A. Abbasov (Canakkale Onsekiz Mart Univ., Turkey)

FREDHOLM QUASI-LINEAR MANIFOLDS AND DEGREE OF FREDHOLM QUASI-LINEAR MAPPING BETWEEN THEM

КВАЗІЛІНІЙНІ МНОГОВИДИ ФРЕДГОЛЬМА

 ТА СТЕПІНЬ КВАЗІЛІНІЙНИХ ВІДОБРАЖЕНЬ ФРЕДГОЛЬМА МІЖ НИМИIn this article a new class of Banach manifolds and a new class of mappings between them are presented and also the theory of degree of such mappings is given.

Представлено новий клас многовидів Банаха та новий клас відображень між ними, а також наведено теорію степеня таких відображень.
0. Introduction. As it is known, the degree theory for infinite-dimensional mappings (of the kind "identical+compact") for the first time was given by Leray and Schauder. Afterwards, this theory was expanded up to various classes of mappings (for example, up to class Fredholm proper mappings) ${ }^{1}$. However, these theories were not appropriate for solution of non-linear Hilbert problem. For solution of this problem the class of Fredholm Quasi-Linear (FQL) mappings, determined on Banach space, was introduced by A. I. Shnirelman, and was determined the degree of such a mapping, which has all the main properties of classical (finite-dimensional) degree (see [8]). Later, M. A. Efendiyev expanded this theory up to FQL-mappings, determined on quasicylindrical domains (see [6]). In the given article, this theory is expanded up to FQLmappings, determined between FQL-manifolds. In more details:

In first part of this article an example of FQL-manifold, given in [2], is extended up to example of Banach manifold from a wide class, namely up to space $H_{s}(\mathrm{M}, \mathrm{N})$, where \mathbf{M} and \mathbf{N} are compact smooth manifolds of dimensions m, respectively n and \mathbf{N} doesn't have boundary. First such structure is given in $H_{s}(\mathbf{M}, \mathbf{N})$ at $m<n$, and later, at $m \geq n$. In the last case $(m \geq n)$ the FQL-manifold $H_{s}(\mathbf{M}, \mathbf{N})$ is appeared as a submanifold of the FQL-manifold $H_{s}\left(\mathbf{M}, \mathbf{N}^{k}\right)$, where $k \cdot(n-1) \leq m<$ $<n \cdot k$.

In second part of this article the degree of FQL-mapping is expanded up to FQLmappings between FQL-manifolds and its basic properties are proved. However, in this part another form of FQL-mapping is used, as it is better adapted for definition of degree. We named it as Fredholm Special Quasi-Linear (FSQL) mapping. The proof of identity of FQL and FSQL-mappings is given in [1].

[^0]As an example of an FQL-mapping, this mapping is given: $F_{f}: \quad H_{s}(\mathbf{M}, \mathbf{N}) \rightarrow$ $\rightarrow H_{s}(\mathbf{M}, \mathbf{N}), \quad F_{f}: u \mapsto f(u)$, where $f: \mathbf{N} \rightarrow \mathbf{N}$ is a smooth mapping with a gradient distinct from zero in all points ${ }^{2}$.

Various types of Nonlinear Hilbert Problem have been solved by means of the theory of degree of FQL-mapping (see $[6,8]$).

The purpose of the given article is preparation of theoretical base for solution of practical problems.

In the end we noted that some definitions and theorems from [8], which will be used later, are given in Section 1.

1. Let X, Y be the real Banach spaces, Ω be a bounded domain in X and X_{n} be an n-dimensional Euclidian space. In addition, let $\pi_{n}: X \rightarrow X_{n}$ be a linear mapping and $X_{\alpha}^{n}=\pi_{n}^{-1}(\alpha), \quad \alpha \in X_{n}$.

Definition 1.1. A continuous mapping $f^{n}: \Omega \rightarrow Y$ is called a Fredholm Linear (FL), if
a) on each plane $X_{\alpha}^{n}, \alpha \in X_{n}$, which crosses with $\Omega,\left.f_{\alpha}^{n} \equiv f^{n}\right|_{X_{\alpha}^{n}}$ is an affine invertible mapping between X_{α}^{n} and its image $Y_{\alpha}^{n}=f\left(X_{\alpha}^{n}\right)$, which is closed in Y and its co-dimension in Y is equal to n;
b) f_{α}^{n} continuously depends on α.

Definition 1.2. Let a sequence of FL-mappings $\left\{f^{n_{k}} \mid f^{n_{k}}: \Omega \rightarrow Y\right\}$ uniformly approximate to the mapping f on Ω and

$$
\begin{equation*}
\left\|f_{\alpha}^{n_{k}}\right\|<C(\Omega), \quad\left\|\left(f_{\alpha}^{n_{k}}\right)^{-1}\right\|<C(\Omega), \quad \alpha \in \pi_{n_{k}}(\Omega) \quad \text { at } \quad k>k_{0}(\Omega), \tag{1.1}
\end{equation*}
$$

where $C(\Omega)$ does not depend on k. Then continuous mapping $f: \Omega \rightarrow Y$ is called a Fredholm Quasi-Linear (FQL).

Theorem 1.3. Any finite combination of linear (pseudo) differential operators and operators of superposition with smooth function of finite number of arguments with a gradient which is distinct from zero in all points, defines an FQL-mapping between H_{s} and $H_{s-\alpha}$ at some α and all sufficiently greater s.
2. Quasi-Linear manifolds. Let X be a real infinite-dimensional Banach manifold, $\left\{X_{j}\right\}, X_{j-1} \subset X_{j}, j=1,2, \ldots$, be a system of open sets covering to X (i.e., $\left.X=\bigcup X_{j}\right), \quad \xi_{j}=\left(Y_{j}, P_{j}, B_{j}\right)$ be an affine bundle with the total space Y_{j}, with the base space B_{j}, which is a finite-dimensional manifold and with the continuous epimorphism $P_{j}: Y_{j} \rightarrow B_{j}$. Let D_{j} be a bounded domain in Y_{j} and $\varphi_{j}: X_{j} \rightarrow D_{j}$ be a homeomorphism. In this case we shall call $\left(\varphi_{j}, X_{j}\right)$ an L-chart on X_{j} and we shall say that, on X_{j} an L-structure is introduced. If an L-structure is determined on X_{j+1}, then obviously, it is determined also on X_{j} (as an induced structure). Let

[^1]$\varphi_{j^{\prime}}: X_{j^{\prime}} \rightarrow D_{j^{\prime}}, \varphi_{j^{\prime \prime}}: X_{j^{\prime \prime}} \rightarrow D_{j^{\prime \prime}}, j^{\prime}, j^{\prime \prime} \geq j$, be an L-structures on X_{j}. Then the transition functions $\varphi_{j^{\prime \prime}} \circ \varphi_{j^{\prime}}^{-1}: D_{j^{\prime}} \rightarrow D_{j^{\prime \prime}}$ and $\varphi_{j^{\prime}} \circ \varphi_{j^{\prime \prime}}^{-1}: D_{j^{\prime \prime}} \rightarrow D_{j^{\prime}}$ will arise. Let's suppose that each of them is an FQL-mapping between affine bundles $\xi_{j^{\prime}}=$ $=\left(Y_{j^{\prime}}, P_{j^{\prime}}, B_{j^{\prime}}\right)$ and $\xi_{j^{\prime \prime}}=\left(Y_{j^{\prime \prime}}, P_{j^{\prime \prime}}, B_{j^{\prime \prime}}\right)$, i.e., an FQL-mapping in charts of $\xi_{j^{\prime}}$ and $\xi_{j^{\prime \prime}}$ in sense of Definition 1.2. In this case we shall say that two L-structures on X_{j} are equal.

Definition 2.1. A class of equivalent L-structures on X_{j} is called an FQLstructure on X_{j}.

Obviously, the FQL-structure on X_{j+1} induces an FQL-structure on X_{j}, too. The FQL-structures on X_{j} and X_{j+1} are called coordinated, if the FQL-structure on X_{j} coincides with the induced structure.

Definition 2.2. A collection of FQL-structures on $X_{j}, j=1,2,3, \ldots$, which are coordinated between each other is called an FQL-structure on X.

The Banach manifold X with FQL-structure is called FQL-manifold.
Now, let us define an FQL and FSQL-mappings between FQL-manifolds.
Let X, X^{\prime} be FQL-manifolds,

$$
\forall j: \quad X_{j} \subset X_{j+1}, \quad X=\bigcup X_{j} \quad \text { and } \quad \forall i: \quad X_{i}^{\prime} \subset X_{i+1}^{\prime}, \quad X^{\prime}=\bigcup X_{i}^{\prime} .
$$

In addition, let $\left(\varphi_{j}, X_{j}\right),\left(\varphi_{i}^{\prime}, X_{i}^{\prime}\right)$ be L-charts on X, X^{\prime} and $\varphi_{j}\left(X_{j}\right)=$ $=D_{j}, \quad \varphi_{i}^{\prime}\left(X_{i}^{\prime}\right)=D_{i}^{\prime} \quad$ be the bounded domains of $\quad \xi_{j}=\left(Y_{j}, P_{j}, B_{j}\right)$ and $\xi_{i}^{\prime}=$ $=\left(Y_{i}^{\prime}, P_{i}^{\prime}, B_{i}^{\prime}\right)$, respectively.

Definition 2.3. A continuous mapping $f: X \rightarrow X^{\prime}$ between FQL-manifolds X and X^{\prime} is called a Fredholm Quasi-Linear (FQL), if
a) $\forall j \exists i: f\left(X_{j}\right) \subset X_{i}^{\prime}$;
b) $\varphi_{i}^{\prime} \circ f \circ \varphi_{j}^{-1}: D_{j} \rightarrow D_{i}^{\prime}$ are FQL-mappings in charts of affine bundles ξ_{j} and ξ_{i}^{\prime} (in sense of Definition 1.2).

