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NEW SECOND BRANCH OF SPECTRA
OF THE BCS HAMILTONIAN AND “PSEUDOGAP”*

HOBA PYT'A BITKA CIIEKTPA TAMIJIbTOHIAHA BKIII
TA “IICEBOOILIIJIMHA”

The BCS Hamiltonian of superconductivity has the second branch of eigenvalues and eigenvectors. It consists
from wave functions of pairs of electrons in ground and excited states. The continuous spectra of excited pairs
is divided by different from zero gap from the point of discrete spectra corresponding to the pair in ground
state. The corresponding grand partition function and free energy is exactly calculated. It follows from it that
for low temperatures system is in condensate of pairs in ground state. The sequence of correlation functions
is exactly calculated in the thermodynamic limit and it coincides with corresponding sequence of system with
approximating Hamiltonian. The gap in spectra of excitations depends continuously on temperature and is
different from zero above the critical temperature corresponding to the first branch of spectra. It seems to us that
this fact explains the phenomena of “pseudogap”.

Taminbronian BKIII Teopii HaAMPOBIIHOCTI Mae Ipyry BiTKy BJIACHHX 3Ha4yeHb Ta BJIACHUX BeKTOpiB. Lls
BITKa CKJIQ/IA€EThCA 3 XBUJILOBUX (PYHKIIi/ ap €JIEKTPOHIB B OCHOBHOMY Ta 30y/I2KeHUX cTaHax. Hemepeps-
HHIi CrIeKTp 30y/12KEHUX Map BiiJICHUii BiIMIHHOIO Bifl HyJIS LLIJIMHOIO BiJj TOYKH QUCKPETHOrO CIEKTPA,
IO Bi/IMOBI/Ia€ Mapi B OCHOBHOMY CTaHi. Bi/fnoBijiHa BeJiMKa CTaTUCTUYHA CyMa Ta BiJIbHA €HEpris BUpaxy-
BaHi TOYHO. 3Bi/ICH BUILINBAE, IO NPH HU3bKHUX TeMIepaTypax cUCTeMa € B KOH/ICHCATI Iap B OCHOBHOMY
crai. ITocsioBHICT KOpeJIALIHUX (DYHKILiI BUpaXyBaHa TOYHO y TEPMOAMHAMIUHIN I'paHulli i 30iraeTbes
3 Bi/INOBI/IHOIO TMOCJTIJOBHICTIO CUCTEMH 3 aPOKCUMYIOUMM ramisibToHianoM. IIlisiMHa B criekTpi 30yKeHb
3aJ1€2KMTh HEMEPEPBHO BiJI TEMNEPATYpH i € BI/IMIHHOIO Bi/l HyJIs 1 Ha BifIpi3Ky BUILE KDUTUYHOI TEMNEpaTypu,
IO BiJNOBiJja€ nepuiii BiTui cnektpa. Ha 1yMKy aBTOpa, 1ieil HakT nosicHioe eHOMeH ,,IICeBIOLIIIMHN .

Introduction. In the series of papers [1—7] we investigated the eigenvalues and eigen-
vectors of the BCS Hamiltonian for system of electrons in finite cube A with periodic
boundary condition and in the entire space R3. It was shown that the BCS Hamilto-
nian has two branches of eigenvalues and eigenvectors — the first is well known ground
state and its excitations with corresponding eigenvalues discovered by Bardeen, Cooper
and Schrieffer [8]. Bogolyubov [9] showed that the mean energies per volume of ground
states of the BCS Hamiltonian and of the approximating Hamiltonian coincide in the
thermodynamic limit as A — R3 in some sense.

Recently we showed that the mean energies per volume of all the excited states of
the both Hamiltonians coincide in the thermodynamic limit, and the BCS Hamiltonian
and the approximating Hamiltonian coincide as the quadratic form in the thermodynamic
limit [5].

