UDC 517.5

A. Abbasov (Canakkale Onsekiz Mart Univ., Turkey)

FREDHOLM QUASI-LINEAR MANIFOLDS AND DEGREE OF FREDHOLM QUASI-LINEAR MAPPING BETWEEN THEM

КВАЗІЛІНІЙНІ МНОГОВИДИ ФРЕДГОЛЬМА ТА СТЕПІНЬ КВАЗІЛІНІЙНИХ ВІДОБРАЖЕНЬ ФРЕДГОЛЬМА МІЖ НИМИ

In this article a new class of Banach manifolds and a new class of mappings between them are presented and also the theory of degree of such mappings is given.

Представлено новий клас многовидів Банаха та новий клас відображень між ними, а також наведено теорію степеня таких відображень.

0. Introduction. As it is known, the degree theory for infinite-dimensional mappings (of the kind "identical+compact") for the first time was given by Leray and Schauder. Afterwards, this theory was expanded up to various classes of mappings (for example, up to class Fredholm proper mappings)¹. However, these theories were not appropriate for solution of non-linear Hilbert problem. For solution of this problem the class of Fredholm Quasi-Linear (FQL) mappings, determined on Banach space, was introduced by A. I. Shnirelman, and was determined the degree of such a mapping, which has all the main properties of classical (finite-dimensional) degree (see [8]). Later, M. A. Efendiyev expanded this theory up to FQL-mappings, determined on quasicylindrical domains (see [6]). In the given article, this theory is expanded up to FQL-mappings, determined between FQL-manifolds. In more details:

In first part of this article an example of FQL-manifold, given in [2], is extended up to example of Banach manifold from a wide class, namely up to space $H_s(\mathbf{M}, \mathbf{N})$, where **M** and **N** are compact smooth manifolds of dimensions m, respectively n and **N** doesn't have boundary. First such structure is given in $H_s(\mathbf{M}, \mathbf{N})$ at m < n, and later, at $m \ge n$. In the last case $(m \ge n)$ the FQL-manifold $H_s(\mathbf{M}, \mathbf{N})$ is appeared as a submanifold of the FQL-manifold $H_s(\mathbf{M}, \mathbf{N}^k)$, where $k \cdot (n-1) \le m < n \cdot k$.

In second part of this article the degree of FQL-mapping is expanded up to FQLmappings between FQL-manifolds and its basic properties are proved. However, in this part another form of FQL-mapping is used, as it is better adapted for definition of degree. We named it as Fredholm Special Quasi-Linear (FSQL) mapping. The proof of identity of FQL and FSQL-mappings is given in [1].

¹ See review article [4] and later works on this subject, for example [7].

As an example of an FQL-mapping, this mapping is given: $F_f: H_s(\mathbf{M}, \mathbf{N}) \rightarrow H_s(\mathbf{M}, \mathbf{N}), F_f: u \mapsto f(u)$, where $f: \mathbf{N} \rightarrow \mathbf{N}$ is a smooth mapping with a gradient distinct from zero in all points².

Various types of Nonlinear Hilbert Problem have been solved by means of the theory of degree of FQL-mapping (see [6, 8]).

The purpose of the given article is preparation of theoretical base for solution of practical problems.

In the end we noted that some definitions and theorems from [8], which will be used later, are given in Section 1.

1. Let X, Y be the real Banach spaces, Ω be a bounded domain in X and X_n be an *n*-dimensional Euclidian space. In addition, let $\pi_n \colon X \to X_n$ be a linear mapping and $X_{\alpha}^n = \pi_n^{-1}(\alpha)$, $\alpha \in X_n$.

Definition 1.1. A continuous mapping $f^n : \Omega \to Y$ is called a Fredholm Linear (FL), if

a) on each plane X_{α}^{n} , $\alpha \in X_{n}$, which crosses with Ω , $f_{\alpha}^{n} \equiv f^{n}\Big|_{X_{\alpha}^{n}}$ is an affine invertible mapping between X_{α}^{n} and its image $Y_{\alpha}^{n} = f(X_{\alpha}^{n})$, which is closed in Y and its co-dimension in Y is equal to n;

b) f_{α}^{n} continuously depends on α .

Definition 1.2. Let a sequence of FL-mappings $\{f^{n_k} | f^{n_k} : \Omega \to Y\}$ uniformly approximate to the mapping f on Ω and

 $\left\|f_{\alpha}^{n_{k}}\right\| < C(\Omega), \quad \left\|(f_{\alpha}^{n_{k}})^{-1}\right\| < C(\Omega), \quad \alpha \in \pi_{n_{k}}(\Omega) \quad at \quad k > k_{0}(\Omega), \quad (1.1)$

where $C(\Omega)$ does not depend on k. Then continuous mapping $f: \Omega \to Y$ is called a Fredholm Quasi-Linear (FQL).

Theorem 1.3. Any finite combination of linear (pseudo) differential operators and operators of superposition with smooth function of finite number of arguments with a gradient which is distinct from zero in all points, defines an FQL-mapping between H_s and $H_{s-\alpha}$ at some α and all sufficiently greater s.

2. Quasi-Linear manifolds. Let X be a real infinite-dimensional Banach manifold, $\{X_j\}$, $X_{j-1} \subset X_j$, j = 1, 2, ..., be a system of open sets covering to X (i.e., $X = \bigcup X_j$), $\xi_j = (Y_j, P_j, B_j)$ be an affine bundle with the total space Y_j , with the base space B_j , which is a finite-dimensional manifold and with the continuous epimorphism $P_j: Y_j \rightarrow B_j$. Let D_j be a bounded domain in Y_j and $\varphi_j: X_j \rightarrow D_j$ be a homeomorphism. In this case we shall call (φ_j, X_j) an L-chart on X_j and we shall say that, on X_j an L-structure is introduced. If an L-structure is determined on X_{j+1} , then obviously, it is determined also on X_j (as an induced structure). Let

² Proof of quasilinearity of similar mapping is given in [2].

 $\varphi_{j'}: X_{j'} \to D_{j'}, \ \varphi_{j''}: X_{j''} \to D_{j''}, \ j', \ j'' \ge j$, be an *L*-structures on X_j . Then the transition functions $\varphi_{j''} \circ \varphi_{j'}^{-1}: D_{j'} \to D_{j''}$ and $\varphi_{j'} \circ \varphi_{j''}^{-1}: D_{j''} \to D_{j'}$ will arise. Let's suppose that each of them is an FQL-mapping between affine bundles $\xi_{j'} = (Y_{j'}, P_{j'}, B_{j'})$ and $\xi_{j''} = (Y_{j''}, P_{j''}, B_{j''})$, i.e., an FQL-mapping in charts of $\xi_{j'}$ and $\xi_{j''}$ in sense of Definition 1.2. In this case we shall say that two *L*-structures on X_j are equal.

Definition 2.1. A class of equivalent L-structures on X_j is called an FQLstructure on X_j .

Obviously, the FQL-structure on X_{j+1} induces an FQL-structure on X_j , too. The FQL-structures on X_j and X_{j+1} are called coordinated, if the FQL-structure on X_j coincides with the induced structure.

Definition 2.2. A collection of FQL-structures on X_j , j = 1, 2, 3, ..., which are coordinated between each other is called an FQL-structure on X.

The Banach manifold X with FQL-structure is called FQL-manifold. Now, let us define an FQL and FSQL-mappings between FQL-manifolds. Let X = X' be FQL manifolds.

Let X, X' be FQL-manifolds,

 $\forall j: \ X_j \subset X_{j+1}, \quad X = \bigcup X_j \quad \text{and} \quad \forall i: \ X'_i \subset X'_{i+1}, \quad X' = \bigcup X'_i.$

In addition, let (φ_j, X_j) , (φ'_i, X'_i) be *L*-charts on *X*, *X'* and $\varphi_j(X_j) = D_j$, $\varphi'_i(X'_i) = D'_i$ be the bounded domains of $\xi_j = (Y_j, P_j, B_j)$ and $\xi'_i = (Y'_i, P'_i, B'_i)$, respectively.