Definition 2.4. A continuous mapping $\quad f_{j i}=Y_{j} \rightarrow Y_{i}^{\prime}$ is called a Fredholm Special Linear (FSL) mapping between affine bundles ξ_{j} and ξ_{i}^{\prime}, if there exist subbundles $\xi_{j, r}=\left(Y_{j}, P_{j, r}, B_{j, r}\right)$ of ξ_{j} and $\xi_{i, r}^{\prime}=\left(Y_{i}^{\prime}, P_{i, r}^{\prime}, B_{i, r}^{\prime}\right)$ of $\xi_{i}^{\prime} \quad$ (respectively), with identical dimension r of base spaces, such that $f_{j i}$ is a bimorphism between $\xi_{j, r}$ and $\xi_{i, r}^{\prime}$.

In this case we will denote $f_{j i}$ by $f_{j i, r}$. The restriction of FSL-mapping onto any domain $D_{j}, \bar{D}_{j} \subset Y_{j}$ shall be named an FSL-mapping, too.

Definition 2.5. A continuous mapping $\quad f_{j i}=Y_{j} \rightarrow Y_{i}^{\prime}$ is called a Fredholm Special Quasi-Linear (FSQL) mapping between affine bundles ξ_{j} and ξ_{i}^{\prime}, if there exists
a sequence of FSL-mappings $f_{j i, r}=Y_{j} \rightarrow Y_{i}^{\prime}, \quad r=1,2,3, \ldots$, which uniformly converges to $f_{j i}$ in each bounded domain $D_{j} \subset Y_{j}$ and estimates (1.1) are satisfied.

Definition 2.6. A continuous mapping $f: X \rightarrow X^{\prime}$ between FQL-manifolds X and X^{\prime} is called a Fredholm Special Quasi-Linear (FSQL), if
a) $\forall j \exists i, f\left(X_{j}\right) \subset X_{i}^{\prime}$;
b) $\varphi_{i}^{\prime} \circ f \circ \varphi_{j}^{-1}: D_{j} \rightarrow D_{i}^{\prime}$ is an FSQL-mapping between ξ_{j} and ξ_{i}^{\prime}.

As it was mentioned in introduction, the proof of identity of FQL and FSQLmappings is given in [1].
3. Example of FQL-manifold (in case of $\boldsymbol{m}<\boldsymbol{n})$. Let be $X=H_{s}(\mathbf{M}, \mathbf{N})$, where \mathbf{M}, \mathbf{N} are the compact smooth manifolds of the dimensions m, n ($m<n$) respectively and \mathbf{N} has no boundary. Besides, let \mathbf{N} be embedded in $R^{2 n+13}$. Obviously, on X one can introduce the smooth structure [5]; the Hilbert real space $H_{s}\left(\mathbf{M}, R^{n}\right)$ will be its tangential space.

Now let's introduce an FQL-structure on X. Suppose that X is naturally embedded in $H_{s}\left(\mathbf{M}, R^{2 n+1}\right), \quad X_{j}=\left\{u \in X \mid\|u\|_{s}<j\right\}$, where j and s are the natural numbers, and $\left\|\|_{s}\right.$ is a norm in $\left.H_{s}\left(\mathbf{M}, R^{2 n+1}\right)\right)$. In order to solve this problem we shall construct an affine bundle $\left(Y_{j}, P_{j}, B_{j}\right)$ with finite-dimensional base space B_{j}, shall pick out a bounded domain D_{j} in Y_{j}, shall construct homeomorphisms Φ_{j} : $D_{j} \rightarrow X_{j} \quad(L$-charts), $\quad j=1,2,3, \ldots, \quad$ and also shall prove that homeomorphisms $\Phi_{i}^{-1} \circ \Phi_{j}: D_{j} \rightarrow D_{i}$ are FQL-mappings.

Lemma 3.1. If $m<n$, then

$$
\exists \gamma(j, s)>0 \quad \forall u \in X_{j} \quad \exists y(u) \in \mathbf{N}: \quad \rho(y, u) \geq \gamma,
$$

where $\rho(y, u)=\min _{x}\{\rho(y, u(x))\}$, and $\rho(y, u(x))$ is a distance between y and $u(x), x \in \mathbf{M}$, on \mathbf{N}.

Proof. Let's suppose the contrary:

$$
\forall \gamma>0 \quad \exists u_{\gamma} \in X_{j} \quad \forall y \in \mathbf{N}: \quad \rho\left(y, u_{\gamma}\right)<\gamma,
$$

so, $u_{\gamma}(\mathbf{M})$ is a γ-network of \mathbf{N}. For simplicity, let's suppose that $n=m+1$. Let K be an $(m+1)$-dimensional unit cube, homeomorphic to a (closed) domain of \mathbf{N}. Besides, let k be a cube, belonging to K with the same dimension, its sides are parallel to the relevant sides of K and the distance between them is γ.

Remark 3.1. On the contrary assumption, a part of surface $u_{\gamma}(\mathbf{M})$, which is the γ-network of k, will belong to K .

Let's take m-dimensional sections of k in form of m-dimensional planes, which are parallel to a m-dimensional side of k and are on a distance of 2γ from

[^2]each other. On the opposite assumption, between two (such) next planes has to be part of surface $u_{\gamma}(\mathbf{M})$. The m-dimensional volume of each similar part will be more or equal to $(1-2 \gamma)^{m}$. A number of such parts is not less than $\left[\frac{1}{2 \gamma}\right]$ ([•] shows the whole part of the number). Therefore, the total volume of all similar parts will be more or equal to $\left(\left[\frac{1}{2 \gamma}\right]\right) \cdot(1-2 \gamma)^{m}$. Obviously, $\left(\left[\frac{1}{2 \gamma}\right]\right) \cdot(1-2 \gamma)^{m} \rightarrow \infty$ at $\gamma \rightarrow 0$, so, the volume of surface $u_{\gamma}(\mathbf{M}), u_{\gamma} \in X_{j}$, will increase infinitely at $\gamma \rightarrow 0$. On the other hand, as
$$
\forall u \in X_{j}: \quad\|u\|_{C^{\prime}} \leq c \cdot\|u\|_{s}<c \cdot j .
$$

Then

$$
\forall u \in X_{j}: \quad V_{m}(u) \leq c \cdot j \cdot V_{m}(\mathbf{M}),
$$

where $V_{m}(u), V_{m}(\mathbf{M})$ are m-dimensional volumes of $u(\mathbf{M})$ and \mathbf{M} respectively, and c there is a constant which is not dependent from $u \quad\left(u \in X_{j}\right)$. In other words, all the numbers $V_{m}(u), u \in X_{j}$, are bounded from above (by $c \cdot j \cdot V_{m}(\mathbf{M})$). This paradox proves the contention of lemma.

Now we shall start construction of FQL-structure on $H_{s}(\mathbf{M}, \mathbf{N})$. Let $\left\{x_{1}, \ldots, x_{N}\right\}$ be a δ-network of \mathbf{M}. Let's assign $\quad p_{N}(u)=\left(u\left(x_{1}\right), \ldots, u\left(x_{N}\right)\right) \in[\mathbf{N}]^{N}$ to each mapping $u \in X_{j}{ }^{4}$. Let

$$
\begin{gathered}
B_{j}=\left\{\bar{y}=\left(y_{1}, \ldots, y_{N}\right) \in[\mathbf{N}]^{N} \mid \exists u \in X_{j}:\right. \\
\left.u\left(x_{1}\right)=y_{1}, u\left(x_{2}\right)=y_{2}, \ldots, u\left(x_{N}\right)=y_{N}\right\} .
\end{gathered}
$$

Obviously, B_{j} is a domain in $[\mathbf{N}]^{N}$, therefore it will also be a manifold of dimension $n \cdot N$.

Now for every point $\bar{y} \in B_{j}$ we shall construct mapping $H_{S}(\mathbf{M}, \mathbf{N}), U_{\bar{y}}\left(x_{i}\right)=$ $=y_{i}, \quad i=\overline{1, N}$, as follows: Let $\bar{U}_{\bar{y}}: \mathbf{M} \rightarrow R^{2 n+1}$ be such a mapping that, $U_{\bar{y}}\left(x_{i}\right)=$ $=y_{i}, \quad i=\overline{1, N}$, and in addition, $\left\|\bar{U}_{\bar{y}}\right\|_{s}$ has a minimum among all such mappings. Such a mapping $\bar{U}_{\bar{y}}(x)$ exists, is unique and continuously depends on \bar{y}; it results from convexity of function $u \mapsto\|u\|_{s}^{2}$. In this case, $\left\|\bar{U}_{\bar{y}}\right\|_{s}<j$, because according to the construction, there exists such a mapping $u \in X_{j}$ that $p_{N}(u)=\bar{y}$, and $\left\|\bar{U}_{\bar{y}}\right\|_{s} \leq$ $\leq\|u\|_{s}$ for each similar $u(x)$.