The second branch of eigenvalues and eigenvectors has been discovered by author
first directly for infinite system [6] and recently for finite system in cube A [1-4]. If
was shown that the eigenvalues determined in the cube A tend to the corresponding
eigenvalues determined in the entire R? in the thermodynamic limit. For the second
branch of the eigenvectors mean energies per volume of the ground and the excited states
of the BCS and approximating Hamiltonians also coincide in the thermodynamic limit.
On this second branch of the eigenvectors the BCS and the approximating Hamiltonians
also coincide as the quadratic forms, in the thermodynamic limit.

Describe shortly the second branch of eigenvectors and eigenvalues directly for in-
finite system in R3. Consider the Hamiltonian H, for wave function of one pair of
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NEW SECOND BRANCH OF SPECTRA OF THE BCS HAMILTONIAN AND “PSEUDOGAP” 1509

electrons with opposite momenta and spin

2106 = (5o = 20) 100+ ) [ w(0) 1), g

where m is mass of electron, u — chemical potential, v(k)v(p) separated potential,
g — coupling constant. Denote by fo(k) the eigenvector with lowest eigenvalue Ej.
fo(k) and Ej satisfy equations

(E _ QM) fo(k) + cov(k) = Eofo(k), c¢o= g/v(p)fo(p)dp, 2

2m
) _g/ v?(p)dp
= —
E() — i + 2M
2m

k‘2
For certain potential v(k) = v(|k|) with support in layer ‘2— —pl < w,w >0,
m
equation (2) for eigenvalue Fy has unique solution Fy < —2w with gap |Ey + 2w| =
= A # 0 and corresponding eigenvector (normalized to unity)

D=

2
fo(k) — 1;(;;) / U(§)2dp > ) (3)
EO—%"‘ZU (EQ—%‘FQ'LL)

Ey is discrete eigenvalue. These results has been obtained by Cooper [10] and Yam-
aguchi [11].

]{32

m 12
w > 0. The Hamiltonian H> has also eigenvectors corresponding to the continuous
spectra —2w < E — 2 < 2w. Namely, some of these eigenvectors fr(k) with eigen-

We consider the operator H> on functions with support in layer < w,

value E — 2u are orthogonal to v(k), i.e., /U(p)fE(p)dp = 0, and satisfy equations

o) fuh) = (B - 2, E=T ()
om H E — H)JE ) - m .
Eigenvectors fg (k) can be represented as superposition of the following eigenfunctions:
mlk|\z 8(|k| —
et = () Dy 0.0, al 4121 6

where Y,,;(6, ¢) is spherical function.
For [ =0 we have

Froo(k) = (mk|>2 Ok —lpD) | _gv(lkl)es

2 k|2 k? ’
[k — —E —ie
m
-1
mlp\ * o2 Iy dlp|
a=|—" dro(|p]) | 1 — 4dng — . (6)
v E — e
m
One supposes hII(lJ in (6). Eigenvalue E — 2 is degenerated 2/ + 1 times because
E—
for fixed [ number n takes value n = 0,=£1,...,£l. Eigenvalue E — 2y corresponds

to excited pair with eigenvectors fg (k).
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1510 D. YA. PETRINA

The 2n-particle Hamiltonian or the Hamiltonian H,, for n pairs is defined as fol-
lows:

Hy=H,®I®..®I+..+1®..0 @ Hy, n>2, (7)

and it has eigenfunctions proportional to

fo(k1) . fo(ks) e, (Ks+1) - - fE, . (Kn) (8)

with eigenvalues
skEo+F1 —2u+---+E, s —2pu, —2w+2u<E; <2w+2u 1<i<n-—s.

Note that formulae (7) is crucial point in our paper. If defines the BCS Hamiltonian
in subspace of n pairs and has been discovered in our paper [6]. If means that BCS
Hamiltonian is identical to the Hamiltonians H,,(7) in subspace of n pairs and general
Hilbert space of translation invariant functions [6]. If follows from (7) that the Hamilto-
nian H(1) introduced by Cooper [10] in connection with the theory of superconductivity
for wave function of one pair defines the BCS Hamiltonian for arbitrary numbers of n
pairs by formulae (7).

Note that we obtained wave functions of excited pairs (5), (6) with arbitrary angular
momenta [ > 0.

