UDC 512.5 C. Nebiyev, A. Pancar (Ondokuz Mayis Univ., Turkey)

ON STRONGLY ⊕-SUPPLEMENTED MODULES ПРО СИЛЬНО ⊕-ДОПОВНЕНІ МОДУЛІ

In this work, strongly \oplus -supplemented and strongly cofinitely \oplus -supplemented modules are defined and some properties of strongly \oplus -supplemented and strongly cofinitely \oplus -supplemented modules are investigated. Let R be a ring. Then every R-module is strongly \oplus -supplemented if and only if R is perfect. Finite direct sum of \oplus -supplemented modules is \oplus -supplemented. But this is not true for strongly \oplus -supplemented modules. Any direct sum of cofinitely \oplus -supplemented modules is cofinitely \oplus -supplemented but this is not true for strongly cofinitely \oplus -supplemented modules. We also prove that a supplemented module is strongly \oplus -supplemented if and only if every supplemented module is above a direct summand.

Визначено сильно \oplus -доповнені та сильно кофінітно \oplus -доповнені модулі і досліджено деякі властивості сильно \oplus -доповнених та сильно кофінітно \oplus -доповнених модулів. Припустимо, що R — кільце. У цьому випадку кожен R-модуль є сильно \oplus -доповненим тоді і тільки тоді, коли R є досконалим. Скінченна пряма сума \oplus -доповнених модулів є \oplus -доповненою. Але це не справджується для сильно \oplus -доповнених модулів. Будь-яка пряма сума кофінітно \oplus -доповнених модулів є кофінітно \oplus -доповненою, але це не справджується для сильно \oplus -доповненим модулів. Доведено також, що доповнений модуль є сильно \oplus -доповнених модулів. Доведено також, що доповнений модуль є сильно \oplus -доповненим тоді і тільки тоді, коли кожен підмодуль-доповнения розташований над прямим доданком.

1. Introduction. In this work R will denote an arbitrary ring with unity and M will state for an unitary left R-module. Let M be an R-module. $N \leq M$ will mean N is a submodule of M. Let $K \leq M$. If L = M for every submodule L of M such that K + L = M then K is called a small submodule of M and written by $K \ll M$. Let $U \leq M$ and $V \leq M$. If V is minimal with respect to M = U + V then V is called a supplement of U in M. This equivalent to M = U + V and $U \cap V \ll V$. M is called supplemented if every submodule of M has a supplement in M. M is called finitely supplemented if every finitely generated submodule of M has a supplement in M. Mis called \oplus -supplemented if every submodule of M has a supplement that is a direct summand of M. M is called completely \oplus -supplemented if every direct summand of M is \oplus -supplemented. A submodule U of M is called **cofinite** if M/U is finitely generated. M is called **cofinitely supplemented** if every cofinite submodule of M has a supplement in M. We say a submodule U of the R-module M has **ample supplements** in M if for every $V \leq M$ with U + V = M, there exists a supplement V' of U with $V' \leq V$. If every submodule of M has ample supplements in M, then we call M is amply supplemented.

M is called a **projective cover** of N, if M is a projective module and there exists an epimorphism $f: M \to N$ such that Ke $f \ll M$. A module M is called **semiperfect** if every factor module of M has a projective cover. M is **called** π -**projective** module if there exists an endomorphism f of M such that $\text{Im } f \leq U$, $\text{Im}(1 - f) \leq V$ for every submodules U, V of M such that M = U + V.

Let $V \leq M$. V is called **lies above a direct summand** of M if there exist submodules M_1 and M_2 of M such that $M = M_1 \oplus M_2, M_1 \leq V, V \cap M_2 \ll M_2$.

In this work Jac R will denote intersection of all maximal left ideals of R.

Let M be an R-module. We consider the following conditions.

 (D_1) Every submodule of M lies above a direct summand of M.

 (D_3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M.

