E. Albaş (Ege Univ., Izmir, Turkey)

ON GENERALIZED DERIVATIONS SATISFYING CERTAIN IDENTITIES

ПРО УЗАГАЛЬНЕНІ ДИФЕРЕНЦІЮВАННЯ, ЩО ЗАДОВОЛЬНЯЮТЬ ДЕЯКІ ТОТОЖНОСТІ

Let R be a prime ring with char $R \neq 2$ and d be a generalized derivation on R. The goal of this study is to investigate the generalized derivation d satisfying any one of the following identities:
(i) $d[(x, y)]=[d(x), d(y)]$ for all $x, y \in R$;
(ii) $d[(x, y)]=[d(y), d(x)]$ for all $x, y \in R$;
(iii) either $d([x, y])=[d(x), d(y)]$ or $d([x, y])=[d(y), d(x)]$ for all $x, y \in R$.

Припустимо, що R - просте кільце з $R \neq 2$, а d - узагальнене диференціювання на R. Мета цієї роботи полягає у дослідженні диференціювання d, що задовольняє будь-яку з наступних тотожностей
(i) $d[(x, y)]=[d(x), d(y)]$ для всіх $x, y \in R$;
(ii) $d[(x, y)]=[d(y), d(x)]$ для всіх $x, y \in R$;
(iii) $d([x, y])=[d(x), d(y)]$ або $d([x, y])=[d(y), d(x)]$ для всіх $\quad x, y \in R$.

1. Introduction. Let R always denote an associative ring with center Z, extended centroid C, Utumi quotient ring U. Recall that an additive mapping $\alpha: R \rightarrow R$ is called a derivation if $\alpha(x y)=\alpha(x) y+x \alpha(y)$ holds for all $x, y \in R$. The study of prime rings with derivations was initiated by Posner [16]. Many related generalizations have been done on this subject (see [16, 8], where further references can be found). Following Bresar [8], $d: R \rightarrow R$ is called a generalized derivation if there exists a derivation α of R such that $d(x y)=d(x) y+x \alpha(y)$ for all $x, y \in R$. It is clear that the concept of generalized derivations covers both the concepts of a derivation and of a left multiplier (i.e., an additive mapping $f: R \rightarrow R$ satisfying $f(x y)=f(x) y$ for all $x, y \in R)$. In [10], Hvala initiated the study of generalized derivations from the algebraic viewpoint. Many authors have studied generalized derivations in the context of prime and semiprime rings (see [1-4, 13, 14, 17]). In [13], T. K. Lee extended the definition of generalized derivations as follows: By a generalized derivation we mean an additive mapping $d: I \rightarrow U$ such that $d(x y)=d(x) y+x \alpha(y)$ for all $x, y \in I$, where U is the right Utumi quotient ring, I is a dense right ideal of R and α is a derivation from I into U. Moreover Lee also proved that every generalized derivation can be uniquely extended to a generalized derivation of U and thus all generalized derivations of R will be implicitly assumed to be defined on the whole U and he obtained the following results:

Theorem ([13], Theorem 3). Every generalized derivation d on a dense right ideal of R can be uniquely extended to U and assumes the form $d(x)=a x+\alpha(x)$ for some $a \in U$ and a derivation α on U.