The Hamiltonians H,, n > 2, coincide with the BCS Hamiltonian [§]

2
1= [ (£ - u)a atrips
3

A28 [ p)otp)a (p)a* (~pha(—rfate!paf ©
on eigenfunctions (8) (description of notation used in (9) will be given in Section 1).
These facts have been discovered in our papers [1—6]. This means that n wave func-
tions of pairs of electrons with opposite momenta and spins in ground or excited states
are eigenvectors of the BCS Hamiltonian. The interaction of the BCS Hamiltonian is
only cause to create bound state of pairs of electrons, but pairs do not interact between
themselves.

Define the ground state ¢, as coherent state of pairs with wave functions fo(k) (3)

do = e.ffo(k)w(/c)f(—k)dk |0)

and the BCS ground state
8 = 5 (K)a* (k)a™ (—k)dk 0),

where

f (k) = =((2(k) + 2 (k)F — (k)

1

2

1
2

(k) + (k)2 +2(k)) 7

k

The constant ¢ is defined from condition of minimum of (¢, H¢g).

The main difference between the ground state discovered by Bardeen, Cooper and
Schrieffer ¢ and the second ground state ¢y consists in the following. The BCS ground
state ¢§ is determined from condition of minimum of mean energy (¢§, H¢§) for the all
coherent state of pairs ¢§, but the second ground state ¢, is determined from condition
of minimum of mean energy (¢, H¢g) for the all states ¢ of n pairs of the coherent
state ¢g of pairs.
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NEW SECOND BRANCH OF SPECTRA OF THE BCS HAMILTONIAN AND “PSEUDOGAP” 1511

For these second branch of spectra we calculated exactly grand partition function

2w
s, ) 2 k2
_ e(27r) 3y e~ BEo exp{(2ﬂ_)3v / 67[3 22’“772;1) |:Ot <_) +
m

—2w

o0 2
—l—Z(QZ + 1)€_ﬂ1(l+1)l:| d (% - 2,u) }, (10)
=1

[1]

ﬂ 2
where [ is inverse temperature, 31 = 7 and [ is inertia momenta and « (—) is
m

some function which will be defined later. Free energy per volume is equal to

1 27) 73
lim In== f—( ) (eﬁEOJr

75 V —o0 V ﬁ
2w k2 5o k2
+ / e P(5m —2m) la (—) +) @2+ 1)6—51““”] d (— - 2u) ) (11)
—2w m =0 "

It follows from (11) that for low temperature (3 — oo) and due to the gap in spectra of
the Hamiltonian Hy system exhibits condensation of pairs in ground state

1 (2m)~3
—— lim =InE~ —
B vise V 3
We also proved that the correlation functions associated with the second branch of
eigenvalues and eigenvectors (8) of the BCS Hamiltonian coincide with the correlation

functions associated with the following approximating Hamiltonian [9]:

Happr = / ot (k) (% _ M) a(k)di+

e BFo,

Jrc/v(k:)a*(/c)a*(fk)dk + c/v(k)a(fk)a(k)dk +C(e)V, (12)
where constant ¢ is defined as follows:
2w+2p
c= /v(p) fo(p)e PP 4 / feoo(p)e PE2Wa(E)IE | dp  (13)
—2w+2p

and constant C/(c) is determined from condition of coincidence of grand partition func-
tions (10) of the BCS (9) and the approximating (12) Hamiltonians.

Stress that constant c is defined directly by formulae (13), it is different from zero for
arbitrary 0 < 8 < oo and depends on /3 continuously. Recall that in the approximating
Hamiltonian that corresponds to the first branch of spectra constant ¢ is defined from
condition of minimum of the free energy with respect to c. The condition of minimum is
reduced to certain nonlinear equation that has nontrivial solution for the temperature 7'
less than some critical T,. In the case of the second branch of eigenvalues and eigenvec-
tors constant ¢ is different from zero for all the temperatures.