© C. NEBIYEV, A. PANCAR, 2011 662 **Lemma 1.1** (Modular law). Let M be an R-module, K, N and H are submodules of M and $H \leq N$. Then $N \cap (H + K) = H + N \cap K$ (see [1]).

Lemma 1.2. Let V be a supplement of U in M, K and T be submodules of V. Then T is a supplement of K in V if and only if T is a supplement of U + K in M.

Proof. (\Rightarrow) Let T be a supplement of K in V. Let U+K+L = M for a submodule $L \leq T$. In this case $K + L \leq V$ and because V is a supplement of U, K + L = V. Since $L \leq T$ and T is a supplement of K in V, L = T and then T is a supplement of U + K in M.

 (\Leftarrow) Let T be a supplement of U + K in M. This can be found that because of U + K + T = M and $K + T \leq V$, then we can have K + T = V. Since $K \cap T \leq \leq (U + K) \cap T \ll T$, $K \cap T \ll T$ and then T is a supplement of K in V.

2. Strongly ⊕-supplemented modules.

Definition 2.1. Let M be a supplemented module. If every supplement submodule of M is a direct summand of M then M is called a **strongly** \oplus -**supplemented module**. **Corollary 2.1.** Strongly \oplus -supplemented modules are \oplus -supplemented.

Lemma 2.1. Let M be supplemented and π -projective module. Then M is a strongly \oplus -supplemented module.

Proof. See [21].

Lemma 2.2. Let M be a strongly \oplus -supplemented module. Then every direct summand of M is strongly \oplus -supplemented.

Proof. Let L be a direct summand of M and $M = L \oplus T$. Let K be a supplement of U in L. By Lemma 1.2 K is a supplement of $U \oplus T$ in M. Because M is strongly \oplus -supplemented, K is a direct summand of M. Let $M = K \oplus P$. By Modular law $L = L \cap M = L \cap (K \oplus P) = K \oplus (L \cap P)$. Thus K is a direct summand of L and L is strongly \oplus -supplemented.

Corollary 2.2. Strongly \oplus -supplemented modules are completely \oplus -supplemented. **Theorem 2.1.** Every (D_1) module is strongly \oplus -supplemented. **Proof.** See [21].

Theorem 2.2. Let R be a Prüfer ring. Then every finitely generated torsion free supplemented R-module is strongly \oplus -supplemented.

Proof. Because R is a Prüfer ring, then every finitely generated torsion free R-module is projective (see [21]). Because every projective module is π -projective, by Lemma 2.1 every finitely generated torsion free supplemented R-module is strongly \oplus -supplemented.

Theorem 2.3. Let M_i , $1 \le i \le n$, are projective modules. Then $\bigoplus_{i=1}^n M_i$ is strongly \bigoplus -supplemented if and only if every M_i is strongly \bigoplus -supplemented.

Proof. (\Rightarrow) Because every M_i is direct summand of $\bigoplus_{i=1}^n M_i$, by Lemma 2.2 every M_i is strongly \oplus -supplemented.

 \leftarrow Because every M_i is supplemented by [21], $\bigoplus_{i=1}^n M_i$ is supplemented. Because every M_i is projective modules by [21], $\bigoplus_{i=1}^n M_i$ is projective module. Thus by Lemma 2.1 $\bigoplus_{i=1}^n M_i$ is strongly \oplus -supplemented.

Lemma 2.3. Let M be a projective module. Then the followings are equivalent.

(i) M is semiperfect.

(ii) M is supplemented.

(iii) M is \oplus -supplemented.

(iv) M is strongly \oplus -supplemented.

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 5

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iii) are proved in [10]. (ii) \Rightarrow (iv) Because M is a projective module, M is a π -projective module. Thus by Lemma 2.1 M is strongly \oplus -supplemented.

(iv) \Leftrightarrow (ii) Clear.

Theorem 2.4. For every ring R, the following statements are equivalent.

