. Moreover, the operator A is
R-positive in L, , i.e., all conditions of the Theorem 1 hold.

7. Cauchy problem for infinite systems of parabolic equation with small parameters.
Consider the infinity systems of BVP for the anisotropic PDE with parameters

n o
ou Oy,

o T 2 ekak (@) +) 0 (dj () + A) um+
k=1 L j=1
+ 3 S T e ™ dagm () DOuj = fm (t,2), m=1,2,...,00, (33)
la:l|<1 j=1 k=1
M mpj
Zs"'ﬂ [akﬂD w(t,Gro) + 3 BrjiDy u (t,Gi) | =0, j=1,2,... 1, (34)
=0

u(0,2) =0, z€G, te(0,00), z(k)eGk, j=1,2,..., 1,

where ay, d, dajm are complex valued functions, ¢ are small positive parameters and i, Skji
are complex numbers. Let

1 1
Thi = - <i+p>, G={x=(x1,22,..., %), 0 < <bp},
k
GkO == (x17x27"'7$k*1707xk+17"'7xn>7
Gkb: (xl,xg,...,xk_l,bk,xk+1,...,:cn), M € {O,l,...,lk—l},

:L‘(k:):(xla:EQa-'ka—l)xk—&-la"'vxn)a Gk’:H(Ovbj)a jak:172a"'7n
J#k
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D(z)={dn(©)}, dn>0, u={un}, du={dnun}t, m=12 ... 00,

o) 1/q
(D) = {uz we by, lull, oy = 1Dull, = [ 3 ldwunl?)  <oob,
m=1

Let V =V (¢) denote the operator in L, (G;1,) generated by problem (34), (35). Let

G =(0,00)x G, B=DB(L,(G;ly).

Theorem 6. Letp € (1,00), aj, € C (G) , a; (0,2 (k) = a; (b, x (k) , ag (z) # 0, |ogjm, | +
7r 7r .
+ ‘Bk’]mJ‘ > 07 Tk ($) ?é 0 and ‘argwkj _W‘ S 5 - ¥, ’argwkj’ S 5 - ¥, ] = 1727"'7lk7

pEPE {O,g),xGG,dmEC(@),daijLoo(G)suchthat

mgxsglpZdajm (x) djf(lf‘a: =) (x) <M forall € G and 0<p<1l—|a:l|.

Jj=1

Then for f(t,z) = {fm (t,2)}7° € Ly (G;ly), |largA| < ¢ and sufficiently large |\| the problem
(34), (35) has a unique solution u = {un, (t,2)}]° that belongs to the space Wé’l (G4, (D), 1)
and the following coercive uniform estimate holds:

du
ot

Proof. Let E = [,, A and A, (x) be infinite matrices, such that

n
+Y HDﬁju‘
1

+1Aull ) S Ol Gy -
LP(G+;lq) P LP( +7Q) LP( +7Q)

Lp(G4ilg)

A =[dnlm;], Aa(x)=[dajm (x)], m,j=1,2,..., 00.

It is clear that the operator A is R-positive in [,. The problem (34), (35) can be rewritten in the form
(26), (27). Then, from Theorem 4 we obtain that the assertion.
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