[^3]As known, \mathbf{N} has a tubular neighborhood in $R^{2 n+1}$. Let's denote its radius by ε $(\varepsilon>0)$. There exists a nearest point $\pi(y) \in \mathbf{N}$ for each point y from this neighborhood. Moreover, the mapping $y \mapsto \pi(y)$ is smooth, surjective and non-degenerative. Let

$$
u \in H_{s}\left(\mathbf{M}, R^{2 n+1}\right), \quad\|u\|_{s}<j
$$

As $\|u\|_{C^{1}} \leq K \cdot\|u\|_{s}$ at sufficiently greater s, then $\|u\|_{C^{1}} \leq K \cdot j$. Therefore,

$$
\forall x \in \mathbf{M}:\left\|u^{\prime}(x)\right\|_{R^{2 n+1}}<K \cdot j
$$

Then

$$
\begin{gathered}
\forall x^{\prime}, x^{\prime \prime} \in \mathbf{M}: \quad \forall u \in H_{s}\left(\mathbf{M}, R^{2 n+1}\right): \\
\|u\|_{s}<j\left\|u\left(x^{\prime}\right)-u\left(x^{\prime \prime}\right)\right\|_{R^{2 n+1}}<K \cdot j \cdot d\left(x^{\prime}, x^{\prime \prime}\right),
\end{gathered}
$$

where d is the distance on \mathbf{M}. Therefore,

$$
\begin{gathered}
\forall x^{\prime}, x^{\prime \prime} \in \mathbf{M}: \quad \forall u \in H_{s}\left(\mathbf{M}, R^{2 n+1}\right): \\
\|u\|_{s}<j\left\|u\left(x^{\prime}\right)-u\left(x^{\prime \prime}\right)\right\|_{R^{2 n+1}}<\varepsilon
\end{gathered}
$$

when $d\left(x^{\prime}, x^{\prime \prime}\right)<\delta(\delta=\varepsilon /(K \cdot j))$. Let $x \in \mathbf{M}$. Obviously,

$$
\exists i: \quad d\left(x, x_{i}\right)<\delta .
$$

Therefore,

$$
\forall u \in H_{s}\left(\mathbf{M}, R^{2 n+1}\right): \quad\|u\|_{S}<j\left\|u(x)-u\left(x_{i}\right)\right\|_{R^{2 n+1}}<\varepsilon .
$$

As a result of that $u(x), u \in H_{s}\left(\mathbf{M}, R^{2 n+1}\right)$, belongs to the ε-tubular neighborhood of \mathbf{N} (in $R^{2 n+1}$) when $\|u\|_{s}<j$ and $u\left(x_{i}\right) \in \mathbf{N}, i=\overline{1, N}$. Therefore it is possible to project it smoothly on \mathbf{N} (by help of π). As $\left\|\bar{U}_{\bar{y}}\right\|<j$, then all of this is true also for $\bar{U}_{\bar{y}}$. Let $U_{\bar{y}}(x)=\pi \circ \bar{U}_{\bar{y}}(x)$. According to the construction, this mapping belongs to $p_{N}^{-1}(\bar{y})$, so, $U_{\bar{y}}\left(x_{i}\right)=y_{i}, i=\overline{1, N}$.

Remark 3.2. Due to the smoothness of $\pi,\left\|U_{\bar{y}}\right\|_{s} \leq C \cdot\left\|\bar{U}_{\bar{y}}\right\|_{s}<C \cdot j$. Thus, $U_{\bar{y}} \notin X_{j}$, but $U_{\bar{y}} \in X_{C \cdot j}$.

Let $\exp _{y}: T_{y} \mathbf{N} \rightarrow \mathbf{N}$ be the exponential mapping. Obviously, $\exp _{y}$ is diffeomorphism between some neighborhoods of zero (in $T_{y} \mathbf{N}$) and of point $y \in \mathbf{N}$. Let's denote these neighborhoods by $\delta_{1}(y)$ and $\varepsilon_{1}(y)$, relatively. We can suppose that $\varepsilon_{1}(y)$ and $\delta_{1}(y)$ are independent from $y \in \mathbf{N}$, as $\exp _{y}$ is smooth and \mathbf{N} is compact.

Analogously to proved above, one can show that the ε_{1}-neighborhood of $U_{\bar{y}}(x)$, $\bar{y} \in B_{j}$ includes all $u(x)$ from $p_{N}^{-1}\left(p_{N}\left(U_{\bar{y}}\right)\right) \cap X_{C \cdot j}$ when δ is small enough.

Let $\bar{y}_{0} \in B_{j}$. Let's take n of vector fields in neighborhood of $U_{\bar{y}_{0}}(x)$, which are tangential to \mathbf{N}, orthogonal to each other and have the unit length. Let's denote them by $\vec{g}_{1}(y), \ldots, \vec{g}_{n}(y)$. According to the Lemma 3.1 this vector fields will be defined lengthways of each $U_{\bar{y}}(x)$, where $\bar{y} \in \theta_{\bar{y}_{0}}$, and $\theta_{\bar{y}_{0}}$ is γ-neighborhood of point $\quad \bar{y}_{0}$ in $B_{j} . \quad B_{j}$ can be covered by help of finite-number of similar γ neighborhoods, because it is relatively compact and finite-dimensional. Let's denote them by $\theta_{\bar{y}_{1}}, \ldots, \theta_{\bar{y}_{l}}$, where $\bar{y}_{1}, \ldots, \bar{y}_{l}$ are some points from B_{j}. Let

$$
F^{N}=\left\{\vec{v} \in \mathbf{M} \rightarrow R^{n} \mid \vec{v} \in H_{s}, \vec{v}\left(x_{1}\right)=\ldots=\vec{v}\left(x_{N}\right)=0\right\} ;
$$

it is a linear subspace of $H_{s}\left(\mathbf{M}, R^{n}\right)$ of finite co-dimension $n N$, where $\left\{\vec{e}_{1}, \ldots, \vec{e}_{n}\right\}$ is an orthonormal basis in R^{n}. Obviously, any function $\vec{v} \in F^{N}$ has the following form in this basis:

$$
\vec{v}(x)=v_{1}(x) \cdot \vec{e}_{1}+\ldots+v_{n}(x) \cdot \vec{e}_{n},
$$

where $v_{k}(k), k=\overline{1, n}$, is a scalar function, $v_{k} \in H_{s}\left(\mathbf{M}, R^{1}\right), v_{k}\left(x_{i}\right)=0, k=\overline{1, n}$, $i=\overline{1, N}$.

Let's consider the mapping

$$
\Phi_{p}: \theta_{\bar{y}_{p}} \times F^{N} \rightarrow p_{N}^{-1}\left(\theta_{\bar{y}_{p}}\right), \quad \Phi_{p}(\bar{y}, \vec{v})(x)=\exp _{U_{\bar{y}(x)}} \vec{g}(x), \quad p=\overline{1, l}
$$

where

$$
\vec{g}(x)=v_{1}(x) \cdot \vec{g}_{1}\left(U_{\bar{y}}(x)\right)+\ldots+v_{n}(x) \cdot \vec{g}_{n}\left(U_{\bar{y}}(x)\right) .
$$

Obviously,

1) $\Phi_{p}\left(\bar{y}^{\prime}, \vec{v}\right) \neq \Phi_{p}\left(\bar{y}^{\prime \prime}, \vec{w}\right) \quad \forall \vec{v}, \vec{w} \in F^{N} \quad$ at $\quad \bar{y}^{\prime} \neq \bar{y}^{\prime \prime}, \quad \bar{y}^{\prime}, \bar{y}^{\prime \prime} \in \theta_{\bar{y}_{p}}$, as (according to construction) $\Phi_{p}\left(\bar{y}^{\prime}, \vec{v}\right) \in p_{N}^{-1}\left(\bar{y}^{\prime}\right)$, and $\Phi_{p}\left(\bar{y}^{\prime \prime}, \vec{w}\right) \in p_{N}^{-1}\left(\bar{y}^{\prime \prime}\right)$;
2) $\Phi_{p}(\bar{y}, \vec{v}) \neq \Phi_{p}(\bar{y}, \vec{w}) \quad \forall \bar{y} \in \theta_{\bar{y}_{p}} \quad \forall p=\overline{1, l}$ at $\|\vec{v}\|_{C}<\delta_{1},\|\vec{w}\|_{C}<\delta_{1}$ and $\vec{v} \neq \vec{w}$, as $\exp _{y}$ is diffeomorphism in δ_{1}-neighborhood of $0_{y} \in T_{y} \mathbf{N}$.

It follows from here that $\Phi_{p}, \quad p=\overline{1, l}$, is a diffeomorphism between $\theta_{\bar{y}_{p}} \times$ $\times\left\{\vec{v} \in F^{N} \mid\|\vec{v}\|_{C}<\delta_{1}\right\} \quad$ and neighborhood $\left\{u(x) \mid\left\|U_{\bar{y}}(x)-u(x)\right\|_{C}<\varepsilon_{1}\right\}$, where $\bar{y} \in \theta_{\bar{y}_{p}}, \quad p_{N}\left(u\left(x_{i}\right)\right)=p_{N}\left(U_{\bar{y}}\left(x_{i}\right)\right), \quad i=\overline{1, N}$. According to the construction, this neighborhood contains the set $p_{N}^{-1}\left(\theta_{\bar{y}_{p}}\right) \cap X_{j}$. Obviously, $D_{p}=$ $=\Phi_{p}^{-1}\left(p_{N}^{-1}\left(\theta_{\bar{y}_{p}}\right) \cap X_{j}\right)$ is a bounded domain in $\theta_{\bar{y}_{p}} \times F^{N}$. Let's paste $D_{p}, D_{p^{\prime}}$, $p, p^{\prime}=\overline{1, l}$, by the help of $\Phi_{p^{\prime}}^{-1} \circ \Phi_{p}$; as a result we shall receive some set D_{j}.