Definition 2.3. A continuous mapping $f: X \to X'$ between FQL-manifolds X and X' is called a Fredholm Quasi-Linear (FQL), if

a) $\forall j \quad \exists i: f(X_j) \subset X'_i$;

b) $\varphi'_i \circ f \circ \varphi_j^{-1} \colon D_j \to D'_i$ are FQL-mappings in charts of affine bundles ξ_j and ξ'_i (in sense of Definition 1.2).

Definition 2.4. A continuous mapping $f_{ji} = Y_j \rightarrow Y'_i$ is called a Fredholm Special Linear (FSL) mapping between affine bundles ξ_j and ξ'_i , if there exist subbundles $\xi_{j,r} = (Y_j, P_{j,r}, B_{j,r})$ of ξ_j and $\xi'_{i,r} = (Y'_i, P'_{i,r}, B'_{i,r})$ of ξ'_i (respectively), with identical dimension r of base spaces, such that f_{ji} is a <u>bimorphism</u> between $\xi_{j,r}$ and $\xi'_{i,r}$.

In this case we will denote f_{ji} by $f_{ji,r}$. The restriction of FSL-mapping onto any domain D_i , $\overline{D}_i \subset Y_i$ shall be named an FSL-mapping, too.

Definition 2.5. A continuous mapping $f_{ji} = Y_j \rightarrow Y'_i$ is called a Fredholm Special Quasi-Linear (FSQL) mapping between affine bundles ξ_j and ξ'_i , if there exists

a sequence of FSL-mappings $f_{ji,r} = Y_j \rightarrow Y'_i$, r = 1, 2, 3, ..., which uniformly converges to f_{ji} in each bounded domain $D_j \subset Y_j$ and estimates (1.1) are satisfied.

Definition 2.6. A continuous mapping $f: X \to X'$ between FQL-manifolds X and X' is called a Fredholm Special Quasi-Linear (FSQL), if

a) $\forall j \exists i, f(X_j) \subset X'_i$;

b) $\varphi'_i \circ f \circ \varphi_j^{-1} \colon D_j \to D'_i$ is an FSQL-mapping between ξ_j and ξ'_i .

As it was mentioned in introduction, the proof of identity of FQL and FSQLmappings is given in [1].

3. Example of FQL-manifold (in case of m < n). Let be $X = H_s(\mathbf{M}, \mathbf{N})$, where \mathbf{M} , \mathbf{N} are the compact smooth manifolds of the dimensions m, n (m < n) respectively and \mathbf{N} has no boundary. Besides, let \mathbf{N} be embedded in R^{2n+13} . Obviously, on X one can introduce the smooth structure [5]; the Hilbert real space $H_s(\mathbf{M}, R^n)$ will be its tangential space.

Now let's introduce an FQL-structure on X. Suppose that X is naturally embedded in $H_s(\mathbf{M}, R^{2n+1})$, $X_j = \{u \in X | ||u||_s < j\}$, where j and s are the natural numbers, and $|| ||_s$ is a norm in $H_s(\mathbf{M}, R^{2n+1})$). In order to solve this problem we shall construct an affine bundle (Y_j, P_j, B_j) with finite-dimensional base space B_j , shall pick out a bounded domain D_j in Y_j , shall construct homeomorphisms Φ_j : $D_j \to X_j$ (L-charts), j = 1, 2, 3, ..., and also shall prove that homeomorphisms $\Phi_i^{-1} \circ \Phi_j$: $D_j \to D_i$ are FQL-mappings.

Lemma 3.1. If m < n, then

$$\exists \gamma(j,s) > 0 \quad \forall u \in X_j \quad \exists y(u) \in \mathbf{N} : \quad \rho(y,u) \geq \gamma,$$

where $\rho(y, u) = \min_{x} \{ \rho(y, u(x)) \}$, and $\rho(y, u(x))$ is a distance between y and u(x), $x \in \mathbf{M}$, on \mathbf{N} .

Proof. Let's suppose the contrary:

$$\forall \gamma > 0 \quad \exists u_{\gamma} \in X_{j} \quad \forall y \in \mathbf{N} : \quad \rho(y, u_{\gamma}) < \gamma,$$

so, $u_{\gamma}(\mathbf{M})$ is a γ -network of \mathbf{N} . For simplicity, let's suppose that n = m + 1. Let K be an (m+1)-dimensional unit cube, homeomorphic to a (closed) domain of \mathbf{N} . Besides, let k be a cube, belonging to K with the same dimension, its sides are parallel to the relevant sides of K and the distance between them is γ .

Remark 3.1. On the contrary assumption, a part of surface $u_{\gamma}(\mathbf{M})$, which is the γ -network of k, will belong to K.

Let's take *m*-dimensional sections of *k* in form of *m*-dimensional planes, which are parallel to a *m*-dimensional side of *k* and are on a distance of 2γ from

³ For simplicity, the embedding mappings are not written in the text.

each other. On the opposite assumption, between two (such) next planes has to be part of surface $u_{\gamma}(\mathbf{M})$. The *m*-dimensional volume of each similar part will be more or equal to $(1-2\gamma)^m$. A number of such parts is not less than $\left[\frac{1}{2\gamma}\right]$ ([·] shows the whole part of the number). Therefore, the total volume of all similar parts will be more or equal to $\left(\left[\frac{1}{2\gamma}\right]\right) \cdot (1-2\gamma)^m$. Obviously, $\left(\left[\frac{1}{2\gamma}\right]\right) \cdot (1-2\gamma)^m \to \infty$ at $\gamma \to 0$, so, the volume of surface $u_{\gamma}(\mathbf{M})$, $u_{\gamma} \in X_j$, will increase infinitely at $\gamma \to 0$. On the other hand, as

$$\forall u \in X_j : \quad \|u\|_{C'} \le c \cdot \|u\|_s < c \cdot j .$$

Then

$$\forall u \in X_j: V_m(u) \leq c \cdot j \cdot V_m(\mathbf{M}),$$

where $V_m(u)$, $V_m(\mathbf{M})$ are *m*-dimensional volumes of $u(\mathbf{M})$ and **M** respectively, and *c* there is a constant which is not dependent from u ($u \in X_j$). In other words, all the numbers $V_m(u)$, $u \in X_j$, are bounded from above (by $c \cdot j \cdot V_m(\mathbf{M})$). This paradox proves the contention of lemma.

Now we shall start construction of FQL-structure on $H_s(\mathbf{M}, \mathbf{N})$. Let $\{x_1, ..., x_N\}$ be a δ -network of \mathbf{M} . Let's assign $p_N(u) = (u(x_1), ..., u(x_N)) \in [\mathbf{N}]^N$ to each mapping $u \in X_i^4$. Let

$$B_{j} = \left\{ \overline{y} = (y_{1}, \dots, y_{N}) \in [\mathbf{N}]^{N} \mid \exists u \in X_{j} : u(x_{1}) = y_{1}, u(x_{2}) = y_{2}, \dots, u(x_{N}) = y_{N} \right\}.$$

Obviously, B_j is a domain in $[\mathbf{N}]^N$, therefore it will also be a manifold of dimension $n \cdot N$.

Now for every point $\overline{y} \in B_j$ we shall construct mapping $H_s(\mathbf{M}, \mathbf{N})$, $U_{\overline{y}}(x_i) = y_i$, $i = \overline{1, N}$, as follows: Let $\overline{U}_{\overline{y}}$: $\mathbf{M} \to R^{2n+1}$ be such a mapping that, $U_{\overline{y}}(x_i) = y_i$, $i = \overline{1, N}$, and in addition, $\|\overline{U}_{\overline{y}}\|_s$ has a minimum among all such mappings. Such a mapping $\overline{U}_{\overline{y}}(x)$ exists, is unique and continuously depends on \overline{y} ; it results from convexity of function $u \mapsto \|u\|_s^2$. In this case, $\|\overline{U}_{\overline{y}}\|_s < j$, because according to the construction, there exists such a mapping $u \in X_j$ that $p_N(u) = \overline{y}$, and $\|\overline{U}_{\overline{y}}\|_s < \|\overline{U}_{\overline{y}}\|_s < \|\overline{U}_{\overline{y}}\|_s$.