Over the last three decades, several authors have proved the commutativity theorems for prime or semiprime rings admitting derivations or generalized derivations sat-
isfying some relations (see [3, 4, 7, 17]). In [4], M. Ashraf et al. investigated the commutativity of a prime ring R admitting a generalized derivation F with associated derivation d satisfying any one of the following conditions: $d(x) \circ F(y)=0, \quad[d(x)$, $F(y)]=0, \quad d(x) \circ F(y)=x \circ y, \quad d(x) \circ F(y)+x \circ y=0, \quad d(x) \circ F(y)-x y \in Z$, $d(x) \circ F(y)+x y \in Z, \quad[d(x), F(y)]=[x, y], \quad[d(x), F(y)]+[x, y]=0 \quad$ for all $\quad x$, $y \in I$, where I is a nonzero ideal of $R,[x, y]=x y-y x$ and $x \circ y=x y+y x$. In [3], the authors proved the commutativity of a prime ring R in which a generalized derivation F satisfies any one of the following properties: (i) $F(x y)-x y \in Z$, (ii) $F(x y)+x y \in Z$, (iii) $F(x y)-y x \in Z$, (iv) $F(x y)+y x \in Z$, (v) $F(x) F(y)$ -$-x y \in Z$ and (vi) $F(x) F(y)+x y \in Z$, for all $x, y \in R$. In [17], Shuliang proved that if L is a lie ideal of a prime ring R such that $u^{2} \in L$ for all $u \in L$ and if F is a generalized derivation on R associated with a derivation d on R satisfying any one of the following conditions: (1) $d(x) \circ F(y)=0$, (2) $[d(x), F(y)]=0$, (3) either $d(x) \circ F(y)=x \circ y \quad$ or $\quad d(x) \circ F(y)+x \circ y=0$, (4) either $\quad d(x) \circ F(y)=[x, y] \quad$ or $d(x) \circ F(y)+[x, y]=0,(5)$ either $\quad d(x) \circ F(y)-x y \in Z \quad$ or $\quad d(x) \circ F(y)+x y \in Z$, (6) $[d(x), F(y)]=[x, y]$ or $[d(x), F(y)]+[x, y]=0$, (7) either $[d(x), F(y)]=x \circ y$ or $[d(x), F(y)]+x \circ y=0$ for all $x, y \in L$, then either $d=0$ or $L \subseteq Z$.

In this paper we aim to investigate the generalized derivation d on a prime ring R associated with a derivation α on satisfying any one of the following identities: (i) $d([x, y])=[d(x), d(y)]$ for all $x, y \in R$, (ii) $d([x, y])=[d(y), d(x)]$ for all x, $y \in R$, (iii) either $d([x, y])=[d(x), d(y)]$ or $d([x, y])=[d(y), d(x)]$ for all x, $y \in R$.

In all that follows, unless stated otherwise, R will be a prime ring. The related object we need to mention is the two-sided Quotient ring Q of R, the right Utumi quotient ring U of R (sometimes, as in [6], U is called the maximal ring of quotients). The definitions, the axiomatic formulations and the properties of this quotient ring U can be found in [6] and [5].

We make a frequent use of the theory of generalized polynomial identities and differential identities (see $[6,9,11,12,15]$). In particular we need to recall that when R is a prime ring and I a nonzero two-sided ideal of R, then I, R, Q and U satisfy the same generalized polynomial identities [9] and also the same differential identities [12].

We will also make frequent use of the following result due to Kharchenko [11] (see also [12]):

Let R be a prime ring, d a nonzero derivation of R and I a nonzero twosided ideal of R. Let $f\left(x_{1}, \ldots, x_{n}, d\left(x_{1}\right), \ldots, d\left(x_{n}\right)\right)$ be a differential identity in I, that is the relation

$$
f\left(r_{1}, \ldots, r_{n}, d\left(r_{1}\right), \ldots, d\left(r_{n}\right)\right)=0
$$

holds for all $r_{1}, \ldots, r_{n} \in I$. Then one of the following holds:

1) either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists $q \in Q$ such that $d(x)=[q, x]$, for all $x \in R$, and I satisfies the generalized polynomial identity

$$
f\left(r_{1}, \ldots, r_{n},\left[q, r_{1}\right], \ldots,\left[q, r_{n}\right]\right)
$$

2) or I satisfies the generalized polynomial identity

$$
f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

In [14], T. K. Lee and W. K. Shiue proved a version of Kharchenko's theorem for generalized derivations and presented some results concerning certain identities with generalized derivations. More details about generalized derivations can be found in [10, 11, 13, 14].
2. The results. In the following, we assume that R is a prime ring with char $R \neq 2$ and that Z is the center of R unless stated otherwise. We denote the identity map of a ring R by $I_{i d}$ (i.e., the map $I_{i d}: R \rightarrow R$ defined by $I_{i d}(x)=x$ for all $x \in R$). By a map $-I_{i d}: R \rightarrow R$ we mean the map defined by $\left(-I_{i d}\right)(x)=-x$ for all $x \in R$.