Let's construct an affine bundle, in which D_{j} will be a bounded domain. Let $\vec{g}_{1, p}(y), \ldots, \vec{g}_{n, p}(y)$ and $\vec{g}_{1, p^{\prime}}(y), \ldots, \vec{g}_{n, p^{\prime}}(y)$ be the two vector fields, defined (as
above) in neighborhoods of $U_{\bar{y}_{p}}(x)$ and $U_{\bar{y}_{p^{\prime}}}(x)$ respectively and $\bar{y} \in \theta_{\bar{y}_{p}} \cap \theta_{\bar{y}_{p^{\prime}}}$. Besides, let $\lambda_{p, p^{\prime}, \bar{y}}(x)$ be an orthogonal matrix, which transforms the first basis into the second in the point $y=U_{\bar{y}}(x)$. The diffeomorphism $\Phi_{p^{\prime}}^{-1} \circ \Phi_{p}$ will transform $(\bar{y}, \vec{v}) \in \theta_{\bar{y}_{p}} \times F^{N}$ into $(\bar{y}, \vec{w}) \in \theta_{\bar{y}_{p^{\prime}}} \times F^{N}$, where

$$
\begin{equation*}
\vec{w}(x)=\lambda_{p, p^{\prime}, \bar{y}}(x) \cdot \vec{v}(x) . \tag{3.1}
\end{equation*}
$$

The function (3.1) is a linear isomorphism, which smoothly depends on $\bar{y} \in$ $\in \theta_{\bar{y}_{p}} \cap \theta_{\bar{y}_{p^{\prime}}}$. Pasting all $\theta_{\bar{y}_{p}} \times F^{N}, \quad p=\overline{1, l}$, by the help of $\Phi_{p^{\prime}}^{-1} \circ \Phi_{p}$, we shall receive an affine bundle, which we will denote by $\left(Y_{j}, P_{j}, B_{j}\right)$. According to the construction, D_{j} will be the bounded domain in Y_{j}. Now let's paste $\Phi_{1}, \ldots, \Phi_{l}$ by the help of transition functions; as a consequence we shall receive one diffeomorphism between D_{j} and X_{j}, which we shall denote by Φ_{j}. Thus, construction of the L-chart $\left(\Phi_{j}^{-1}, X_{j}\right)$ on X_{j} is finished.

Now we shall show that L-structures on X_{j} and X_{i} are coordinated for different j and i. For this purpose it is enough to prove that transition function $\Phi_{i}^{-1} \circ \Phi_{j}$ is a FQL-mapping between affine bundles $\left(Y_{j}, P_{j}, B_{j}\right)$ and $\left(Y_{i}, P_{i}, B_{i}\right)$. Let $\left(x_{1}, \ldots\right.$ $\left.\ldots, x_{N}\right),\left(x_{1}^{\prime}, \ldots, x_{L}^{\prime}\right)$ be points from \mathbf{M}, which have been used at definition of L structures on $X_{j}, \quad X_{i}$ and $\bar{y}=\left(y_{1}, \ldots, y_{N}\right), \quad \bar{y}^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{L}^{\prime}\right)$ be points from B_{j}, B_{i} respectively. Moreover, let $U_{\bar{y}}(x), U_{\bar{y}^{\prime}}(x)$ be mappings, constructed by the help of above mentioned method, $\vec{g}_{1}(y), \ldots, \vec{g}_{n}(y)$ and $\vec{g}_{1}^{\prime}(y), \ldots, \vec{g}_{n}^{\prime}(y)$ be the vector fields, defined (as above) in the neighborhoods of $U_{\bar{y}}(x), U_{\bar{y}^{\prime}}(x)$, respectively.

Let

$$
\begin{aligned}
F^{N} & =\left\{\overrightarrow{\mathrm{v}} \in H_{s}\left(\mathbf{M}, R^{n}\right) \| \overrightarrow{\mathrm{v}}\left(x_{1}\right)=\ldots=\overrightarrow{\mathrm{v}}\left(x_{N}\right)=0\right\} \\
F^{L} & =\left\{\overrightarrow{\mathrm{v}} \in H_{s}\left(\mathbf{M}, R^{n}\right) \| \overrightarrow{\mathrm{v}}\left(x_{1}^{\prime}\right)=\ldots=\overrightarrow{\mathrm{v}}\left(x_{L}^{\prime}\right)=0\right\}
\end{aligned}
$$

be vector subspaces of $H_{s}\left(\mathbf{M}, R^{n}\right.$, which are isomorphic to layers of affine bundles $\left(Y_{j}, P_{j}, B_{j}\right), \quad\left(Y_{i}, P_{i}, B_{i}\right)$ respectively. Without loss of generality, we can suppose that $\quad x_{m} \neq x_{r}^{\prime}, \quad m=\overline{1, N}, \quad r=\overline{1, L}$. Let

$$
[\mathbf{N}]^{N} F^{N+L}=\left\{\overrightarrow{\mathrm{v}} \in H_{s}\left(\mathbf{M}, R^{n}\right) \mid \overrightarrow{\mathrm{v}}\left(x_{m}\right)=\overrightarrow{\mathrm{v}}\left(x_{r}^{\prime}\right)=0, \quad m=\overline{1, N}, \quad r=\overline{1, L}\right\}
$$

Obviously, $F^{N}=F^{N+L}+F_{L}$, where F_{L} is orthogonal complement to F^{N+L} in F^{N} and $\theta_{\bar{y}_{p}} \times F^{N}=\left(\theta_{\bar{y}_{p}} \times F_{L}\right) \times F^{N+L}$. Pasting $\left(\theta_{\bar{y}_{p}} \times F_{L}\right) \times F^{N+L}, \quad p=\overline{1, l}$,
by the help of diffeomorphisms (3.1), we shall get a new affine bundle. Let's denote it by $\left(Y_{j}, P_{j i}, B_{j i}\right)$.

Let $(\bar{y}, \vec{z}) \in \theta_{\bar{y}_{p}} \times F_{L}$. Let's look at the function

$$
u(x)=\exp _{U_{\bar{y}}(x)}\left(\sum_{k=1}^{n}\left(z_{k}(x)+v_{k}(x)\right) \cdot \vec{g}_{k}\left(U_{\bar{y}}(x)\right)\right),
$$

where $v_{k}\left(x_{m}\right)=v_{k}\left(x_{r}^{\prime}\right)=0$, that is $\vec{v}=\left(v_{1}, \ldots, v_{n}\right) \in F^{N+L}$. For each such $u(x)$, $u\left(x_{m}\right)=y_{m}, u\left(x_{r}^{\prime}\right)=y_{r}^{\prime}, m=\overline{1, N}, r=\overline{1, L}$. Therefore,

$$
\exp _{U_{\vec{y}^{\prime}(x)}}^{-1} u(x)=\left(\bar{y}^{\prime}, \vec{w}(x)\right),
$$

where $\bar{y}^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{L}^{\prime}\right), \vec{w}(x)=\left(w_{1}(x), \ldots, w_{n}(x)\right)$. Thus $\Phi_{i}^{-1} \circ \Phi_{j}$ will transform the layer $P_{j i}^{-1}(\bar{y}, \vec{z})$ above (\bar{y}, \vec{z}) into the layer $P_{i}^{-1}\left(\bar{y}^{\prime}\right)$ above \bar{y}^{\prime}, where $\bar{y}^{\prime}=$ $=\left(u\left(x_{1}^{\prime}\right), \ldots, u\left(x_{L}^{\prime}\right)\right)$. Then it will transform $P_{j i}^{-1}\left(\theta_{\bar{y}, \vec{z}}\right)$ in $P_{i}^{-1}\left(\theta_{\bar{y}_{q}^{\prime}}\right)$, where $\bar{y}^{\prime} \in$ $\in \theta_{\vec{y}_{q}^{\prime}}, \theta_{\vec{y}_{q}^{\prime}}$ is a chart of a fixed atlas on B_{i}, and $\theta_{\bar{y}, \vec{z}}$ is a neighborhood of (\bar{y}, \vec{z}) in $B_{j i}$. This transition function has the following form:

$$
(\bar{y}, \vec{z}, \vec{v}) \mapsto\left(\bar{y}^{\prime}, \vec{w}\right)=\left(\bar{y}^{\prime},\left(w_{1}, \ldots, w_{n}\right)\right),
$$

where

$$
\bar{y}^{\prime}=\left(u\left(x_{1}^{\prime}\right), \ldots, u\left(x_{L}^{\prime}\right)\right), \quad u=\Phi_{j}(\bar{y}, \vec{z}+\vec{v}),
$$

and

$$
w_{k}(x)=\left(\vec{g}_{k}^{\prime}\left(U_{\vec{y}^{\prime}}(x)\right), \vec{h}(x)\right), \quad k=\overline{1, n},
$$

is the scalar product of vectors, tangential to \mathbf{N} in point $U_{\vec{y}}(x)$,

$$
\vec{h}(x)=\exp _{U_{\vec{y}}(x)}^{-1} u(x) \quad\left(\vec{h}(x) \in T_{U_{\vec{y}^{\prime}}(x)} \mathbf{N}\right) .
$$

It is obvious from the foresaid formulas that in charts of the mentioned affine bundles, the transition function $\Phi_{i}^{-1} \circ \Phi_{j}$ is given by an operator of superposition with smooth functions. As all used functions have gradients different from zero in all points, then according to the Theorem 6.3, such a function is an FQL-mapping. Therefore, it is an FQL-mapping between \boldsymbol{L}-charts on X_{j} and X_{i}. It follows from here that the structure included in X is Fredholm Quasi-Linear.
4. Example of FQL-manifold (the case $\boldsymbol{m} \geq \boldsymbol{n}$). For simplicity, let's suppose that $m<2 n$. Let $R^{4 n+2}=R^{2 n+1} \times R^{2 n+1}$, and $\mathbf{N}^{2}=\mathbf{N} \times \mathbf{N} \quad$ is embedded in $R^{4 n+2}$ such that \mathbf{N} is embedded in. Let $X=H_{s}(\mathbf{M}, \mathbf{N})$. Obviously, $X^{2}=$ $=H_{s}\left(\mathbf{M}, \mathbf{N}^{2}\right)$. Let $X_{j}^{2}=X_{j} \times X_{j}, \quad X_{j, 0}=X_{j} \times O \subset X_{j}^{2}, \quad$ where $\quad X_{j}=\{u \in X \mid$ $\left.\|u\|_{s}<j\right\}, O: \mathbf{M} \rightarrow 0$ and $\mathbf{N}_{0}=\mathbf{N} \times 0$, where 0 is the origin of $R^{4 n+2}$. In ad-
dition, let $\left\{x_{1}, \ldots, x_{N}\right\}$ be a δ-network of \mathbf{M}. Without loss of generality, also let's suppose that the origin of $R^{4 n+2}$ coincides with a point of \mathbf{N}_{0} and consequently, of \mathbf{N}^{2}. To each mapping $u=\left(u_{1}, u_{2}\right) \in X_{j}^{2}$ we shall assign the point

$$
p_{N^{2}}\left(u_{1}, u_{2}\right)=\left(\left(u_{1}\left(x_{1}\right), u_{2}\left(x_{1}\right)\right), \ldots,\left(u_{1}\left(x_{N}\right), u_{2}\left(x_{N}\right)\right)\right) \in\left[\mathbf{N}^{2}\right]^{\mathrm{N}},
$$

and to each mapping $\left(u_{1}, O\right) \in X_{j, 0}$, the point

$$
\tilde{p}_{N}\left(u_{1}, O\right)=\left(\left(u_{1}\left(x_{1}\right), O\right), \ldots,\left(u_{1}\left(x_{N}\right), O\right)\right) \in\left[\mathbf{N}_{0}\right]^{\mathrm{N}}
$$