⁴ In the given article (because of technical problem) the same number is designated by symbols **N** and *N*, namely, number of elements in δ -network of **M**.

As known, **N** has a tubular neighborhood in R^{2n+1} . Let's denote its radius by ε ($\varepsilon > 0$). There exists a nearest point $\pi(y) \in \mathbf{N}$ for each point y from this neighborhood. Moreover, the mapping $y \mapsto \pi(y)$ is smooth, surjective and non-degenerative. Let

$$u \in H_s(\mathbf{M}, R^{2n+1}), \quad ||u||_s < j$$

As $||u||_{C^1} \le K \cdot ||u||_s$ at sufficiently greater s, then $||u||_{C^1} \le K \cdot j$. Therefore,

$$\forall x \in \mathbf{M} \colon \| u'(x) \|_{\mathcal{P}^{2n+1}} < K \cdot j \,.$$

Then

$$\forall x', x'' \in \mathbf{M} : \forall u \in H_s(\mathbf{M}, R^{2n+1}) :$$
$$\|u\|_s < j \|u(x') - u(x'')\|_{R^{2n+1}} < K \cdot j \cdot d(x', x'') .$$

where d is the distance on **M**. Therefore,

$$\forall x', x'' \in \mathbf{M} : \forall u \in H_s(\mathbf{M}, \mathbb{R}^{2n+1}) :$$
$$\|u\|_s < j \|u(x') - u(x'')\|_{\mathbb{R}^{2n+1}} < \varepsilon$$

when $d(x', x'') < \delta$ $(\delta = \varepsilon / (K \cdot j))$. Let $x \in \mathbf{M}$. Obviously,

 $\exists i: d(x, x_i) < \delta$.

Therefore,

$$\forall u \in H_s(\mathbf{M}, \mathbb{R}^{2n+1}): \|u\|_s < j \|u(x) - u(x_i)\|_{\mathbb{R}^{2n+1}} < \varepsilon.$$

As a result of that u(x), $u \in H_s(\mathbf{M}, R^{2n+1})$, belongs to the ε -tubular neighborhood of \mathbf{N} (in R^{2n+1}) when $||u||_s < j$ and $u(x_i) \in \mathbf{N}$, $i = \overline{1, N}$. Therefore it is possible to project it smoothly on \mathbf{N} (by help of π). As $||\overline{U}_{\overline{y}}|| < j$, then all of this is true also for $\overline{U}_{\overline{y}}$. Let $U_{\overline{y}}(x) = \pi \circ \overline{U}_{\overline{y}}(x)$. According to the construction, this mapping belongs to $p_N^{-1}(\overline{y})$, so, $U_{\overline{y}}(x_i) = y_i$, $i = \overline{1, N}$.

Remark 3.2. Due to the smoothness of π , $\|U_{\overline{y}}\|_{s} \leq C \cdot \|\overline{U}_{\overline{y}}\|_{s} < C \cdot j$. Thus, $U_{\overline{y}} \notin X_{j}$, but $U_{\overline{y}} \in X_{C \cdot j}$.

Let $\exp_y: T_y \mathbf{N} \to \mathbf{N}$ be the exponential mapping. Obviously, \exp_y is diffeomorphism between some neighborhoods of zero (in $T_y \mathbf{N}$) and of point $y \in \mathbf{N}$. Let's denote these neighborhoods by $\delta_1(y)$ and $\varepsilon_1(y)$, relatively. We can suppose that $\varepsilon_1(y)$ and $\delta_1(y)$ are independent from $y \in \mathbf{N}$, as \exp_y is smooth and \mathbf{N} is compact.

Analogously to proved above, one can show that the ε_1 -neighborhood of $U_{\overline{y}}(x)$, $\overline{y} \in B_j$ includes all u(x) from $p_N^{-1}(p_N(U_{\overline{y}})) \cap X_{C \cdot j}$ when δ is small enough.

Let $\overline{y}_0 \in B_j$. Let's take *n* of vector fields in neighborhood of $U_{\overline{y}_0}(x)$, which are tangential to **N**, orthogonal to each other and have the unit length. Let's denote them by $\overline{g}_1(y), \ldots, \overline{g}_n(y)$. According to the Lemma 3.1 this vector fields will be defined lengthways of each $U_{\overline{y}}(x)$, where $\overline{y} \in \theta_{\overline{y}_0}$, and $\theta_{\overline{y}_0}$ is γ -neighborhood of point \overline{y}_0 in B_j . B_j can be covered by help of finite-number of similar γ neighborhoods, because it is relatively compact and finite-dimensional. Let's denote them by $\theta_{\overline{y}_1}, \ldots, \theta_{\overline{y}_l}$, where $\overline{y}_1, \ldots, \overline{y}_l$ are some points from B_j . Let

$$F^{N} = \left\{ \vec{\mathbf{v}} \in \mathbf{M} \to R^{n} \, \big| \, \vec{\mathbf{v}} \in H_{s} , \vec{\mathbf{v}}(x_{1}) = \ldots = \vec{\mathbf{v}}(x_{N}) = 0 \right\};$$

it is a linear subspace of $H_s(\mathbf{M}, \mathbb{R}^n)$ of finite co-dimension nN, where $\{\vec{e}_1, \dots, \vec{e}_n\}$ is an orthonormal basis in \mathbb{R}^n . Obviously, any function $\vec{v} \in \mathbb{R}^N$ has the following form in this basis:

$$\vec{v}(x) = v_1(x) \cdot \vec{e}_1 + \ldots + v_n(x) \cdot \vec{e}_n$$

where $v_k(k)$, $k = \overline{1, n}$, is a scalar function, $v_k \in H_s(\mathbf{M}, \mathbb{R}^1)$, $v_k(x_i) = 0$, $k = \overline{1, n}$, $i = \overline{1, N}$.

Let's consider the mapping

$$\Phi_p: \theta_{\overline{y}_p} \times F^N \to p_N^{-1} \left(\theta_{\overline{y}_p} \right), \quad \Phi_p \left(\overline{y}, \overline{v} \right)(x) = \exp_{U_{\overline{y}(x)}} \overline{g}(x), \quad p = \overline{1, l},$$

where

$$\overline{g}(x) = v_1(x) \cdot \overline{g}_1\left(U_{\overline{y}}(x)\right) + \ldots + v_n(x) \cdot \overline{g}_n\left(U_{\overline{y}}(x)\right).$$

Obviously,

1) $\Phi_p(\overline{y}', \overline{v}) \neq \Phi_p(\overline{y}'', \overline{w}) \quad \forall \overline{v}, \overline{w} \in F^N \text{ at } \overline{y}' \neq \overline{y}'', \overline{y}', \overline{y}'' \in \theta_{\overline{y}_p}, \text{ as (according to construction)} \Phi_p(\overline{y}', \overline{v}) \in p_N^{-1}(\overline{y}'), \text{ and } \Phi_p(\overline{y}'', \overline{w}) \in p_N^{-1}(\overline{y}'');$

2) $\Phi_p(\bar{y}, \vec{v}) \neq \Phi_p(\bar{y}, \vec{w}) \quad \forall \bar{y} \in \Theta_{\bar{y}_p} \quad \forall p = \bar{1}, \bar{l} \text{ at } \|\vec{v}\|_C < \delta_1, \|\vec{w}\|_C < \delta_1 \text{ and}$ $\vec{v} \neq \vec{w}$, as \exp_y is diffeomorphism in δ_1 -neighborhood of $\Theta_y \in T_y \mathbf{N}$.

It follows from here that Φ_p , $p = \overline{1, l}$, is a diffeomorphism between $\theta_{\overline{y}_p} \times \{ \vec{v} \in F^N | \| \vec{v} \|_C < \delta_1 \}$ and neighborhood $\{ u(x) | \| U_{\overline{y}}(x) - u(x) \|_C < \varepsilon_1 \}$, where $\overline{y} \in \theta_{\overline{y}_p}$, $p_N(u(x_i)) = p_N(U_{\overline{y}}(x_i))$, $i = \overline{1, N}$. According to the construction, this neighborhood contains the set $p_N^{-1}(\theta_{\overline{y}_p}) \cap X_j$. Obviously, $D_p = \Phi_p^{-1}(p_N^{-1}(\theta_{\overline{y}_p}) \cap X_j)$ is a bounded domain in $\theta_{\overline{y}_p} \times F^N$. Let's paste D_p , $D_{p'}$, $p, p' = \overline{1, l}$, by the help of $\Phi_p^{-1} \circ \Phi_p$; as a result we shall receive some set D_j .