(i) *R* is semiperfect.

(ii) Every finitely generated free R-module is \oplus -supplemented.

(iii) Every finitely generated free R-module is strongly \oplus -supplemented.

(iv) $_{R}R$ is \oplus -supplemented.

(v) $_{R}R$ is strongly \oplus -supplemented.

(vi) For every left ideal A of R, there exists an idempotent $e \in R \setminus A$ such that $A \cap eR \subset \text{Jac } R$.

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iv) \Leftrightarrow (vi) are proved in [11].

Because $_{R}R$ is a projective module, (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v) are hold.

Theorem 2.5. A commutative ring R is semiperfect if and only if every π -projective cyclic R-module is strongly \oplus -supplemented.

Proof. (\Rightarrow) Let R be semiperfect. By [11] every cyclic R-module is \oplus -supplemented. Thus by Lemma 2.1 every π -projective cyclic R-module is strongly \oplus -supplemented.

(\Leftarrow) Since $_RR$ is cyclic and π -projective, by hypothesis $_RR$ is strongly \oplus -supplemented. By Lemma 2.3 $_RR$ is semiperfect.

Theorem 2.6. Let M be a finitely generated strongly \oplus -supplemented R-module. Then M is direct sum of cyclic submodules.

Proof. Since M is a strongly \oplus -supplemented module, by Corollary 2.2 M is completely \oplus -supplemented. In case by [11] M is direct sum of cyclic submodules.

Theorem 2.7. For any ring R, the following statements are equivalent.

(i) R is perfect.

(ii) $R^{(N)}$ is \oplus -supplemented.

(iii) $R^{(N)}$ is strongly \oplus -supplemented.

(iv) Every countable generated free R-module is \oplus -supplemented.

(v) Every countable generated free *R*-module is strongly \oplus -supplemented.

(vi) Every free R-module is \oplus -supplemented.

(vii) Every free R-module is strongly \oplus -supplemented.

Proof. (i) \Leftrightarrow (ii) \Leftrightarrow (iv) \Leftrightarrow (vi) are proved in [11].

Since $_RR$ is a projective module, every free *R*-module is projective. Thus every free *R*-module is π -projective. By Lemma 2.1 (iv) \Leftrightarrow (v) \Leftrightarrow (vi) \Leftrightarrow (vii) are hold.

Theorem 2.8. For a supplemented module M, the following statements are equivalent.

(i) M is strongly \oplus -supplemented.

(ii) Every supplement submodule of M lies above a direct summand.

(iii) (a) Every non zero supplement submodule of M contains a non zero direct summand of M.

(b) Every supplement submodule of M contains a maximal direct summand of M. **Proof.** (i) \Rightarrow (ii) Clear from definitions.

(ii) \Rightarrow (i) Let V be any supplement submodule of M. Let V is a supplement of U in M. By hypothesis there exist $M_1 \leq M$ and $M_2 \leq M$ such that $M = M_1 \oplus M_2$, $M_1 \leq V$ and $V \cap M_2 \ll M_2$. In this case $V = V \cap M = M_1 \oplus V \cap M_2$ and by

ISSN 1027-3190. Укр. мат. журн., 2011, т. 63, № 5

664

 $V \cap M_2 \ll M$, $M = U + V = U + V \cap M_2 + M_1 = U + M_1$. Since V is supplement of U, $V = M_1$. Thus $M = V \oplus M_2$ and V is a direct summand of M. That is M is strongly \oplus -supplemented.

(i) \Rightarrow (iii) Clear from definitions.

(iii) \Rightarrow (i) Let V be a supplement of U in M and assume X to be a maximal direct summand of M with $X \leq V$ and $M = X \oplus Y$. Then $V = X \oplus V \cap Y$ and by Lemma 1.2 $V \cap Y$ is a supplement of U + X in M. If $V \cap Y$ is not zero then by (iii, a) there exists a non zero direct summand N of M such that $N \leq V \cap Y$. In this case $X \oplus N$ is a direct summand of M and $X \oplus N \leq V$. This contradicts the choice of X. Thus $V \cap Y = 0$ and V = X. In this case V is direct summand of M and M is a strongly \oplus -supplemented module.