Let

$$
\begin{gathered}
\tilde{B}_{j}=\left\{\tilde{y}=\left(y_{1}, y_{2}\right)=\left(\left(y_{11}, y_{21}\right), \ldots,\left(y_{1 N}, y_{2 N}\right)\right) \in\left[\mathbf{N}^{2}\right]^{\mathrm{N}} \mid \exists\left(u_{1}, u_{2}\right) \in X_{j}^{2}:\right. \\
\left.\left(u_{1}\left(x_{1}\right), u_{2}\left(x_{1}\right)\right)=\left(y_{11}, y_{21}\right), \ldots,\left(u_{1}\left(x_{N}\right), u_{2}\left(x_{N}\right)\right)=\left(y_{1 N}, y_{2 N}\right)\right\}, \\
B_{j, 0}=\left\{\left(y_{1}, 0\right)=\left(\left(y_{11}, 0\right), \ldots,\left(y_{1 N}, 0\right)\right) \in\left[\mathbf{N}_{0}\right]^{\mathrm{N}} \mid \exists\left(u_{1}, O\right) \in X_{j, 0}:\right. \\
\left.\left(u_{1}\left(x_{1}\right), 0\right)=\left(y_{11}, 0\right), \ldots,\left(u_{1}\left(x_{N}\right), 0\right)=\left(y_{1 N}, 0\right)\right\} .
\end{gathered}
$$

Obviously, $\tilde{B}_{j}\left(B_{j, 0}\right)$ is a domain in $\left[\mathbf{N}^{2}\right]^{\mathrm{N}}\left(\left[\mathbf{N}_{0}\right]^{\mathrm{N}}\right)$, therefore it is a $2 n N$ ($n N$)-dimensional manifold. Moreover, $B_{j, 0}$ will be submanifold of \tilde{B}_{j} and

$$
\forall\left(y_{1}, 0\right) \in B_{j, 0}: \tilde{p}_{N}^{-1}\left(y_{1}, 0\right) \subset p_{N^{2}}^{-1}\left(y_{1}, 0\right)
$$

Let's denote a mapping by Π, which transforms each point $\left(y_{1}, y_{2}\right)$ of the ε tubular neighborhood of \mathbf{N}^{2} (in $R^{4 n+2}$) into the nearest point of \mathbf{N}^{2}. By the help of the aforecited method (see, the case $m<n$) to each point $\tilde{y} \in \tilde{B}_{j}$ at first, we shall assign such a mapping $\bar{U}_{\tilde{y}}=\left(\bar{U}_{1, \dddot{y}}, \bar{U}_{2, \tilde{y}}\right) \in H_{s}\left(\mathbf{M}, R^{2 n+1} \times R^{2 n+1}\right)$ that $\bar{U}_{\tilde{y}}\left(x_{i}\right)=$ $=\left(y_{1 i}, y_{2 i}\right), \quad i=\overline{1, N}$, and later, we shall assign a mapping $U_{\tilde{y}}=\left(U_{1, \dddot{y}}, U_{2, \tilde{y}}\right)=$ $=\Pi\left(\bar{U}_{1, \dddot{y}}, \bar{U}_{2, \tilde{y}}\right) \in H_{s}\left(\mathbf{M}, \mathbf{N}^{2}\right)$, which also will satisfy the condition $U_{\tilde{y}}\left(x_{i}\right)=$ $=\left(y_{1 i}, y_{2 i}\right), i=\overline{1, N}$.

We need the following in advance.
Lemma 4.1. Let $\bar{U}_{\left(y_{1}, 0\right)}=\left(\bar{U}_{1,\left(y_{1}, 0\right)}, \bar{U}_{2,\left(y_{1}, 0\right)}\right) \in H_{s}\left(\mathbf{M}, R^{2 n+1} \times R^{2 n+1}\right)$ be a mapping such that $\bar{U}_{\left(y_{1}, 0\right)}\left(x_{i}\right)=\left(\bar{U}_{1,\left(y_{1}, 0\right)}\left(x_{i}\right), \bar{U}_{2,\left(y_{1}, 0\right)}\left(x_{i}\right)\right)=\left(y_{1 i}, 0\right), \quad i=\overline{1, N}$, and in addition, $\left\|\bar{U}_{\left(y_{1}, 0\right)}\right\|_{s}^{\prime}$ has a minimum among all such mappings. Then $\bar{U}_{2,\left(y_{1}, 0\right)} \equiv O$, in other words, such $\bar{U}_{\left(y_{1}, 0\right)}$ will belong to $H_{s}\left(\mathbf{M}, R^{2 n+1} \times R^{2 n+1}\right)$.

Here $\left\|\left(u_{1}, u_{2}\right)\right\|_{s}^{\prime}=\left\|u_{1}\right\|_{s}+\left\|u_{2}\right\|_{s}$ and $\left\|\|_{s}\right.$ are the norms in $H_{s}\left(\mathbf{M}, R^{4 n+1}\right)$ and $H_{s}\left(\mathbf{M}, R^{2 n+1}\right)$ respectively.

Proof. As $\left(y_{1 i}, 0\right) \in R^{2 n+1}, i=\overline{1, N}$, then obviously, such $\bar{U}_{\left(y_{1}, 0\right)}$ will belong to $H_{s}\left(\mathbf{M}, R^{2 n+1} \times 0\right)$.

According to the Lemma 4.1, the mapping $U_{\left(y_{1}, 0\right)}=\Pi \circ \bar{U}_{\left(y_{1}, 0\right)}$ will belong to $H_{s}\left(\mathbf{M}, \mathbf{N}_{0}\right)$.

Let $\tilde{y}_{0} \in \tilde{B}_{j}$. Let's take $2 n$ vector fields in neighborhood of $U_{\tilde{y}_{0}}(x)$, which are tangential to \mathbf{N}^{2}, orthogonal to each other and have the unit length. Let's denote them by $\vec{g}_{1}(y), \ldots, \vec{g}_{2 n}(y)$. According to the Lemma 3.1, these vector fields will be defined lengthways of each $U_{\tilde{y}}(x)$, where $\tilde{y} \in \tilde{\theta}_{\tilde{y}_{0}}$ and $\tilde{\theta}_{\tilde{y}_{0}}$ is γ-neighborhood of point $\quad \tilde{y}_{0}$ in \tilde{B}_{j}. One can cover \tilde{B}_{j} by the help of finite number of similar γ neighborhoods $\tilde{\theta}_{\tilde{y}_{1}}, \ldots, \tilde{\theta}_{\tilde{y}_{l^{\prime}}}\left(\tilde{y}_{1}, \ldots\right.$, are points from $\left.\tilde{B}_{j}\right)$, because \tilde{B}_{j} is relatively compact and finite-dimensional. Let $\theta_{p, 0}=\tilde{\theta}_{\tilde{y}_{p}} \cap B_{j, 0}, \quad p=\overline{1, l^{\prime}}$. Obviously, the collection $\left\{\left\{\theta_{1,0}, \ldots, \theta_{l^{\prime}, 0}\right\}\right.$ will cover $B_{j, 0}$. Let

$$
F^{2 N}=\left\{\overrightarrow{\mathrm{v}} \in H_{s}\left(\mathbf{M}, R^{2 n}\right) \mid \overrightarrow{\mathrm{v}}\left(x_{1}\right)=\ldots=\overrightarrow{\mathrm{v}}\left(x_{N}\right)=0\right\},
$$

it is a linear subspace of $H_{s}\left(\mathbf{M}, R^{2 n}\right)$ of finite co-dimension $2 n N$. Let $\left\{\vec{e}_{1}, \ldots, \vec{e}_{2 n}\right\}$ be an orthonormal basis in $R^{2 n}$. Obviously, each function $\vec{v} \in F^{2 N}$ will have in this basis the following form:

$$
\vec{v}(x)=v_{1}(x) \cdot \vec{e}_{1}+\ldots+v_{2 n}(x) \cdot \vec{e}_{2 n}
$$

Here $v_{k}(x), k=\overline{1,2 n}$, is a scalar function, $v_{k} \in H_{s}\left(\mathbf{M}, R^{1}\right), v_{k}\left(x_{i}\right)=0, k=\overline{1,2 n}$, $i=\overline{1, N}$. Let's consider a mapping

$$
\tilde{\Phi}_{p}: \tilde{\theta}_{\tilde{y}_{p}} \times F^{2 N} \rightarrow p_{N^{2}}^{-1}\left(\tilde{\theta}_{\tilde{y}_{p}}\right), \quad \tilde{\Phi}_{p}(\tilde{y}, \vec{v})(x)=\exp _{U_{\tilde{y}}(x)} \vec{g}(x), \quad p=\overline{1, l^{\prime}},
$$

where

$$
\begin{gather*}
\vec{g}(x)=v_{1}(x) \cdot \vec{g}_{1}\left(U_{\tilde{y}}(x)\right)+\ldots+v_{2 n}(x) \cdot \vec{g}_{2 n}\left(U_{\tilde{y}}(x)\right), \tag{4.1}\\
\tilde{y} \in \tilde{\theta}_{\bar{y}_{p}}, \quad p=\overline{1, l^{\prime}} .
\end{gather*}
$$