We begin with the following.
Lemma 1. Let R be a prime ring with char $R \neq 2$ and d be a generalized derivation on R associated with a derivation α on R. If $d([x, y])=[d(x), d(y)]$ holds for all $x, y \in R$ then either R is commutative, or $d=0$, or $d=I_{i d}$.

Proof. As we stated as theorem we can take the generalized derivation d as the form $d(x)=a x+\alpha(x)$ where $a \in U$ and α is a derivation on U.

If $\alpha=0$, then by the hypothesis we have $a[x, y]=[a x, a y]$ for all $x, y \in R$. Replacing $y z$ by y we have $a y[x, z]=a y[a x, z]$, hence $a y[x-a x, z]=0$ for all $x, y, z \in R$. By the primeness of R we get either $a=0$ or $[x-a x, z]=0$ for all $x, z \in R$. The first case gives us that $d=0$, as desired. For the second case, let $[x-a x, z]=0$ for all $x, z \in R$. Substituting $x y r$ by x we have $0=$ $=[(x y-a x y) r, z]=(x y-a x y)[r, z]=(x-a x) y[r, z]$ for all $x, y, r \in R$. By the primeness of R we obtain that either R is commutative, or $x-a x=0$ for all $x \in R$ implying that $d(x)=a x=x$, i.e., $d=I_{i d}$, as desired.

Now we may consider the case that R is not commutative. Suppose $\alpha \neq 0$. Since R and U satisfy the same differential identities [12], we get

$$
\begin{equation*}
a[x, y]+[\alpha(x), y]+[x, \alpha(y)]=[a x+\alpha(x), a y+\alpha(y)] \quad \text { for all } \quad x, y \in U . \tag{1}
\end{equation*}
$$

In light of Kharchenko's theory [11] we can divide the proof into two cases.
Assume first that α is an outer derivation of U. By Kharchenko's theorem in [11, 12], we get

$$
a[x, y]+[z, y]+[x, w]=[a x, a y]+[a x, w]+[z, a y]+[z, w]
$$

for all $x, y, z, w \in U$. In particular, taking $w=z=0$ we obtain $a[x, y]=$ $=[a x, a y]$. By the same argument as above we have either R is commutative or
$a=0$. Let $a=0$. Using this fact and taking $w=y$ in the above relation we have $[x, w]=0$ for all $x, w \in U$ implying R is commutative. It is seen that the two cases give us a contradiction.

Assume now that a is an inner derivation of U induced by an element $q \in U$, that is $\alpha(x)=[q, x]$, for all $x \in U$. In this case $d(x)=a x+\alpha(x)=a x+[q, x]$. Replacing 1 for y in (1) we have

$$
\begin{equation*}
[a x+\alpha(x), a]=0 \quad \text { for all } \quad x \in U . \tag{2}
\end{equation*}
$$

Replacing q by x in (2) we get $[a q, a]=a[q, a]=0$, i.e., $a \alpha(a)=0$. Using (2), we have

$$
\begin{equation*}
a[x, a]+[\alpha(x), a]=0 \quad \text { for all } \quad x \in U . \tag{3}
\end{equation*}
$$

Taking $r x$ in place of x in (3)

$$
\begin{equation*}
\operatorname{ar}[x, a]+\alpha(r)[x, a]+[r, a] \alpha(x)+r[\alpha(x), a]=0 \quad \text { for all } \quad x, r \in U . \tag{4}
\end{equation*}
$$

Say $\beta(x)=[a, x], x \in U$. By (3) we have $0=a[x, a]+\alpha(x) a-a \alpha(x)=$ $=-a(\beta(x)+\alpha(x))+\alpha(x) a$ for all $x \in U$. Hence we get

$$
\begin{equation*}
a(\beta(x)+\alpha(x))=\alpha(x) a \quad \text { for all } \quad x \in U . \tag{5}
\end{equation*}
$$

By (3) we have $r[\alpha(x), a]=-r a[x, a]$ for all $r, x \in U$. Using this fact in (4) we arrive at $\quad 0=\operatorname{ar}[x, a]+\alpha(r)[x, a]+[r, a] \alpha(x)-r a[x, a]=[a, r][x, a]+\alpha(r)[x, a]+$ $+[r, a] \alpha(x)=-\beta(r) \beta(x)-\alpha(r) \beta(x)-\beta(r) \alpha(x)$. The last relation implies that

$$
\begin{equation*}
(\beta(r)+\alpha(r)) \beta(x)+\beta(r) \alpha(x)=0 \quad \text { for all } \quad r, x \in U . \tag{6}
\end{equation*}
$$