If seems to us that this fact explains the phenomena of “pseudogap”. Indeed, the
eigenvalues of the approximating Hamiltonian (12) that correspond to n-particle excita-

tion with momenta pq,...,p, are defined through formulae
k2 2
E(ky) + ...+ E(kn), E(k1) = (%—M> + 2v?(k),
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1512 D. YA. PETRINA

where c?v?(k) characterizes the gap in spectra and according to (13) the gap is different
from zero for all the temperatures.

1. The model BCS Hamiltonian. 1.1. Equation for ground state. Consider the
model BCS Hamiltonian [8] for infinite cube A = R3

- [ (——u) +(p)alp)dp+

g(ZW)B/v(p)v(p’)a (p)a™ (=p)a(—p')a(p)dpdp’ = Ho + Hr, ~ (1.1)

\%

+

where V = V(R3) is the volume of the three-dimensional space R?3, g is coupling
constant, p denote momenta p and spin ¢ = +1, dp means integration with respect to
p and summation with respect to ¢ = +1, p = (p,1), —p = (=p,—1) a™(p), a(p)
are the operators of creation and annihilation of electrons with momenta p and spin o.
The model Hamiltonian (1.1) has a rigorous meaning in the Hilbert space of transla-
tion-invariant functions and its spectra has been investigated in detail [4, 6]. We present
a short review of these results. We consider the Hamiltonian H (1.1) on functions with

<w,w > 0.

support in layer o TH
m
Let us consider the following coherent state:

Dy = elfo(k)at (k)at (—k)dk 0) =
=1

= Z ﬁ /fo(k‘l) c. fO(kr) X
r=0 "

at(k)at (k1) ...at(k)at (—k,)dk; ... dk, |0) = Z —® (1.2)
r= 0

and determine the normalized to unity function fo(k) from condition that each ®f is an
eigenvector of H with the lowest eigenvalue. From these conditions we obtain

S (L o) otk fulh) +
=1

+300 [ oB foR)k k) i fohr) =
i=1 v
= 7‘E0f()(k1)...f‘o(]ﬂ,.)7 H(I)S :’/‘EO(I)S. (13)

2 3
Obtaining (1.3) we used the identity %(5 (0) = 1, and the fact that, according to

the Fermi statistics, in ®( pairs with the same momenta are absent. By using the method
of separation of variables one concludes that fo(k) is solution of the equation

(E — 2M> Jo(k) 4 cov(k) = Eo fo(k),

2m (1.4)
=g [ o(Ofa(k)dk
and eigenvalue Ej is solution of the equation
2
v
1= g/*ig)dp. (1.5)
Ey— —+2p
2m
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From (1.4) one gets normalized to unity fo (k)

=

v(k v2(p)dp
iy | [
EO_%J"Q,U <E0—%+2/I4>

Let proceed to investigation of equation (1.5).
1.2. Equation for discrete eigenvalue. We have the following equation for eigen-
value (1.5):

v2(p
1:9/ 2])(2) dp,
E- <__2u)
2m

2
where v(p) is different from zero in layer —w + p < ;; < w + p and for the sake
m

of simplicity we put v? (p) = g, o > 0. By using spherical system of coordinate

equation is performed to the following form:

2|p
- #d\pl
= 2mgam / . 27 ) =
—otu<tm<wtn O T \om T H
2w d 2w d
X X
pu— = 1.
ga/ T2 Igla/ o1 (1.6)
—2w —2w

where a = 2ram > 0.
We calculate the last integral in (1.6) supposing that £ < —2w, and obtain

2w—F
1= lglaln ———. (1.7)
This equation has the unique solution
1
Eo = 2w1+% < 2w<0 (1.8)
— edls

that is eigenvalue corresponding to the following normalized to unity eigenfunction

1
2

v(k v2(p
ol = ——29— | [ a9
Ey— =—+42 _
0 om +2p (Eo om + 2[1,)
Consider equation (1.6) for —2w < F' < 2w, i.e., 2w—F >0, —2w—FE < 0. The func-
2w—F 2w—F
tion In wms is holomorphic function and for its negative argument el <0
—2w—F —2w—F
equation is defined as follows:
2—F 2w—F
1=1 ; 0.
1r12c‘)—|—£?—~_l7r7 2w—|—E>