Let's construct an affine bundle, in which D_j will be a bounded domain. Let $\vec{g}_{1,p}(y), \ldots, \vec{g}_{n,p}(y)$ and $\vec{g}_{1,p'}(y), \ldots, \vec{g}_{n,p'}(y)$ be the two vector fields, defined (as

above) in neighborhoods of $U_{\overline{y}_p}(x)$ and $U_{\overline{y}_{p'}}(x)$ respectively and $\overline{y} \in \theta_{\overline{y}_p} \cap \theta_{\overline{y}_{p'}}$. Besides, let $\lambda_{p,p',\overline{y}}(x)$ be an orthogonal matrix, which transforms the first basis into the second in the point $y = U_{\overline{y}}(x)$. The diffeomorphism $\Phi_{p'}^{-1} \circ \Phi_p$ will transform $(\overline{y}, \overline{v}) \in \theta_{\overline{y}_p} \times F^N$ into $(\overline{y}, \overline{w}) \in \theta_{\overline{y}_{p'}} \times F^N$, where

$$\vec{v}(x) = \lambda_{p,p',\overline{v}}(x) \cdot \vec{v}(x).$$
(3.1)

The function (3.1) is a linear isomorphism, which smoothly depends on $\overline{y} \in \Theta_{\overline{y}_p} \cap \Theta_{\overline{y}_{p'}}$. Pasting all $\Theta_{\overline{y}_p} \times F^N$, $p = \overline{1,l}$, by the help of $\Phi_{p'}^{-1} \circ \Phi_p$, we shall receive an affine bundle, which we will denote by (Y_j, P_j, B_j) . According to the construction, D_j will be the bounded domain in Y_j . Now let's paste Φ_1, \dots, Φ_l by the help of transition functions; as a consequence we shall receive one diffeomorphism between D_j and X_j , which we shall denote by Φ_j . Thus, construction of the L-chart (Φ_i^{-1}, X_i) on X_j is finished.

Now we shall show that *L*-structures on X_j and X_i are coordinated for different j and i. For this purpose it is enough to prove that transition function $\Phi_i^{-1} \circ \Phi_j$ is a FQL-mapping between affine bundles (Y_j, P_j, B_j) and (Y_i, P_i, B_i) . Let $(x_1, ..., x_N)$, $(x'_1, ..., x'_L)$ be points from **M**, which have been used at definition of *L*-structures on X_j , X_i and $\overline{y} = (y_1, ..., y_N)$, $\overline{y'} = (y'_1, ..., y'_L)$ be points from B_j , B_i respectively. Moreover, let $U_{\overline{y}}(x)$, $U_{\overline{y'}}(x)$ be mappings, constructed by the help of above mentioned method, $\overline{g}_1(y), ..., \overline{g}_n(y)$ and $\overline{g}'_1(y), ..., \overline{g}'_n(y)$ be the vector fields, defined (as above) in the neighborhoods of $U_{\overline{y}}(x)$, $U_{\overline{y'}}(x)$, respectively. Let

$$\begin{split} F^{N} &= \left\{ \vec{\mathbf{v}} \in H_{s}(\mathbf{M}, R^{n}) \big| |\vec{\mathbf{v}}(x_{1}) = \dots = \vec{\mathbf{v}}(x_{N}) = 0 \right\}, \\ F^{L} &= \left\{ \vec{\mathbf{v}} \in H_{s}(\mathbf{M}, R^{n}) \big| |\vec{\mathbf{v}}(x_{1}') = \dots = \vec{\mathbf{v}}(x_{L}') = 0 \right\}, \end{split}$$

be vector subspaces of $H_s(\mathbf{M}, \mathbb{R}^n)$, which are isomorphic to layers of affine bundles (Y_j, P_j, B_j) , (Y_i, P_i, B_i) respectively. Without loss of generality, we can suppose that $x_m \neq x'_r$, $m = \overline{1, N}$, $r = \overline{1, L}$. Let

$$[\mathbf{N}]^N F^{N+L} = \left\{ \vec{\mathbf{v}} \in H_s(\mathbf{M}, R^n) \, \big| \, \vec{\mathbf{v}}(x_m) = \vec{\mathbf{v}}(x_r') = 0, \quad m = \overline{1, N}, \quad r = \overline{1, L} \right\}.$$

Obviously, $F^N = F^{N+L} + F_L$, where F_L is orthogonal complement to F^{N+L} in F^N and $\theta_{\overline{y}_p} \times F^N = \left(\theta_{\overline{y}_p} \times F_L\right) \times F^{N+L}$. Pasting $\left(\theta_{\overline{y}_p} \times F_L\right) \times F^{N+L}$, $p = \overline{1, l}$,

by the help of diffeomorphisms (3.1), we shall get a new affine bundle. Let's denote it by (Y_j, P_{ji}, B_{ji}) .

Let $(\overline{y}, \overline{z}) \in \Theta_{\overline{y}_n} \times F_L$. Let's look at the function

$$u(x) = \exp_{U_{\overline{y}}(x)} \left(\sum_{k=1}^{n} (z_k(x) + v_k(x)) \cdot \vec{g}_k (U_{\overline{y}}(x)) \right)$$

where $v_k(x_m) = v_k(x'_r) = 0$, that is $\vec{v} = (v_1, \dots, v_n) \in F^{N+L}$. For each such u(x), $u(x_m) = y_m$, $u(x'_r) = y'_r$, $m = \overline{1, N}$, $r = \overline{1, L}$. Therefore,

$$\exp_{U_{\overline{y}'}(x)}^{-1} u(x) = \left(\overline{y}', \overline{w}(x)\right),$$

where $\overline{y}' = (y'_1, \dots, y'_L)$, $\overline{w}(x) = (w_1(x), \dots, w_n(x))$. Thus $\Phi_i^{-1} \circ \Phi_j$ will transform the layer $P_{ji}^{-1}(\overline{y}, \overline{z})$ above $(\overline{y}, \overline{z})$ into the layer $P_i^{-1}(\overline{y}')$ above \overline{y}' , where $\overline{y}' = (u(x'_1), \dots, u(x'_L))$. Then it will transform $P_{ji}^{-1}(\theta_{\overline{y}, \overline{z}})$ in $P_i^{-1}(\theta_{\overline{y}'_q})$, where $\overline{y}' \in \Theta_{\overline{y}'_q}$, $\Theta_{\overline{y}'_q}$ is a chart of a fixed atlas on B_i , and $\Theta_{\overline{y}, \overline{z}}$ is a neighborhood of $(\overline{y}, \overline{z})$ in B_{ji} . This transition function has the following form:

$$(\overline{y}, \overline{z}, \overline{v}) \mapsto (\overline{y}', \overline{w}) = (\overline{y}', (w_1, \dots, w_n)),$$

where

$$\overline{y}' = \left(u(x_1'), \dots, u(x_L') \right), \qquad u = \Phi_j \left(\overline{y}, \overline{z} + \overline{v} \right),$$

and

$$w_k(x) = \left(\vec{g}'_k\left(U_{\vec{y}'}(x)\right), \vec{h}(x)\right), \quad k = \overline{1, n} ,$$

is the scalar product of vectors, tangential to **N** in point $U_{\vec{x}}(x)$,

$$\vec{h}(x) = \exp_{U_{\vec{y}'}(x)}^{-1} u(x) \quad \left(\vec{h}(x) \in T_{U_{\vec{y}'}(x)} \mathbf{N}\right).$$

It is obvious from the foresaid formulas that in charts of the mentioned affine bundles, the transition function $\Phi_i^{-1} \circ \Phi_j$ is given by an operator of superposition with smooth functions. As all used functions have gradients different from zero in all points, then according to the Theorem 6.3, such a function is an FQL-mapping. Therefore, it is an FQL-mapping between L-charts on X_j and X_i . It follows from here that the structure included in X is Fredholm Quasi-Linear.