As in the case $m<n$, one can show that the $\tilde{\Phi}_{p}, p=\overline{1, l^{\prime}}$, is a diffeomorphism between $\tilde{\theta}_{\tilde{y}_{p}} \times\left\{\left\{\vec{v} \in F^{2 N} \mid\|\vec{v}\|_{C}<\delta_{1}\right\}\right.$ and neighborhood $\left\{u(x) \mid\left\|U_{\tilde{y}}(x)-u(x)\right\|_{C}<\right.$ $\left.<\varepsilon_{1}\right\}$, where $\tilde{y} \in \tilde{\theta}_{\tilde{y}_{p}}, \quad p_{N^{2}}\left(u\left(x_{i}\right)\right)=p_{N^{2}}\left(U_{\tilde{y}}\left(x_{i}\right)\right), \quad i=\overline{1, N}$. According to the construction, this neighborhood contains the set $p_{N^{2}}^{-1}\left(\tilde{\theta}_{\tilde{y}_{p}}\right) \cap X_{j}^{2}$.

Now let's construct such subbundle of $\tilde{\theta}_{\tilde{y}_{p}} \times F^{2 N}$, which $\tilde{\Phi}_{p}$ would transform onto $\quad \tilde{p}_{N}^{-1}\left(\theta_{p, 0}\right)$. Let $\tilde{T}_{\tilde{y}}, \tilde{y} \in \tilde{\theta}_{\bar{y}_{p}}$, be a space of mappings $\vec{g}: \mathbf{M} \rightarrow T \rightarrow T\left(\mathbf{N}^{2}\right)$ of
form (4.1). Obviously, it is linear and isomorphic to $F^{2 N}$. In addition, $\tilde{T}_{\tilde{y}^{\prime}} \cap$ $\cap \tilde{T}_{\tilde{y}^{\prime \prime}}=\varnothing$ at $\tilde{y}^{\prime} \neq \tilde{y}^{\prime \prime}$ and $\tilde{T}_{\tilde{y}}$ continuously depends on $\tilde{y} \in \tilde{\theta}_{\tilde{y}_{p}}$. Therefore, the family $\left\{\tilde{T}_{\tilde{y}} \mid \tilde{y} \in \tilde{\theta}_{\bar{y}_{p}}\right\}, \quad p=\overline{1, l^{\prime}} \quad$ will induce an affine bundle with the total space $\tilde{T}_{\tilde{y}_{p}}=\bigcup \tilde{T}_{\tilde{y}}, \quad \tilde{y} \in \tilde{\theta}_{\tilde{y}_{p}}$, with the layer $F^{2 N}$, with the projection $\tilde{P}_{\tilde{y}_{p}}(\vec{g})=\tilde{y}$ and the base space $\tilde{\theta}_{\bar{y}_{p}}$. Let's denote it by $\left(\tilde{T}_{\tilde{y}_{p}}, \tilde{\tilde{y}}_{\tilde{y}_{p}}, \tilde{\theta}_{\tilde{y}_{p}}\right)$. Obviously, the mapping

$$
\begin{gathered}
\tilde{G}_{p}: \tilde{\theta}_{\tilde{y}_{p}} \times F^{2 N} \rightarrow \tilde{T}_{\tilde{y}_{p}}, \quad \tilde{G}_{p}(\tilde{y}, \vec{v})=\vec{g}, \\
\tilde{y} \in \tilde{\theta}_{\tilde{y}_{p}}, \quad \vec{v} \in F^{2 N}, \quad p=\overline{1, l^{\prime}},
\end{gathered}
$$

will be an isomorphism between Cartesian product $\tilde{\theta}_{\tilde{y}_{p}} \times F^{2 N}$ and $\left(\tilde{T}_{\tilde{y}_{p}}, \tilde{P}_{\tilde{y}_{p}}, \tilde{\theta}_{\tilde{y}_{p}}\right)$.
Let $T_{\left(y_{1}, 0\right)}, \quad\left(y_{1}, 0\right) \in \theta_{p, 0}$ be a space of mappings $\vec{g}: \mathbf{M} \rightarrow T \rightarrow T\left(\mathbf{N}_{0}\right)$, where

$$
\bar{g}(x)=\sum_{k=1}^{2 n} v_{k}(x) \cdot \bar{g}_{k}\left(U_{\left(y_{1}, 0\right)}(x)\right), \quad\left(y_{1}, 0\right) \in \theta_{p, 0}, \quad \vec{v} \in F^{2 N}
$$

For each $\left(y_{1}, 0\right) \in \theta_{p, 0}, T_{\left(y_{1}, 0\right)}$ will be linear subspace of $\tilde{T}_{\tilde{y}}, \tilde{y} \in \tilde{\theta}_{\bar{y}_{p}}$, where $\tilde{y}=$ $=\tilde{y}=\left(y_{1}, 0\right)$. In addition, $T_{\left(y_{1}, 0\right)}$ continuously depends on $\left(y_{1}, 0\right) \in \theta_{p, 0}$ and $T_{\left(y_{1}^{\prime}, 0\right)} \cap T_{\left(y_{1}^{\prime \prime}, 0\right)}=\varnothing$, when $\quad\left(y_{1}^{\prime}, 0\right) \neq\left(y_{1}^{\prime \prime}, 0\right)$. Therefore, the family $\left\{T_{\left(y_{1}, 0\right)} \mid\right.$ $\left.\left(y_{1}, 0\right) \in \theta_{p, 0}\right\}=\varnothing, \quad p=\overline{1, l^{\prime}}$, will induce an affine bundle with the total space $T_{p, 0}=\bigcup T_{\left(y_{1}, 0\right)}, \quad\left(y_{1}, 0\right) \in \theta_{p, 0}$, with the projection $\quad P_{p, 0}(\vec{g})=\left(y_{1}, 0\right) \quad$ and the base space $\theta_{p, 0}$. Let's denote it by $\left(T_{p, 0}, P_{p, 0}, \theta_{p, 0}\right)$. According to the construction, it will be a subbundle of $\left(\tilde{T}_{\tilde{y}_{p}}, \tilde{P}_{\tilde{y}_{p}}, \tilde{\theta}_{\tilde{y}_{p}}\right)$. As \tilde{G}_{p} is the isomorphism, then $\tilde{G}_{p}^{-1}\left(T_{p, 0}\right)$ will be an affine subbundle of $\theta_{p, 0} \times F^{2 N}$. According to the construction, the mapping $\tilde{\Phi}_{p}$ will transform $\tilde{G}_{p}^{-1}\left(T_{p, 0}\right)$ onto $\tilde{p}_{N}^{-1}\left(\theta_{p, 0}\right)$. Obviously, $\tilde{D}_{p}=$ $=\tilde{\Phi}_{p}^{-1}\left(p_{N^{2}}^{-1}\left(\tilde{\theta}_{\tilde{y}_{p}}\right) \cap X_{j}^{2}\right) \quad\left(\right.$ and also $D_{p, 0}=\tilde{\Phi}_{p}^{-1}\left(\tilde{p}_{N}^{-1}\left(\theta_{p, 0}\right) \cap\left(X_{j, 0}\right)\right)$ is a bounded domain in $\tilde{\theta}_{\tilde{y}_{p}} \times F^{2 N}$ (accordingly, in $\tilde{G}_{p}^{-1}\left(T_{p, 0}\right)$). Let's paste \tilde{D}_{p} and $\tilde{D}_{p^{\prime}}$ (and also $D_{p, 0}$ and $\left.D_{p^{\prime}, 0}\right), p, p^{\prime}=\overline{1, l^{\prime}}$, by the help of mappings $\tilde{\Phi}_{p^{\prime}}^{-1} \circ \tilde{\Phi}_{p}$; as a result we shall receive a set \tilde{D}_{j} (accordingly, $D_{j, 0}$).

Now let's construct such two affine bundles that in one of them each \tilde{D}_{j} and in the other each $D_{j, 0}$ will be a bounded domain. Let $\vec{g}_{1, p}(y), \ldots, \vec{g}_{2 n, p}(y)$ and $\vec{g}_{1, p^{\prime}}(y), \ldots, \vec{g}_{2 n, p^{\prime}}$ are vector fields, defined (as above) in neighborhoods of $U_{\tilde{y}_{p}}(x)$ and $U_{\bar{y}_{p^{\prime}}}(x)$, respectively. Let $\tilde{y} \in \tilde{\theta}_{\tilde{y}_{p}} \cap \tilde{\theta}_{\tilde{y}_{p^{\prime}}}$ and $\mu_{p, p^{\prime}, \tilde{y}}(x)$ is an orthogonal matrix, which transforms the first basis onto second basis in point $y=U_{\tilde{y}}(x)$. The dif-
feomorphism $\quad \tilde{\Phi}_{p^{\prime}}^{-1} \circ \tilde{\Phi}_{p} \quad$ will transform the element $\quad(\tilde{y}, \vec{v}) \in \tilde{\theta}_{\tilde{y}_{p}} \times F^{2 N}$ into $(\tilde{y}, \vec{w}) \in \tilde{\theta}_{\tilde{y}_{p^{\prime}}} \times F^{2 N}$, where

$$
\begin{equation*}
\vec{w}(x)=\mu_{p, p^{\prime}, \tilde{y}}(x) \cdot \vec{v}(x) . \tag{4.2}
\end{equation*}
$$

The function (4.2) is the linear isomorphism, smoothly depending on $\tilde{y} \in$ $\in \tilde{\theta}_{\tilde{y}_{p}} \cap \tilde{\theta}_{\tilde{y}_{p^{\prime}}}$. Pasting together all $\tilde{\theta}_{\tilde{y}_{p}} \times F^{2 N}$ (and also all $\tilde{G}_{p}^{-1}\left(T_{p, 0}\right)$), $p=\overline{1, l^{\prime}}$, by the help of mappings $\tilde{\Phi}_{p^{\prime}}^{-1} \circ \tilde{\Phi}_{p}$, we shall receive an affine bundle (accordingly, a subbundle). Let's denote it by $\left(\tilde{Y}_{j}, \tilde{P}_{j}, \tilde{B}_{j}\right)$ (accordingly, by $\left(Y_{j, 0}, P_{j, 0}, B_{j, 0}\right)$). According to the construction, \tilde{D}_{j} (and also $D_{j, 0}$) will be the bounded domain in Y_{j} (accordingly, in $Y_{j, 0}$).