Let M be an R-module. If rM = M for every $r \in R$ which not zero divisor, then M is called a **divisible** R-module. Let R be a domain. If every submodule of left R-module $_{R}R$ is projective, then R is called a **Dedekind domain**. Let R be a principal ideal domain. If R has the unique prime element (up to unit), then R is called a **discrete valuation ring**.

Remark 2.1. Let R be a discrete valuation ring and p be the unique prime element of R. Then every ideal of R is of the form Rp^k which $k \in \mathbb{Z}$. If we take these ideals to be neighborhoods of 0 in R, we define a topology in R, making R a topological ring. If R is complete in this topology, we call it a complete discrete valuation ring.

Example 2.1. Let R be a discrete valuation ring which not complete and K be a quotient field of R. Then $M = K^2$ is strongly \oplus -supplemented but not amply supplemented.

Proof. By [21] Theorem 2.2, M is supplemented but not amply supplemented. Let V be a supplement submodule in M. Assume that V is a supplement of U in M. Since M is divisible, then M = rM = rU + rV = U + rV for every $r \in R$ which $r \neq 0$. Since V is a supplement of U in M, V = rV and then V is divisible. Since R is a Dedekind domain, V is injective (see [19], 40.5) and a direct summand of M. Thus M is strongly \oplus -supplemented.

Example 2.2. Let R be a discrete valuation ring with quotient field K, let p be the unique prime element and let N = Rp. Then $M = K/R \oplus R/N$ is completely \oplus -supplemented but is not strongly \oplus -supplemented.

Proof. By [10] Example 2.1, M is completely \oplus -supplemented but not (D_1) . Moreover M satisfies (D_3) . Let $L = R(p^{-2} + R, 1 + N) \leq M$. Then we can prove K/R + L = M. Let $x \in (K/R) \cap L$. Then $x = (rp^{-2} + R, r + N)$ for some $r \in R$. Since $(rp^{-2} + R, r + N) \in K/R$, r + N = 0 and then there exists $r' \in R$ with r = r'p. Then $x = (r'pp^{-2} + R, 0) = (r'p^{-1} + R, 0) \in R(p^{-1} + R, 0)$. Since $R(p^{-1} + R, 0) \leq (K/R) \cap L$, $K/R \cap L = R(p^{-1} + R, 0)$. Let $R(p^{-1} + R, 0) + T = L$ with $T \leq L$. Then there exists $s \in R$ such that $s(p^{-2} + R, 1 + N) \in T$ and $s + N \neq 0$. Since $s + N \neq 0$, $s \notin N$. Since p is the unique prime element of R, s is invertible in R, i.e., there exists $s' \in R$ with s's = 1. Then $(p^{-2}+R, 1+N) = s's(p^{-2}+R, 1+N) \in T$ and then $L = R(p^{-2} + R, 1 + N) \leq T$. Thus T = L, $R(p^{-1} + R, 0) \ll L$ and L is a supplement of K/R in M. If L is a direct summand of M, by M = K/R + L and M satisfying (D_3) , $(K/R) \cap L = R(p^{-1} + R, 0)$ is also direct summand of M. This contradicts $R(p^{-1} + R, 0) \ll M$. Hence L is not a direct summand of M and M is not strongly \oplus -supplemented. **Remark 2.2.** In Example 2.2 K/R is hollow and strongly \oplus -supplemented. Since R/N is simple, it is strongly \oplus -supplemented. But the direct sum of K/R and R/N is not strongly \oplus -supplemented. Zöschinger has proved that if R is a Dedekind domain then an R-module M is supplemented if and only if M is \oplus -supplemented. But this not true for strongly \oplus -supplemented by Example 2.2.