Multiplying (6) by a from the left-hand side and using (5) we find that $0=a(\beta(r)+$ $+\alpha(r)) \beta(x)+a \beta(r) \alpha(x)=\alpha(r) a \beta(x)+a \beta(r) \alpha(x)$, i.e.,

$$
\begin{equation*}
\alpha(r) a \beta(x)+a \beta(r) \alpha(x)=0 \quad \text { for all } \quad r, x \in U . \tag{7}
\end{equation*}
$$

Substituting $z x$ by x in (7) and using (7) we have

$$
\alpha(r) a z \beta(x)+a \beta(r) z \alpha(x)=0 .
$$

Taking $\alpha(z)$ instead of z in the last relation and using (7) again we get

$$
\alpha(r) a(\alpha(z) \beta(x)-\beta(z) \alpha(x))=0 .
$$

Replacing $r s$ by r we arrive at

$$
\alpha(r) \operatorname{sa}(\alpha(z) \beta(x)-\beta(z) \alpha(x))=0 .
$$

Since U is prime and $\alpha \neq 0$ we obtain $a(\alpha(z) \beta(x)-\beta(z) \alpha(x))=a \alpha(z) \beta(x)-$ $-a \beta(z) \alpha(x)=0$. Using (7) in the last relation we have $(a \alpha(z)+\alpha(z) a) \beta(x)=0$ for all $x, z \in U$. Substituting $r x$ by x in the last relation we get

$$
(a \alpha(z)+\alpha(z) a) r \beta(x)=0 \quad \text { for all } \quad x, z \in U .
$$

By the primeness of U we obtain that either $\beta=0$, or $a \alpha(z)+\alpha(z) a=0$ for all $z \in U$.

The first case implies that $a \in C$. Using this fact in (1) we have

$$
\begin{equation*}
\left(a-a^{2}\right)[x, y]+(1-a)([\alpha(x), y]+[x, \alpha(y)])=[\alpha(x), \alpha(y)] \quad \text { for all } \quad x, y \in U . \tag{8}
\end{equation*}
$$

Replacing q by y in (8) and using the facts that $\alpha(x)=[q, x]$ and $\alpha^{2}(x)=$ $=[q, \alpha(x)]$ we get

$$
\left(a-a^{2}\right) \alpha(x)+(1-a) \alpha^{2}(x)=0
$$

Taking $x y$ for x and using $a \in C$ we have $2(1-a) \alpha(x) \alpha(y)=0$. Since char $R \neq 2$ and $a \in C$ we have either $\alpha(x) \alpha(y)=0$ for all $x, y \in U$ or $a=1$. If $\alpha(x) \alpha(y)=0$, then taking $r y$ for y we get $\alpha(x) r \alpha(y)=0$ implying that $\alpha=0$ by the primeness of U, a contradiction. If $a=1$, then we find $[\alpha(x), \alpha(y)]=0$. Substituting $y q$ by y in the last relation we have $\alpha(y) \alpha^{2}(x)=0$ for all x, $y \in U$. Since $\alpha \neq 0$ and U is prime we get $\alpha^{2}(x)=0$, implying that $\alpha=0$, a contradiction.

So we are forced to conclude that

$$
\begin{equation*}
a \alpha(z)+\alpha(z) a=0 \quad \text { for all } \quad z \in U \tag{9}
\end{equation*}
$$

Using (9) in (3) we have $0=a[x, a]+\alpha(x) a-a \alpha(x)=-a \beta(x)-a \alpha(x)-a \alpha(x)=$ $=-a(\beta(x)+2 \alpha(x))$. Hence we get $a(\beta(x)+2 \alpha(x))=0$. Replacing $r x$ by x in the last relation and using the primeness of U we obtain that either $a=0$ or $\beta(x)=-2 \alpha(x)$ for all $x \in U$.