4. Example of FQL-manifold (the case $m \ge n$). For simplicity, let's suppose that m < 2n. Let $R^{4n+2} = R^{2n+1} \times R^{2n+1}$, and $\mathbf{N}^2 = \mathbf{N} \times \mathbf{N}$ is embedded in R^{4n+2} such that \mathbf{N} is embedded in. Let $X = H_s(\mathbf{M}, \mathbf{N})$. Obviously, $X^2 =$ $= H_s(\mathbf{M}, \mathbf{N}^2)$. Let $X_j^2 = X_j \times X_j$, $X_{j,0} = X_j \times O \subset X_j^2$, where $X_j = \{u \in X |$ $\|u\|_s < j\}$, $O: \mathbf{M} \to 0$ and $\mathbf{N}_0 = \mathbf{N} \times 0$, where 0 is the origin of R^{4n+2} . In ad-

dition, let $\{x_1, ..., x_N\}$ be a δ -network of **M**. Without loss of generality, also let's suppose that the origin of R^{4n+2} coincides with a point of \mathbf{N}_0 and consequently, of \mathbf{N}^2 . To each mapping $u = (u_1, u_2) \in X_j^2$ we shall assign the point

$$p_{N^2}(u_1, u_2) = \left(\left(u_1(x_1), u_2(x_1) \right), \dots, \left(u_1(x_N), u_2(x_N) \right) \right) \in [\mathbf{N}^2]^{\mathsf{N}},$$

and to each mapping $(u_1, O) \in X_{j,0}$, the point

$$\tilde{p}_N(u_1, O) = ((u_1(x_1), O), \dots, (u_1(x_N), O)) \in [\mathbf{N}_0]^N.$$

Let

$$\begin{split} \tilde{B}_{j} &= \left\{ \tilde{y} = (y_{1}, y_{2}) = ((y_{11}, y_{21}), \dots, (y_{1N}, y_{2N})) \in [\mathbf{N}^{2}]^{\mathbf{N}} \, \Big| \, \exists (u_{1}, u_{2}) \in X_{j}^{2} : \\ & (u_{1}(x_{1}), u_{2}(x_{1})) = (y_{11}, y_{21}), \dots, (u_{1}(x_{N}), u_{2}(x_{N})) = (y_{1N}, y_{2N}) \right\}, \\ B_{j,0} &= \left\{ (y_{1}, 0) = ((y_{11}, 0), \dots, (y_{1N}, 0)) \in [\mathbf{N}_{0}]^{\mathbf{N}} \, \Big| \, \exists (u_{1}, 0) \in X_{j,0} : \\ & (u_{1}(x_{1}), 0) = (y_{11}, 0), \dots, (u_{1}(x_{N}), 0) = (y_{1N}, 0) \right\}. \end{split}$$

Obviously, \tilde{B}_j $(B_{j,0})$ is a domain in $[\mathbf{N}^2]^N$ $([\mathbf{N}_0]^N)$, therefore it is a 2nN (nN)-dimensional manifold. Moreover, $B_{j,0}$ will be submanifold of \tilde{B}_j and

$$\forall (y_1, 0) \in B_{j,0}: \tilde{p}_N^{-1}(y_1, 0) \subset p_{N^2}^{-1}(y_1, 0).$$

Let's denote a mapping by Π , which transforms each point (y_1, y_2) of the ε tubular neighborhood of \mathbf{N}^2 (in R^{4n+2}) into the nearest point of \mathbf{N}^2 . By the help of the aforecited method (see, the case m < n) to each point $\tilde{y} \in \tilde{B}_j$ at first, we shall assign such a mapping $\overline{U}_{\tilde{y}} = (\overline{U}_{1,\tilde{y}}, \overline{U}_{2,\tilde{y}}) \in H_s(\mathbf{M}, R^{2n+1} \times R^{2n+1})$ that $\overline{U}_{\tilde{y}}(x_i) =$ $= (y_{1i}, y_{2i}), \quad i = \overline{1, N}$, and later, we shall assign a mapping $U_{\tilde{y}} = (U_{1,\tilde{y}}, U_{2,\tilde{y}}) =$ $= \Pi(\overline{U}_{1,\tilde{y}}, \overline{U}_{2,\tilde{y}}) \in H_s(\mathbf{M}, \mathbf{N}^2)$, which also will satisfy the condition $U_{\tilde{y}}(x_i) =$ $= (y_{1i}, y_{2i}), \quad i = \overline{1, N}$.

We need the following in advance.

Lemma 4.1. Let $\overline{U}_{(y_1,0)} = (\overline{U}_{1,(y_1,0)}, \overline{U}_{2,(y_1,0)}) \in H_s(\mathbf{M}, \mathbb{R}^{2n+1} \times \mathbb{R}^{2n+1})$ be a mapping such that $\overline{U}_{(y_1,0)}(x_i) = (\overline{U}_{1,(y_1,0)}(x_i), \overline{U}_{2,(y_1,0)}(x_i)) = (y_{1i}, 0)$, $i = \overline{1, N}$, and in addition, $\|\overline{U}_{(y_1,0)}\|'_s$ has a minimum among all such mappings. Then $\overline{U}_{2,(y_1,0)} \equiv O$, in other words, such $\overline{U}_{(y_1,0)}$ will belong to $H_s(\mathbf{M}, \mathbb{R}^{2n+1} \times \mathbb{R}^{2n+1})$.

Here $\|(u_1, u_2)\|'_s = \|u_1\|_s + \|u_2\|_s$ and $\|\|_s$ are the norms in $H_s(\mathbf{M}, \mathbb{R}^{4n+1})$ and $H_s(\mathbf{M}, \mathbb{R}^{2n+1})$ respectively.

Proof. As $(y_{1i}, 0) \in \mathbb{R}^{2n+1}$, $i = \overline{1, N}$, then obviously, such $\overline{U}_{(y_1, 0)}$ will belong to $H_s(\mathbf{M}, \mathbb{R}^{2n+1} \times 0)$.

According to the Lemma 4.1, the mapping $U_{(y_1,0)} = \Pi \circ \overline{U}_{(y_1,0)}$ will belong to $H_s(\mathbf{M}, \mathbf{N}_0)$.

Let $\tilde{y}_0 \in \tilde{B}_j$. Let's take 2n vector fields in neighborhood of $U_{\tilde{y}_0}(x)$, which are tangential to \mathbf{N}^2 , orthogonal to each other and have the unit length. Let's denote them by $\tilde{g}_1(y), \dots, \tilde{g}_{2n}(y)$. According to the Lemma 3.1, these vector fields will be defined lengthways of each $U_{\tilde{y}}(x)$, where $\tilde{y} \in \tilde{\theta}_{\tilde{y}_0}$ and $\tilde{\theta}_{\tilde{y}_0}$ is γ -neighborhood of point \tilde{y}_0 in \tilde{B}_j . One can cover \tilde{B}_j by the help of finite number of similar γ neighborhoods $\tilde{\theta}_{\tilde{y}_1}, \dots, \tilde{\theta}_{\tilde{y}_{l'}}$ (\tilde{y}_1, \dots , are points from \tilde{B}_j), because \tilde{B}_j is relatively compact and finite-dimensional. Let $\theta_{p,0} = \tilde{\theta}_{\tilde{y}_p} \cap B_{j,0}$, $p = \overline{1, l'}$. Obviously, the collection { $\{\theta_{1,0}, \dots, \theta_{l',0}\}$ will cover $B_{j,0}$. Let

$$F^{2N} = \left\{ \vec{\mathbf{v}} \in H_s(\mathbf{M}, R^{2n}) | \vec{\mathbf{v}}(x_1) = \dots = \vec{\mathbf{v}}(x_N) = 0 \right\},\$$

it is a linear subspace of $H_s(\mathbf{M}, \mathbb{R}^{2n})$ of finite co-dimension 2nN. Let $\{\vec{e}_1, \dots, \vec{e}_{2n}\}$ be an orthonormal basis in \mathbb{R}^{2n} . Obviously, each function $\vec{v} \in F^{2N}$ will have in this basis the following form:

$$\vec{v}(x) = v_1(x) \cdot \vec{e}_1 + \dots + v_{2n}(x) \cdot \vec{e}_{2n}$$

Here $v_k(x)$, $k = \overline{1, 2n}$, is a scalar function, $v_k \in H_s(\mathbf{M}, \mathbb{R}^1)$, $v_k(x_i) = 0$, $k = \overline{1, 2n}$, $i = \overline{1, N}$. Let's consider a mapping

$$\tilde{\Phi}_p: \tilde{\theta}_{\tilde{y}_p} \times F^{2N} \to p_{N^2}^{-1} \left(\tilde{\theta}_{\tilde{y}_p} \right), \quad \tilde{\Phi}_p \left(\tilde{y}, \vec{v} \right)(x) = \exp_{U_{\tilde{y}}(x)} \vec{g}(x), \quad p = \overline{1, l'},$$

where

$$\vec{g}(x) = v_1(x) \cdot \vec{g}_1 \left(U_{\tilde{y}}(x) \right) + \dots + v_{2n}(x) \cdot \vec{g}_{2n} \left(U_{\tilde{y}}(x) \right), \tag{4.1}$$
$$\tilde{y} \in \tilde{\theta}_{\overline{y}_n}, \quad p = \overline{1, l'}.$$

As in the case m < n, one can show that the $\tilde{\Phi}_p$, $p = \overline{1, l'}$, is a diffeomorphism between $\tilde{\theta}_{\tilde{y}_p} \times \left\{ \left\{ \vec{v} \in F^{2N} \mid \| \vec{v} \|_C < \delta_1 \right\}$ and neighborhood $\left\{ u(x) \mid \| U_{\tilde{y}}(x) - u(x) \|_C < \epsilon_1 \right\}$, where $\tilde{y} \in \tilde{\theta}_{\tilde{y}_p}$, $p_{N^2}(u(x_i)) = p_{N^2}(U_{\tilde{y}}(x_i))$, $i = \overline{1, N}$. According to the construction, this neighborhood contains the set $p_{N^2}^{-1}(\tilde{\theta}_{\tilde{y}_p}) \cap X_j^2$.

Now let's construct such subbundle of $\tilde{\theta}_{\tilde{y}_p} \times F^{2N}$, which $\tilde{\Phi}_p$ would transform onto $\tilde{p}_N^{-1}(\theta_{p,0})$. Let $\tilde{T}_{\tilde{y}}$, $\tilde{y} \in \tilde{\theta}_{\tilde{y}_p}$, be a space of mappings $\vec{g} : \mathbf{M} \to T \to T(\mathbf{N}^2)$ of

form (4.1). Obviously, it is linear and isomorphic to F^{2N} . In addition, $\tilde{T}_{\tilde{y}'} \cap \tilde{T}_{\tilde{y}''} = \emptyset$ at $\tilde{y}' \neq \tilde{y}''$ and $\tilde{T}_{\tilde{y}}$ continuously depends on $\tilde{y} \in \tilde{\theta}_{\tilde{y}_p}$. Therefore, the family $\{\tilde{T}_{\tilde{y}} | \tilde{y} \in \tilde{\theta}_{\tilde{y}_p}\}$, $p = \overline{1, l'}$ will induce an affine bundle with the total space $\tilde{T}_{\tilde{y}_p} = \bigcup \tilde{T}_{\tilde{y}}$, $\tilde{y} \in \tilde{\theta}_{\tilde{y}_p}$, with the layer F^{2N} , with the projection $\tilde{P}_{\tilde{y}_p}(\vec{g}) = \tilde{y}$ and the base space $\tilde{\theta}_{\tilde{y}_p}$. Let's denote it by $(\tilde{T}_{\tilde{y}_p}, \tilde{P}_{\tilde{y}_p}, \tilde{\theta}_{\tilde{y}_p})$. Obviously, the mapping

$$\begin{split} \tilde{G}_p: &\tilde{\theta}_{\tilde{y}_p} \times F^{2N} \to \tilde{T}_{\tilde{y}_p} \,, \quad \tilde{G}_p\left(\tilde{y}, \vec{v}\right) \,= \, \vec{g} \,, \\ &\tilde{y} \in \tilde{\theta}_{\tilde{y}_p} \,, \quad \vec{v} \in F^{2N} \,, \quad p = \overline{1, l'} \,, \end{split}$$

will be an isomorphism between Cartesian product $\tilde{\theta}_{\tilde{y}_p} \times F^{2N}$ and $(\tilde{T}_{\tilde{y}_p}, \tilde{P}_{\tilde{y}_p}, \tilde{\theta}_{\tilde{y}_p})$. Let $T_{(y_1,0)}, (y_1,0) \in \theta_{p,0}$ be a space of mappings $\vec{g} : \mathbf{M} \to T \to T(\mathbf{N}_0)$, where

$$\bar{g}(x) \; = \; \sum_{k=1}^{2n} v_k(x) \cdot \bar{g}_k\left(U_{(y_1,0)}(x)\right), \quad \left(y_1,0\right) \in \Theta_{p,0}\,, \quad \vec{v} \in F^{2N}\,.$$

For each $(y_1, 0) \in \Theta_{p,0}$, $T_{(y_1,0)}$ will be linear subspace of $\tilde{T}_{\tilde{y}}$, $\tilde{y} \in \tilde{\Theta}_{\tilde{y}_p}$, where $\tilde{y} = \tilde{y} = (y_1, 0)$. In addition, $T_{(y_1,0)}$ continuously depends on $(y_1,0) \in \Theta_{p,0}$ and $T_{(y_1',0)} \cap T_{(y_1'',0)} = \emptyset$, when $(y_1',0) \neq (y_1'',0)$. Therefore, the family $\{T_{(y_1,0)}|$ $(y_1,0) \in \Theta_{p,0} \} = \emptyset$, $p = \overline{1, l'}$, will induce an affine bundle with the total space $T_{p,0} = \bigcup T_{(y_1,0)}$, $(y_1,0) \in \Theta_{p,0}$, with the projection $P_{p,0}(\tilde{g}) = (y_1,0)$ and the base space $\Theta_{p,0}$. Let's denote it by $(T_{p,0}, P_{p,0}, \Theta_{p,0})$. According to the construction, it will be a subbundle of $(\tilde{T}_{\tilde{y}_p}, \tilde{P}_{\tilde{y}_p}, \tilde{\Theta}_{\tilde{y}_p})$. As \tilde{G}_p is the isomorphism, then $\tilde{G}_p^{-1}(T_{p,0})$ will be an affine subbundle of $\Theta_{p,0} \times F^{2N}$. According to the construction, the mapping $\tilde{\Phi}_p$ will transform $\tilde{G}_p^{-1}(T_{p,0})$ onto $\tilde{p}_N^{-1}(\Theta_{p,0})$. Obviously, $\tilde{D}_p = \tilde{\Phi}_p^{-1}(p_{N^2}^{-1}(\tilde{\Theta}_{\tilde{y}_p}) \cap X_j^2)$ (and also $D_{p,0} = \tilde{\Phi}_p^{-1}(\tilde{p}_N^{-1}(\Theta_{p,0}) \cap (X_{j,0}))$ is a bounded domain in $\tilde{\Theta}_{\tilde{y}_p} \times F^{2N}$ (accordingly, in $\tilde{G}_p^{-1}(T_{p,0})$). Let's paste \tilde{D}_p and $\tilde{D}_{p'}$ (and also $D_{p,0}$ and $D_{p',0}$), $p, p' = \overline{1, l'}$, by the help of mappings $\tilde{\Phi}_p^{-1} \circ \tilde{\Phi}_p$; as a result we shall receive a set \tilde{D}_j (accordingly, $D_{j,0}$).