Definition 2.2. Let M be an R-module. If M is cofinitely supplemented and every supplement of cofinite submodules of M is a direct summand of M then M is called a strongly cofinitely \oplus -supplemented module.

Corollary 2.3. Every strongly cofinitely \oplus -supplemented module is cofinitely supplemented.

Theorem 2.9. Let M be a strongly cofinitely \oplus -supplemented module. Then every direct summand of M is strongly cofinitely \oplus -supplemented.

Proof. Let N be a direct summand of M and let $M = N \oplus T$. Since M is cofinitely supplemented, $N \cong M/T$ is also cofinitely supplemented. Let U be a cofinite submodule of N and V be a supplement of U in N. Then by Lemma 1.2 V is a supplement of $U \oplus T$ in M. Since $U \oplus T$ is a cofinite submodule of M and M is strongly cofinitely \oplus -supplemented, V is a direct summand of M. Let $M = V \oplus X$. Then by Modular law $N = V \oplus (N \cap X)$ and then V is a direct summand of N. Hence N is strongly cofinitely \oplus -supplemented.

Theorem 2.10. Let M be a π -projective and finitely supplemented R-module. If M is cofinitely supplemented then M is strongly cofinitely \oplus -supplemented.

Proof. Let U be a cofinite submodule of M and V be a supplement of U in M. Then V is finitely generated. Since M is finitely supplemented, V has a supplement X in M. Since M is π -projective, there exists $f \in \text{End}(M)$ such the Im $f \leq U$, Im $(1 - f) \leq V$. Then we can prove $(1 - f)(U) \leq U$ and $f(V) \leq V$. Then M = f(M) + (1 - f)(M) = f(V) + f(X) + V = V + f(X). Let $\nu \in V \cap f(X)$. Then there exists $x \in X$ with $\nu = f(x)$. Since $x - \nu = x - f(x) = (1 - f)(x) \in V$, $x \in V$. Hence $\nu = f(x) \in f(V \cap X)$. Since $V \cap X \ll X$, $f(V \cap X) \ll f(X)$ and $V \cap f(X) \leq f(V \cap X) \ll f(X)$. Hence f(X) is a supplement of V in M. Since $f(X) \leq U$, then V is a supplement of f(X) in M. Hence V and f(X) are mutual supplements in M. Since M is π -projective, then by [19] $M = V \oplus f(X)$ and V is a direct summand of M. Thus M is strongly cofinitely \oplus -supplemented.

Theorem 2.11. If M is cofinitely supplemented, then M/Rad(M) is strongly cofinitely \oplus -supplemented.

Proof. Since M is cofinitely supplemented, $M / \operatorname{Rad}(M)$ is also cofinitely supplemented. Let $U / \operatorname{Rad}(M)$ be a cofinite submodule of $M / \operatorname{Rad}(M)$ and $V / \operatorname{Rad}(M)$ be a supplement of $U / \operatorname{Rad}(M)$ in $M / \operatorname{Rad}(M)$. Since

$$U/\operatorname{Rad}(M) \cap V/\operatorname{Rad}(M) \ll M/\operatorname{Rad}(M),$$

$$U/\operatorname{Rad}(M) \cap V/\operatorname{Rad}(M) \le \operatorname{Rad}(M/\operatorname{Rad}(M)) = 0$$

and then $M/\operatorname{Rad}(M) = U/\operatorname{Rad}(M) \oplus V/\operatorname{Rad}(M)$. Hence $V/\operatorname{Rad}(M)$ is a direct summand of $M/\operatorname{Rad}(M)$ and $M/\operatorname{Rad}(M)$ is strongly cofinitely \oplus -supplemented.

Example 2.3. Let M be a direct sum of an infinite number of copies of the Prüferp-group $Z_{p^{\infty}}$. Then M is strongly cofinitely \oplus -supplemented but not strongly \oplus -supplemented.