If $a=0$, (1) is reduced to

$$
[\alpha(x), y]+[x, \alpha(y)]=[\alpha(x), \alpha(y)]
$$

Substituting q by y we have $\alpha^{2}(x)=0$, implying that $\alpha=0$, a contradiction. So we arrive at the case $\beta(x)=-2 \alpha(x)$ for all $x \in U$. Replacing $y x$ by y in the hypothesis we get

$$
\begin{equation*}
[x, y] \alpha(x)=d(y)[d(x), x]+[d(x), y] \alpha(x)+y[d(x), \alpha(x)] \quad \text { for all } \quad x, y \in U \tag{10}
\end{equation*}
$$

Taking $y z$ instead of y in (10) and using (10) we have

$$
[x-d(x), y] z \alpha(x)=[a, y] z[d(x), x]+\alpha(y) z[d(x), x]
$$

Since $\beta(x)=[a, x]=-2 \alpha(x)$ and char $R \neq 2$ we get $\alpha(a)=0$. Using this fact and taking a in place of y in the above relation we obtain that

$$
[x-d(x), a] z \alpha(x)=0 \quad \text { for all } \quad x, z \in U .
$$

By the primeness of U we have that for each $x \in U$, either $[x-d(x), a]=0$ or $\alpha(x)=0$. Let $H=\{x \in U:[x-d(x), a]=0\}$ and $K=\{x \in U: \alpha(x)=0\}$. It is clear that $(H,+)$ and $(K,+)$ are two additive subgroup of $(U,+)$ such that $(U,+)=$ $=(H,+) \cup(K,+)$. But a group can not be the union two proper subgroups. Therefore we get either $U=H$ or $U=K$. Since $\alpha \neq 0$ we arrive at $[x-d(x), a]=0$ for all $x \in U$. By (3) the last relation implies that $0=[x, a]-[d(x), a]=[x, a]-$ $-(a[x, a]+[\alpha(x), a])=[x, a]=-\beta(x)$. Hence this last relation yields $\beta(x)=0$ whence $\alpha(x)=0$, a contradiction.

Remark 1. If α is a derivation on a ring R then the map $-\alpha: R \rightarrow R$ defined by $(-\alpha)(x)=-\alpha(x)$ is also a derivation on R. Similarly, if d is a generalized derivation on a ring R associated with a derivation α on R then a map $-d: R \rightarrow R$ defined by $(-d)(x)=-d(x)$ is also a generalized derivation on R associated with a derivation $-\alpha$ on R.

Lemma 2. Let R be a prime ring with char $R \neq 2$ and d be a generalized derivation on R associated with a derivation α on R. If $d([x, y])=[d(y), d(x)]$ holds for all $x, y \in R$ then either R is commutative, or $d=0$, or $d=-I_{i d}$.

Proof. Let $d([x, y])=[d(y), d(x)]$ for all $x, y \in R$. Replace $-x$ by x. Since

$$
d([-x, y])=d(-[x, y])=-d([x, y])=(-d)([x, y])
$$

and

$$
\begin{aligned}
{[d(y), d(-x)] } & =[d(y),-d(x)]= \\
=-[d(y), d(x)]=[d(x), d(y)] & =[-d(x),-d(y)]=[(-d) x,(-d) y]
\end{aligned}
$$

we have $(-d)([x, y])=[(-d)(x),(-d)(y)]$ for all $x, y \in R$. In view of Remark 1 and Lemma 1 we obtain that either R is commutative, or $d=0$, or $d=-I_{i d}$.

Theorem 1. Let d be a generalized derivation on R be a prime ring with char $R \neq 2$ and R associated with a derivation α on R. If d satisfies either $d([x, y])=[d(x), d(y)]$ or $d([x, y])=[d(y), d(x)]$ for all $x, y \in R$ then either R is commutative, or $d=0$, or $d=I_{i d}$, or $d=-I_{i d}$.