Now let's construct such two affine bundles that in one of them each \tilde{D}_j and in the other each $D_{j,0}$ will be a bounded domain. Let $\vec{g}_{1,p}(y), \ldots, \vec{g}_{2n,p}(y)$ and $\vec{g}_{1,p'}(y), \ldots, \vec{g}_{2n,p'}$ are vector fields, defined (as above) in neighborhoods of $U_{\tilde{y}_p}(x)$ and $U_{\tilde{y}_{p'}}(x)$, respectively. Let $\tilde{y} \in \tilde{\theta}_{\tilde{y}_p} \cap \tilde{\theta}_{\tilde{y}_{p'}}$ and $\mu_{p,p',\tilde{y}}(x)$ is an orthogonal matrix, which transforms the first basis onto second basis in point $y = U_{\tilde{y}}(x)$. The dif-

feomorphism $\tilde{\Phi}_{p'}^{-1} \circ \tilde{\Phi}_p$ will transform the element $(\tilde{y}, \vec{v}) \in \tilde{\theta}_{\tilde{y}_p} \times F^{2N}$ into $(\tilde{y}, \vec{w}) \in \tilde{\theta}_{\tilde{y}_{p'}} \times F^{2N}$, where

$$\vec{w}(x) = \mu_{p,p',\tilde{y}}(x) \cdot \vec{v}(x). \tag{4.2}$$

The function (4.2) is the linear isomorphism, smoothly depending on $\tilde{y} \in \tilde{\theta}_{\tilde{y}_p} \cap \tilde{\theta}_{\tilde{y}_{p'}}$. Pasting together all $\tilde{\theta}_{\tilde{y}_p} \times F^{2N}$ (and also all $\tilde{G}_p^{-1}(T_{p,0})$), $p = \overline{1, l'}$, by the help of mappings $\tilde{\Phi}_{p'}^{-1} \circ \tilde{\Phi}_p$, we shall receive an affine bundle (accordingly, a subbundle). Let's denote it by $(\tilde{Y}_j, \tilde{P}_j, \tilde{B}_j)$ (accordingly, by $(Y_{j,0}, P_{j,0}, B_{j,0})$). According to the construction, \tilde{D}_j (and also $D_{j,0}$) will be the bounded domain in Y_j (accordingly, in $Y_{j,0}$).

Now we shall paste together $\tilde{\Phi}_1, ..., \tilde{\Phi}_l$ by the help of transition functions; as a consequence we shall receive one diffeomorphism between \tilde{D}_j (and also $D_{j,0}$) and X_j^2 (accordingly, $X_{j,0}$), which we will denote by $\tilde{\Phi}_j$. Thus, the construction of the L-chart $\left(\Phi_j^{-1}, X_j^2\right)$ (and also $(\tilde{\Phi}_j^{-1}, X_{j,0})$) on X_j^2 (accordingly, on $X_{j,0}$), is completed.

Similarly to the case m < n, the transition function between affine bundles $(\tilde{Y}_j, \tilde{P}_j, \tilde{B}_j)$ and $(\tilde{Y}_i, \tilde{P}_i, \tilde{B}_i)$ will be an FQL-mapping. Therefore, the *L*-structures on X_j^2 and X_i^2 , $j \neq i$, will be coordinated. It follows from here that $\tilde{\Phi}_i^{-1} \circ \tilde{\Phi}_j$ will be an FQL-mapping between subbundles $(Y_{j,0}, P_{j,0}, B_{j,0})$ and $(Y_{i,0}, P_{i,0}, B_{i,0})$, too. In other words, the *L*-structures on $X_{j,0}$ and $X_{i,0}$, $j \neq i$, also will be coordinated. Thus, the structure, introduced in X, will also be Fredholm Quasi-Linear.

Remark. It is obvious from all of the above-established facts that at $(n-1) \cdot k \le m < n \cdot k$, $k \ge 3$, all constructions and proofs will be similar to the case m < 2n.

5. A degree of FSQL-mapping. At the definition of the degree of FSQL-mapping between FQL-manifolds we shall consider a more simple case, namely when the following conditions are satisfied:

(1) FQL-manifolds X and X' are embedded in Banach spaces E_1 and E_2 , respectively.

(2) The open sets X_j and X'_i (see, the definition of FQL-manifold) have forms $X_j = X \cap B_1(R_j)$ and $X'_i = X' \cap B_2(r_i)$, where $B_1(R_j)$ and $B_2(r_i)$ are the open balls in E_1 and E_2 with centers at zero and of the radiuses R_j and r_i , respectively, R_j , $r_i \to \infty$, when $j, i \to \infty$.

(3) For each j and i, the *L*-charts φ_j , φ_j^{-1} , φ'_i , $(\varphi'_i)^{-1}$ are uniformly continuous.

(4) FSQL-mapping $f: X \to X'$ satisfies the following a priori estimate

A. ABBASOV

$$|x||_{1} \leq \Phi(||f(x)||_{2}),$$
 (5.1)

where Φ is a positive monotone function, and $\|\cdot\|_1$, $\|\cdot\|_2$ are norms in E_1 and E_2 , respectively.

Now we shall start defining the degree of FSQL-mapping $f: X \to X'$. For simplicity let's suppose that Φ is the identical mapping. Let's consider the equation

$$f(x) = x'_0, \quad x'_0 \in X'.$$
(5.2)

When condition (5.1) is satisfied, all the solutions of the equation (5.2) will belong to $X_{R_0} = X \cap B_1(R_0)$, $R_0 = ||x'_0||_2$. According to the assumption,

$$\exists j_0 \quad \forall j \ge j_0 : \ X_j \supset X_{R_0} ,$$

and according to the Definition 2.6,

$$\exists i_0 \quad \forall i \ge i_0 : f(X_i) \subset X'_i.$$

Let j and i be numbers, for which all above mentioned conditions are satisfied. Then, while defining deg (f) in the point $x'_0 \in X'$ we may consider the restriction of the mapping f onto X_j . As φ_j and φ'_i are the homeomorphisms, then to solve equation (5.2) in X_{R_0} will be equivalent to solve equation

$$f_{ji}(y) = y'_0, \quad y'_0 = \varphi'_i(x'_0)$$

in $\varphi_j(X_{R_0})$, where $f_{ji} \equiv \varphi'_i \circ f \circ \varphi_j^{-1}$. According to Definition 2.6, f_{ji} is an FSQLmapping between affine bundles ξ_j and ξ'_i . Let $\{f_{ji,r}\}$ be a sequence of FSLmappings, which uniformly converges to f_{ji} on D_j . Let's consider the equation

$$f_{ji,r}(y) = y'_0, \quad y'_0 = \varphi'_i(x'_0);$$
 (5.3)

we will search its solutions in $\varphi_j(X_{R'_0})$, where $X_{R'_0} = X \cap B_1(R'_0)$, $R'_0 = \|x'_0\|_2 + 2\delta$, $\delta > 0$.

Remark 5.1. Obviously, $X_{R'_0} \subset X_j$ when j is big enough, therefore $\varphi_j(X_{R'_0}) \subset D_j$.

This problem can be transformed to finite-dimension problem. Indeed, as $f_{ji,r}$ is a bimorphism, then it will induce the finite-dimensional continuous mapping

$$g_{ji,r}: B_{j,r} \to B'_{i,r}$$

between base spaces of affine bundles ξ_j and ξ'_i . Let's consider this finitedimensional equation

$$g_{ii,r}(\beta) = \beta'_0, \quad \beta'_0 = P'_{i,r}(y'_0),$$
 (5.4)

ISSN 1027-3190. Укр. мат. журн., 2011, т.63, № 5

592

where $P'_{i,r}$ is the projection of subbundle $\xi'_{i,r} = (Y'_i, P'_{i,r}, B'_{i,r})$. Let's prove that when *r* is big enough; finding the solutions of equation (5.3) is equivalent to finding the solutions of equation (5.4).

Indeed, let $y \in \varphi_j(X_{R'_0})$ and it is a solution of equation (5.3). Obviously, there exists unique $\beta \in P_{j,r}(\varphi_j(X_{R'_0}))$, such that $y \in P_{j,r}^{-1}(\beta)$ and $f_{ji,r,\beta}(y) = y'_0$, where $P_{j,r}$ is the projection of subbundle $\xi_{j,r} = (Y_j, P_{j,r}, B_{j,r})$, and $f_{ji,r,\beta}$ is the restriction of $f_{ji,r}$ onto layer $Y_{j,\beta} = P_{j,r}^{-1}(\beta)$. Therefore, $f_{ji,r,\beta}(Y_{j,\beta}) = Y'_{i,\beta'_0}$, where Y'_{i,β'_0} is the layer of $\xi'_{i,r} = (Y'_i, P'_{i,r}, B'_{i,r})$, which contains point y'_0 . Therefore, β will be solution of the equation (5.4).