Now we shall paste together $\tilde{\Phi}_{1}, \ldots, \tilde{\Phi}_{l}$ by the help of transition functions; as a consequence we shall receive one diffeomorphism between \tilde{D}_{j} (and also $D_{j, 0}$) and X_{j}^{2} (accordingly, $X_{j, 0}$), which we will denote by $\tilde{\Phi}_{j}$. Thus, the construction of the L-chart $\left(\Phi_{j}^{-1}, X_{j}^{2}\right)$ (and also $\left(\tilde{\Phi}_{j}^{-1}, X_{j, 0}\right)$) on $X_{j}^{2} \quad$ (accordingly, on $X_{j, 0}$), is completed.

Similarly to the case $m<n$, the transition function between affine bundles $\left(\tilde{Y}_{j}, \tilde{P}_{j}, \tilde{B}_{j}\right)$ and $\left(\tilde{Y}_{i}, \tilde{P}_{i}, \tilde{B}_{i}\right)$ will be an FQL-mapping. Therefore, the L-structures on X_{j}^{2} and $X_{i}^{2}, j \neq i$, will be coordinated. It follows from here that $\tilde{\Phi}_{i}^{-1} \circ \tilde{\Phi}_{j}$ will be an FQL-mapping between subbundles $\left(Y_{j, 0}, P_{j, 0}, B_{j, 0}\right)$ and $\left(Y_{i, 0}, P_{i, 0}, B_{i, 0}\right)$, too. In other words, the L-structures on $X_{j, 0}$ and $X_{i, 0}, j \neq i$, also will be coordinated. Thus, the structure, introduced in X, will also be Fredholm Quasi-Linear.

Remark. It is obvious from all of the above-established facts that at $(n-1) \cdot k \leq$ $\leq m<n \cdot k, k \geq 3$, all constructions and proofs will be similar to the case $m<2 n$.
5. A degree of FSQL-mapping. At the definition of the degree of FSQL-mapping between FQL-manifolds we shall consider a more simple case, namely when the following conditions are satisfied:
(1) FQL-manifolds X and X^{\prime} are embedded in Banach spaces E_{1} and E_{2}, respectively.
(2) The open sets X_{j} and X_{i}^{\prime} (see, the definition of FQL-manifold) have forms $X_{j}=X \cap B_{1}\left(R_{j}\right)$ and $X_{i}^{\prime}=X^{\prime} \cap B_{2}\left(r_{i}\right)$, where $B_{1}\left(R_{j}\right)$ and $B_{2}\left(r_{i}\right)$ are the open balls in E_{1} and E_{2} with centers at zero and of the radiuses R_{j} and r_{i}, respectively, $R_{j}, r_{i} \rightarrow \infty$, when $j, i \rightarrow \infty$.
(3) For each j and i, the L-charts $\varphi_{j}, \varphi_{j}^{-1}, \varphi_{i}^{\prime},\left(\varphi_{i}^{\prime}\right)^{-1}$ are uniformly continuous.
(4) FSQL-mapping $f: X \rightarrow X^{\prime}$ satisfies the following a priori estimate

$$
\begin{equation*}
\|x\|_{1} \leq \Phi\left(\|f(x)\|_{2}\right), \tag{5.1}
\end{equation*}
$$

where Φ is a positive monotone function, and $\|\cdot\|_{1},\|\cdot\|_{2}$ are norms in E_{1} and E_{2}, respectively.

Now we shall start defining the degree of FSQL-mapping $f: X \rightarrow X^{\prime}$. For simplicity let's suppose that Φ is the identical mapping. Let's consider the equation

$$
\begin{equation*}
f(x)=x_{0}^{\prime}, \quad x_{0}^{\prime} \in X^{\prime} . \tag{5.2}
\end{equation*}
$$

When condition (5.1) is satisfied, all the solutions of the equation (5.2) will belong to $X_{R_{0}}=X \cap B_{1}\left(R_{0}\right), \quad R_{0}=\left\|x_{0}^{\prime}\right\|_{2}$. According to the assumption,

$$
\exists j_{0} \quad \forall j \geq j_{0}: \quad X_{j} \supset X_{R_{0}}
$$

and according to the Definition 2.6,

$$
\exists i_{0} \quad \forall i \geq i_{0}: \quad f\left(X_{j}\right) \subset X_{i}^{\prime} .
$$

Let j and i be numbers, for which all above mentioned conditions are satisfied. Then, while defining $\operatorname{deg}(f)$ in the point $x_{0}^{\prime} \in X^{\prime}$ we may consider the restriction of the mapping f onto X_{j}. As φ_{j} and φ_{i}^{\prime} are the homeomorphisms, then to solve equation (5.2) in $X_{R_{0}}$ will be equivalent to solve equation

$$
f_{j i}(y)=y_{0}^{\prime}, \quad y_{0}^{\prime}=\varphi_{i}^{\prime}\left(x_{0}^{\prime}\right)
$$

in $\varphi_{j}\left(X_{R_{0}}\right)$, where $f_{j i} \equiv \varphi_{i}^{\prime} \circ f \circ \varphi_{j}^{-1}$. According to Definition 2.6, $f_{j i}$ is an FSQLmapping between affine bundles ξ_{j} and ξ_{i}^{\prime}. Let $\left\{f_{j i, r}\right\}$ be a sequence of FSLmappings, which uniformly converges to $f_{j i}$ on D_{j}. Let's consider the equation

$$
\begin{equation*}
f_{j i, r}(y)=y_{0}^{\prime}, \quad y_{0}^{\prime}=\varphi_{i}^{\prime}\left(x_{0}^{\prime}\right) ; \tag{5.3}
\end{equation*}
$$

we will search its solutions in $\varphi_{j}\left(X_{R_{0}^{\prime}}\right)$, where $\quad X_{R_{0}^{\prime}}=X \cap B_{1}\left(R_{0}^{\prime}\right), \quad R_{0}^{\prime}=$ $=\left\|x_{0}^{\prime}\right\|_{2}+2 \delta, \delta>0$.

Remark 5.1. Obviously, $\quad X_{R_{0}^{\prime}} \subset X_{j}$ when j is big enough, therefore $\varphi_{j}\left(X_{R_{0}^{\prime}}\right) \subset D_{j}$.

This problem can be transformed to finite-dimension problem. Indeed, as $f_{j i, r}$ is a bimorphism, then it will induce the finite-dimensional continuous mapping

$$
g_{j i, r}: \quad B_{j, r} \rightarrow B_{i, r}^{\prime}
$$

between base spaces of affine bundles ξ_{j} and ξ_{i}^{\prime}. Let's consider this finitedimensional equation

$$
\begin{equation*}
g_{j i, r}(\beta)=\beta_{0}^{\prime}, \quad \beta_{0}^{\prime}=P_{i, r}^{\prime}\left(y_{0}^{\prime}\right), \tag{5.4}
\end{equation*}
$$

where $P_{i, r}^{\prime}$ is the projection of subbundle $\xi_{i, r}^{\prime}=\left(Y_{i}^{\prime}, P_{i, r}^{\prime}, B_{i, r}^{\prime}\right)$. Let's prove that when r is big enough; finding the solutions of equation (5.3) is equivalent to finding the solutions of equation (5.4).

Indeed, let $y \in \varphi_{j}\left(X_{R_{0}^{\prime}}\right)$ and it is a solution of equation (5.3). Obviously, there exists unique $\beta \in P_{j, r}\left(\varphi_{j}\left(X_{R_{0}^{\prime}}\right)\right)$, such that $y \in P_{j, r}^{-1}(\beta)$ and $f_{j i, r, \beta}(y)=y_{0}^{\prime}$, where $P_{j, r}$ is the projection of subbundle $\xi_{j, r}=\left(Y_{j}, P_{j, r}, B_{j, r}\right)$, and $f_{j i, r, \beta}$ is the restriction of $f_{j i, r}$ onto layer $Y_{j, \beta}=P_{j, r}^{-1}(\beta)$. Therefore, $f_{j i, r, \beta}\left(Y_{j, \beta}\right)=Y_{i, \beta_{0}^{\prime}}^{\prime}$, where $Y_{i, \beta_{0}^{\prime}}^{\prime}$ is the layer of $\xi_{i, r}^{\prime}=\left(Y_{i}^{\prime}, P_{i, r}^{\prime}, B_{i, r}^{\prime}\right)$, which contains point y_{0}^{\prime}. Therefore, β will be solution of the equation (5.4).