Proof. For each $x \in R$ we set $I_{x}=\{y \in R: d([x, y])=[d(x), d(y)]\}$ and $J_{x}=$ $=\{y \in R: d([x, y])=[d(y), d(x)]\}$. It is clear that for each $x \in R, I_{x}$ and J_{x} are two additive subgroup of R and $(R,+)=\left(I_{x},+\right) \cup\left(J_{x},+\right)$. But a group can not be the union two proper subgroups. So we are forced to conclude that either $R=I_{x}$ or $R=J_{x}$. Now we set $I=\left\{x \in R: R=I_{x}\right\}$ and $J=\left\{y \in R: R=J_{x}\right\}$. The sets I and J are also two subgroups of R and $(R,+)=(I,+) \cup(J,+)$. By the similar
manner as above we have $R=I$ or $R=J$. By Lemmas 1 and 2 we obtain desired results.

Example 1. Consider the matrix ring $R=\left\{\left[\begin{array}{ll}x & y \\ 0 & 0\end{array}\right]: x, y \in Z\right\}$, where \mathbb{Z} is the set of all integers. It is clear to see that a map $\quad \alpha: R \rightarrow R \quad$ defined by $\alpha\left(\left[\begin{array}{ll}x & y \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right]$ is a derivation on R. Then a map $d: R \rightarrow R$ defined by $d\left(\left[\begin{array}{ll}x & y \\ 0 & 0\end{array}\right]\right)=\left[\begin{array}{cc}x & x+y \\ 0 & 0\end{array}\right]$ is a generalized derivation associated with α satisfying the condition $d([X, Y])=[d(X), d(Y)]$ for all $X, Y \in R$, but neither R is commutative, nor $d=0$, nor $d=I_{i d}$.

1. Albaş E., Argaç N., De Filipps V. Generalized derivations with Engel conditions on one-sided ideals // Communs Algebra. - 2008. - 36, № 6. - P. 2063 - 2071.
2. Albaş E., Argaç N. Generalized derivations of prime rings // Algebra Colloq. - 2004. - 11, № 3. P. $399-410$.
3. Ashraf M., Ali A., Ali S. Some commutativity theorems for rings with generalized derivations // Southeast Asian Bull. Math. - 2007. - 31. - P. 415 - 421.
4. Ashraf M., Ali A., Rani R. On generalized derivations of prime rings // Southeast Asian Bull. Math. 2005. - 29, № 4. - P. 669 - 675.
5. Beidar K. I. Rings of quotients of semiprime rings // Vestnik Moskov. Univ. Ser. I., Mekh. - 1978. - 33. - S. 36-42 (English transl.: Transl. Moskow Univ. Math. Bull. - 1978. - 33. - P. 29 - 34).
6. Beidar K. I., Martindale W. S., Mikhalev V. Rings with generalized identities // Pure and Appl. Math. 1996.
7. Bell H. E., Rehman N. Generalized derivations with commutativity and anti-commutativity conditions // Math. J. Okayama Univ. - 2007. - 49. - P. 139-147.
8. Brešar M. On the distance of the composition of two derivations to the generalized derivations // Glasgow Math. J. - 1991. - 33. - P. 89 - 93.
9. Chuang C. L. GPIs having coefficients in Utumi quotient rings // Proc. Amer. Math. Soc. - 1988. - 103, № 3. - P. 723 - 728 .
10. Hvala B. Generalized derivations in prime rings // Communs Algebra. - 1998. - 26, № 4. - P. 1147 1166.
11. Kharchenko V. K. Differential identities of prime rings // Algebra and Logic. - 1978. - 17. - P. 155 168.
12. Lee T. K. Semiprime rings with differential identities // Bull. Inst. Math. Acad. Sinica. - 1992. - 20, № 1. - P. 27 - 38 .
13. Lee T. K. Generalized derivations of left faithful rings // Communs Algebra. - 1999. - 27, № 8. P. $4057-4073$.
14. Lee T. K., Shiue W. K. Identities with generalized derivations // Communs Algebra. - 2001 - - 29, № 10 - P. 4435 - 4450.
15. Martindate W. S. Prime rings satisfying a generalized polynomial identity // J. Algebra. - 1969. - 12. P. 579 - 584 .
16. Posner E. C. Derivations in prime rings // Proc. Amer. Math. Soc. - 1957. - 8. - P. 1093 - 1100 .
17. Shuliang H. Generalized derivations of prime rings // Int. J. Math. and Math. Sci. - 2007. - 2007. P. 1-6.