Conversely, let β be a solution of (5.4). This means that

$$f_{ji,r,\beta}\left(Y_{j,\beta}\right) = Y'_{i,\beta'_0}.$$

As $f_{ii,r,\beta}$ is an isomorphism, then there exists unique point $y \in P_{i,r}^{-1}(\beta)$ such that

$$f_{ji,r,\beta}(y) = y'_0, (5.5)$$

i.e., the equation (5.3) is solved. Let's show that $y \notin \varphi_j(X_{R'_0})$ is not possible. Obviously,

$$\left\|f(x)-(\varphi_i')^{-1}\circ f_{ji,r}\circ\varphi_j(x)\right\|_2<\delta\,,\quad x\in D_j\,,$$

when *r* is big enough. If $y \notin \varphi_j(X_{R'_0})$, then $x = \varphi_j^{-1}(y) \notin X_{R'_0}$, i.e., $||x||_1 > R'_0$. Then, it follows from estimate (5.1) that

$$\begin{split} \left\| \left(\varphi_{i}^{\prime} \right)^{-1} \circ f_{ji,r} \circ \varphi_{j}(x) \right\|_{2} &\geq \left\| f(x) \right\|_{2} - \left\| f(x) - \left(\varphi_{i}^{\prime} \right)^{-1} \circ f_{ji,r} \circ \varphi_{j}(x) \right\|_{2} \\ &\geq \left(\left\| x_{0}^{\prime} \right\|_{2} + 2\delta \right) - \delta > \left\| x_{0}^{\prime} \right\|_{2}, \end{split}$$

i.e., $(\varphi'_i)^{-1} \circ f_{ji,r} \circ \varphi_j(x) \neq x'_0$, hence $f_{ji,r}(y) \neq y'_0$. This contradicts to equality (5.5). So, $y \in \varphi_j(X_{R'_0})$.

Thus, the equation (5.3) is transformed to finite-dimension equation (5.4). Now we can define the degree of FSL-mapping $f_{ji,r}$.

Definition 5.1. deg $(f_{ji,r}) = deg (g_{ji,r})$.

The sign of this degree depends on orientations in $B_{j,r}$ and $B'_{i,r}$, but its absolute value is invariable. The last circumstance is not important for proof of the existence of a solution of (5.2) (see Theorem 5.1 and Definition 5.2).

Theorem 5.1. Let $f_{ji,r_1}, f_{ji,r_2}: Y_j \to Y'_i$ be FSL-mappings, which are close enough to FQL-mapping $f_{i,j}: Y_j \to Y'_i$ in D_j . Then

$$\left| \deg\left(f_{ji,r_1}\right) \right| = \left| \deg\left(f_{ji,r_2}\right) \right|.$$

The proof of this theorem is similar to proof of the Theorem 2.3 from [1].

By the Theorem 5.1 the sequence $\{ | \deg(f_{ji,r_1}) | \}$ will be stable when r is big enough. Therefore, we can give the next definition.

Definition 5.2. $\deg(f_{ji}) = \lim_{r \to \infty} \left| \deg(f_{ji,r}) \right|.$

As ϕ_i and ϕ'_i are homeomorphisms, then we can give the next definition.

Definition 5.3. $\deg(f) = \deg(f_{ji})$.

Obviously, deg(f) does not depend on L-charts on X and Y.

Theorem 5.2. Let $\{f_t\}$ be a family of FSQL-mappings, continuously (uniformly in each X_j) depending on parameter $t \in [0,1]$. Let's suppose also that the conditions (1)-(4) are satisfied for each t. Then

$$\deg(f_0, x') = \deg(f_1, x'), \quad x' \in X'.$$

Here the function Φ does not depend on t.

Proof. Using compactness of [0,1], uniform continuity (according to t) of the family $\{f_t\}$ and also of the mappings φ_j and $(\varphi'_i)^{-1}$, we can approximate the family of FSQL-mappings $f_{t,ji}: Y_j \to Y'_i$ by the help of the family $\{f_{t,i,j,r}\}$ of FSL-mappings. According to the Theorem 5.1, the absolute value of degree of FSL-mapping will be locally stable. Therefore,

$$\left| \deg\left(f_{0,ji,r}, y'\right) \right| = \left| \deg\left(f_{1,ji,r}, y'\right) \right|, \quad y' = \varphi'_i(x'),$$

when r is big enough. Hence

$$\deg\left(f_{0,ji},y'\right) = \deg\left(f_{1,ji},y'\right).$$

From here,

$$\deg(f_0, x') = \deg(f_1, x').$$

Theorem 5.2 is proved.

Theorem 5.3. At the conditions (1)-(4)

$$\deg(f, x'_1) = \deg(f, x'_2), \quad x'_1, x'_2 \in X'$$

Proof. Let $X_j \supset X \cap B_1(R)$, $R \ge \Phi\left(\max\left\{\|x_1'\|_2, \|x_2'\|_2 + 2\delta\right\}\right)$ and X'_i is such that $f(X_j) \subset X'_i$. Let $\{f_{ji,r}\}$ be a sequence of FSL-mappings, which converges to the f_{ji} in D_j . As

$$\left| \deg(f_{ji,r}, y'_l) \right| = \left| \deg(f_{ji}, y'_l) \right|, \quad y'_l = \varphi'_i(x'_l), \quad l = 1, 2,$$

when r is big enough, then it is enough to prove that

$$\deg\left(f_{ji,r}, y_{1}'\right) = \deg\left(f_{ji,r}, y_{2}'\right).$$

For this purpose it is enough to prove that

、

$$\deg(g_{ji,r},\beta'_{1}) = \deg(g_{ji,r},\beta'_{2}), \quad \beta'_{l} = P'_{i,r}(y'_{l}), \quad l = 1, 2.$$

The last equality is known from the classical (finite-dimensional) analysis. Theorem 5.3 is proved.

Theorem 5.4. Let the conditions (1)-(4) be satisfied and $\deg(f) \neq 0$. Then the equation (5.2) has a solution for each $x'_0 \in X'$.

The similar theorem has been proved in [3] (see also [8]).

Remark **5.2.** Specific examples of FQL-mappings with calculated degrees (in relatively simple cases) are given in [6] and [8].

- 1. Abbasov A. A special quasi-linear mapping and its degree // Turkish J. Math. 2000. 24, № 1. P. 1–14.
- 2. Abbasov A. A quasi-linear manifolds and quasi-linear mapping between them // Turkish J. Math. 2004. 28, № 1. P. 205–215.
- Abbasov A. L-homology theory of FSQL-manifolds and the degree of FSQL-mappings // Ann. Pol. Math. - 2010. - 98, № 2. - P. 129-145.
- 4. *Borysovich Y. G., Zvyagin V. G., Sapronov Y. I.* Nonlinear Fredholm maps and Leray–Schauder theory // Uspechi Mat. Nauk. – 1977. – **22**, № 4. – S. 3–54 (in Russian).
- 5. *Eells J.* Fredholm structures // Proc. Symp. Pure Math. Providence, R. I.: Amer. Math. Soc., Pr., 1970. **18**. P. 62–85.
- 6. *Efendiev M. A.* The degree of FQL-mapping in quasi-linear domains and Hilbert nonlinear problem in ring // Izv. AN Azerb. SSR. 1979. **5** (in Russian).
- Zviyagin V. G. About oriented degree of one class disturbances of Fredholm mappings and bifurcations of solutions of Nonlinear boundary problem with noncompact disturbances // Mat. Sb. – 1991. – 182, № 12 (in Russian).
- 8. Shnirelman A. I. The degree of quasi-linear mapping and Hilbert nonlinear problem // Mat. Sb. 1972. **89**(131), № 3. S. 366–389 (in Russian).

 $\begin{array}{l} \mbox{Received 17.06.10,} \\ \mbox{after revision} &- 24.02.11 \end{array}$