Conversely, let β be a solution of (5.4). This means that

$$
f_{j i, r, \beta}\left(Y_{j, \beta}\right)=Y_{i, \beta_{0}^{\prime}}^{\prime} .
$$

As $f_{j i, r, \beta}$ is an isomorphism, then there exists unique point $y \in P_{j, r}^{-1}(\beta)$ such that

$$
\begin{equation*}
f_{j i, r, \beta}(y)=y_{0}^{\prime}, \tag{5.5}
\end{equation*}
$$

i.e., the equation (5.3) is solved. Let's show that $y \notin \varphi_{j}\left(X_{R_{0}^{\prime}}\right)$ is not possible. Obviously,

$$
\left\|f(x)-\left(\varphi_{i}^{\prime}\right)^{-1} \circ f_{j i, r} \circ \varphi_{j}(x)\right\|_{2}<\delta, \quad x \in D_{j}
$$

when r is big enough. If $y \notin \varphi_{j}\left(X_{R_{0}^{\prime}}\right)$, then $x=\varphi_{j}^{-1}(y) \notin X_{R_{0}^{\prime}}$, i.e., $\|x\|_{1}>R_{0}^{\prime}$. Then, it follows from estimate (5.1) that

$$
\begin{gathered}
\left\|\left(\varphi_{i}^{\prime}\right)^{-1} \circ f_{j i, r} \circ \varphi_{j}(x)\right\|_{2} \geq\|f(x)\|_{2}-\left\|f(x)-\left(\varphi_{i}^{\prime}\right)^{-1} \circ f_{j i, r} \circ \varphi_{j}(x)\right\|_{2} \geq \\
\geq\left(\left\|x_{0}^{\prime}\right\|_{2}+2 \delta\right)-\delta>\left\|x_{0}^{\prime}\right\|_{2},
\end{gathered}
$$

i.e., $\quad\left(\varphi_{i}^{\prime}\right)^{-1} \circ f_{j i, r} \circ \varphi_{j}(x) \neq x_{0}^{\prime}$, hence $f_{j i, r}(y) \neq y_{0}^{\prime}$. This contradicts to equality (5.5). So, $y \in \varphi_{j}\left(X_{R_{0}^{\prime}}\right)$.

Thus, the equation (5.3) is transformed to finite-dimension equation (5.4). Now we can define the degree of FSL-mapping $f_{j i, r}$.

Definition 5.1. $\operatorname{deg}\left(f_{j i, r}\right)=\operatorname{deg}\left(g_{j i, r}\right)$.
The sign of this degree depends on orientations in $B_{j, r}$ and $B_{i, r}^{\prime}$, but its absolute value is invariable. The last circumstance is not important for proof of the existence of a solution of (5.2) (see Theorem 5.1 and Definition 5.2).

Theorem 5.1. Let $f_{j i, r_{1}}, f_{j i, r_{2}}: Y_{j} \rightarrow Y_{i}^{\prime} \quad$ be FSL-mappings, which are close enough to FQL-mapping $f_{i, j}: Y_{j} \rightarrow Y_{i}^{\prime}$ in D_{j}. Then

$$
\left|\operatorname{deg}\left(f_{j i, r_{1}}\right)\right|=\left|\operatorname{deg}\left(f_{j i, r_{2}}\right)\right| .
$$

The proof of this theorem is similar to proof of the Theorem 2.3 from [1].
By the Theorem 5.1 the sequence $\left\{\left|\operatorname{deg}\left(f_{j i, r_{1}}\right)\right|\right\}$ will be stable when r is big enough. Therefore, we can give the next definition.

Definition 5.2. $\operatorname{deg}\left(f_{j i}\right)=\lim _{r \rightarrow \infty}\left|\operatorname{deg}\left(f_{j i, r}\right)\right|$.
As φ_{j} and φ_{i}^{\prime} are homeomorphisms, then we can give the next definition.
Definition 5.3. $\operatorname{deg}(f)=\operatorname{deg}\left(f_{j i}\right)$.
Obviously, $\operatorname{deg}(f)$ does not depend on L-charts on X and Y.
Theorem 5.2. Let $\left\{f_{t}\right\}$ be a family of FSQL-mappings, continuously (uniformly in each $\quad X_{j}$) depending on parameter $t \in[0,1]$. Let's suppose also that the conditions (1)-(4) are satisfied for each t. Then

$$
\operatorname{deg}\left(f_{0}, x^{\prime}\right)=\operatorname{deg}\left(f_{1}, x^{\prime}\right), \quad x^{\prime} \in X^{\prime}
$$

Here the function Φ does not depend on t.
Proof. Using compactness of $[0,1]$, uniform continuity (according to t) of the family $\left\{f_{t}\right\}$ and also of the mappings φ_{j} and $\left(\varphi_{i}^{\prime}\right)^{-1}$, we can approximate the family of FSQL-mappings $f_{t, j i}: Y_{j} \rightarrow Y_{i}^{\prime}$ by the help of the family $\left\{f_{t, i, j, r}\right\}$ of FSLmappings. According to the Theorem 5.1, the absolute value of degree of FSL-mapping will be locally stable. Therefore,

$$
\left|\operatorname{deg}\left(f_{0, j i, r}, y^{\prime}\right)\right|=\left|\operatorname{deg}\left(f_{1, j i, r}, y^{\prime}\right)\right|, \quad y^{\prime}=\varphi_{i}^{\prime}\left(x^{\prime}\right)
$$

when r is big enough. Hence

$$
\operatorname{deg}\left(f_{0, j i}, y^{\prime}\right)=\operatorname{deg}\left(f_{1, j i}, y^{\prime}\right)
$$

From here,

$$
\operatorname{deg}\left(f_{0}, x^{\prime}\right)=\operatorname{deg}\left(f_{1}, x^{\prime}\right)
$$

Theorem 5.2 is proved.
Theorem 5.3. At the conditions (1)-(4)

$$
\operatorname{deg}\left(f, x_{1}^{\prime}\right)=\operatorname{deg}\left(f, x_{2}^{\prime}\right), \quad x_{1}^{\prime}, x_{2}^{\prime} \in X^{\prime} .
$$

Proof. Let $X_{j} \supset X \bigcap B_{1}(R), \quad R \geq \Phi\left(\max \left\{\left\|x_{1}^{\prime}\right\|_{2},\left\|x_{2}^{\prime}\right\|_{2}+2 \delta\right\}\right)$ and X_{i}^{\prime} is such that $f\left(X_{j}\right) \subset X_{i}^{\prime}$. Let $\left\{f_{j i, r}\right\}$ be a sequence of FSL-mappings, which converges to the $f_{j i}$ in D_{j}. As

$$
\left|\operatorname{deg}\left(f_{j i, r}, y_{l}^{\prime}\right)\right|=\left|\operatorname{deg}\left(f_{j i}, y_{l}^{\prime}\right)\right|, \quad y_{l}^{\prime}=\varphi_{i}^{\prime}\left(x_{l}^{\prime}\right), \quad l=1,2,
$$

when r is big enough, then it is enough to prove that

$$
\operatorname{deg}\left(f_{j i, r}, y_{1}^{\prime}\right)=\operatorname{deg}\left(f_{j i, r}, y_{2}^{\prime}\right)
$$

For this purpose it is enough to prove that

$$
\operatorname{deg}\left(g_{j i, r}, \beta_{1}^{\prime}\right)=\operatorname{deg}\left(g_{j i, r}, \beta_{2}^{\prime}\right), \quad \beta_{l}^{\prime}=P_{i, r}^{\prime}\left(y_{l}^{\prime}\right), \quad l=1,2 .
$$

The last equality is known from the classical (finite-dimensional) analysis.
Theorem 5.3 is proved.
Theorem 5.4. Let the conditions (1)-(4) be satisfied and $\operatorname{deg}(f) \neq 0$. Then the equation (5.2) has a solution for each $x_{0}^{\prime} \in X^{\prime}$.

The similar theorem has been proved in [3] (see also [8]).
Remark 5.2. Specific examples of FQL-mappings with calculated degrees (in relatively simple cases) are given in [6] and [8].

1. Abbasov A. A special quasi-linear mapping and its degree // Turkish J. Math. - 2000. - 24, № 1. P. 1-14.
2. Abbasov A. A quasi-linear manifolds and quasi-linear mapping between them // Turkish J. Math. 2004. - 28, № 1. - P. 205-215.
3. Abbasov A. L-homology theory of FSQL-manifolds and the degree of FSQL-mappings // Ann. Pol. Math. - 2010. - 98, № 2. - P. 129-145.
4. Borysovich Y. G., Zvyagin V. G., Sapronov Y. I. Nonlinear Fredholm maps and Leray-Schauder theory // Uspechi Mat. Nauk. - 1977. - 22, № 4. - S. 3-54 (in Russian).
5. Eells J. Fredholm structures // Proc. Symp. Pure Math. - Providence, R. I.: Amer. Math. Soc., Pr., 1970 - 18. - P. 62-85.
6. Efendiev M. A. The degree of FQL-mapping in quasi-linear domains and Hilbert nonlinear problem in ring // Izv. AN Azerb. SSR. - 1979. - 5 (in Russian).
7. Zviyagin V. G. About oriented degree of one class disturbances of Fredholm mappings and bifurcations of solutions of Nonlinear boundary problem with noncompact disturbances // Mat. Sb. - 1991. - 182, № 12 (in Russian).
8. Shnirelman A. I. The degree of quasi-linear mapping and Hilbert nonlinear problem // Mat. Sb. - 1972. - 89(131), № 3. - S. 366-389 (in Russian).

Received 17.06.10, after revision - 24.02.11

[^0]: ${ }^{1}$ See review article [4] and later works on this subject, for example [7].
 © A. ABBASOV, 2011

[^1]: ${ }^{2}$ Proof of quasilinearity of similar mapping is given in [2].

[^2]: ${ }^{3}$ For simplicity, the embedding mappings are not written in the text.

[^3]: ${ }^{4}$ In the given article (because of technical problem) the same number is designated by symbols \mathbf{N} and \boldsymbol{N}, namely, number of elements in δ-network of \mathbf{M}.