Proof. By [10] M is not supplemented, i.e., not strongly \oplus -supplemented. By [2] M is cofinitely supplemented. Let L be a supplement submodule of M and L be a supplement of K in M. We can prove that M is a divisible **Z**-module. Let $n \in \mathbf{Z}$. Since nM = M, M = nM = nK + nL = K + nL. Since L is a supplement of K in M, nL = L and L is divisible. Since **Z** is a Dedekind domain, L is injective ([19], 40.5) and a direct summand of M. Hence M is strongly cofinitely \oplus -supplemented.

Remark 2.3. In Example 2.2 $M = K/R \oplus R/N$ is cofinitely supplemented but not strongly cofinitely \oplus -supplemented. Also in Example 2.2 K/R and R/N is strongly cofinitely \oplus -supplemented but the direct sum of K/R and R/N is not strongly cofinitely \oplus -supplemented.

- Alizade R., Pancar A. Homoloji Cebire Giris. Samsun: Ondokuz Mayis Üniv. Fen-Edebiyat Fakültesi, 1999.
- Alizade R., Bilhan G., Smith P. F. Modules whose maximal submodules have supplements // Communs Algebra. – 2001. – 29, № 6. – P. 2389–2405.
- Alizade R., Büyükaşik E. Confinitely weak supplemented modules // Communs Algebra. 2003. 13. P. 5377–5390.
- 4. Anderson F. V., Fuller K. R. Rings and categories of modules. Springer, 1992.
- 5. Callialp F. Cebir. Sakarya: Sakarya Üniv. Yayin, 1995. № 6.
- 6. Hungerford T. W. Algebra. New York: Springer, 1973. 504 p.
- 7. Kasch F. Modules and rings. Acad. Press, 1982.
- 8. Kaplansky I. Infinite Abelian groups. Ann Arbor, 1969.
- 9. Kaplansky I. Projective modules // Ann. Math. 1958. 68. P. 372-377.
- 10. Keskin D., Harmanci A., Smith P. F. On ⊕-supplemented modules // Acta math. hung. 1999. 83, No 1-2. P. 161–169.
- Keskin D., Smith P. F., Xue W. Rings whose modules are ⊕-supplemented // J. Algebra. 1999. 218.
 P. 470 487.
- 12. Lomp C. On semilocal modules and rings // Communs Algebra. 1999. 27, № 4. P. 1921–1935.
- 13. Lomp C. On dual goldie dimension: Ph. D. Thesis. Düsseldorf, 1996.
- Mohamed S. H., Müller B. J. Continuous and discrete modules // London Math. Soc. Cambridge: Cambridge Univ. Press, 1990. – 147.
- 15. Nebiyev C. Amply weak supplemented modules // Int. J. Comput. Cognition. 2005. 3, № 1. P. 88–90.
- 16. Sarath B., Varadarajan K. Injectivity of direct sums // Communs Algebra. 1974. 1. P. 517-530.
- 17. Sharpe W. D., Vamos P. Injective modules. Cambridge Univ. Press, 1972.
- Smith P. F. Finitely generated supplemented modules are amply supplemented // Arab. J. Sci. and Eng. - 2000. - 25, № 2. - P. 69-79.
- 19. Wisbauer R. Foundations of module and ring theory. Philadelphia: Gordon and Breach, 1991.
- 20. Zöschinger H. Komplementierte Moduln über Dedekindringen // J. Algebra. 1974. 29. P. 42-56.
- 21. Zöschinger H. Komplemente als direkte Summanden // Arch. Math. 1974. 25. P. 241-243.
- Zöschinger H. Projektive Moduln mit endlich erzeugten Radikalfaktormoduln // Math. Ann. 1981. –
 255. P. 199–206.
- 23. Zöschinger H. Komplemente als direkte Summanden II // Arch. Math. 1982. 38. P. 324-334.

Received 30.11.10