If means that equation (1.7) has not solution with —2w < E < 2w.
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1514 D. YA. PETRINA

Show that equation (1.7) has also not solution with £ > 2w. Indeed in this case
2w—FE E—-2w

—2w—FE E+42w >0
and equation (1.7)
1=|glaln E=2w
E+2w
has solution
1
E:QwH—e;’M < 20w < 0.
1—ezldl

But this contradicts our assumption that E > 2w.
Now show that in general case equation

v*(p)
1= g/ 7 dp = ¢(E)
E—2 4.
2m

can have only finite number of real solutions —2w < E < 2w. Indeed, the right-hand
side of equation ¢(FE) is holomorphic function with respect to E in complex plane
outside the interval ImE = 0, —2w < ReFE < 2w. For potential v(p) that is holomor-
phic function in a neighborhood of this interval the function ¢(FE) has boundary value
on this interval and is here a holomorphic function. (This easy follows from method of
holomorphic continuation by using deformation of the contour of integration.) Therefore
©(F) can take the value 1 only in finite number of points on the interval ImFE = 0,
—2w < ReE < 2w.

o
In what follows we will consider only the case v*(p) = —, and in this case equation

Pl
(1.6) has unique solution (1.8) Fy < —2w.
1.3. Eigenfunction of continuous spectra. Consider equation for eigenfunctions
corresponding to continuous spectra

Haofp(k) = 5— —2u) f(k) +gv(k) | o) f(p)dp' = (E —2p) f(k), (1.10)
2m

—2w+2p < B < 2w+ 2p.

This equation is equivalent to the following integral equation [11]:

v(k
etk = ( ﬁ [o6i0)a, 2 =p eo
2m

m|k|

: )%5(/4;—]7)4-

Represent fr(k) and §(k — p) as follows:
00 l
Fek) =" " eIk Yin (k)Y (9) =
=0 n=—1

= " Upa(kDan 2+ DRk p), |kl =1, [p|=1,
1=0 (1.12)

0k —p) = 3 25001kl ~ ) ¥in (B)Y;5(5) =

in

=3 L 5(kl — Iphan (2l + 1A p).

o
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There Y, (k) is normalized spherical function, k = (sin 6 cos ¢, sin @ sin ¢, cos 6)

Vin (k) = ei"¢]31|n|(cos 0) Ny,
— ) 2
N — ((z |n|).(21—|—1)> |

(I + |n|)4m
n i d™
Pl (g) = (1 - 5 ) 2 §|n\ (f)

P,(&) is Legendre polinom
Note that Z o Zn__l Yin (k)Y (p) is d-function 6(k,p) on sphere and if (k)
is arbitrary smooth function then

/ S VBV ()0 = ().

=0 n=—1

where dp is the element of unit sphere |p| = 1. Substituting expressions (1.12) into
(1.11) and using orthogonality Y}* (5') to v(p’), I + |n| > 1 one obtains

g o(lk]) = (m2k|)§ 5(Ik|kg pl) . _gv(k)es

1 2
mlp| \? v (p')p'"dp’

path) = (R0 18D

2
Denote as above by Ey, = —, E, = and use the following obvious formula:
m

§(Ey, — Ep) = md(k* — p°) = —=d(|k[ — [p]). (1.13)

2\k|
It follows from (1.12) and (1.13) that
(|m|k>é 1
2 4 \*
W) = 200k = ) = (g ) B~ B 121 (114

k? E‘kfﬂl‘3
The eigenfunction of the operator Hs that corresponds to continuous eigenvalue
—2w < F — 2 < 2w and orbital momenta [ > 1 can be represented follows:

fE,l(kvp) ‘IlEl |k‘ Z le'fb }/ln )_

n=-—I1
4 1
(a5 -
n=-—1
4\ 1 .
= (Ekm3) OBy — Ey) (21 + DRk -p). (1.15)

1.4. Some formulaes. Now calculate the following expression by using commutation
relations:
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1516 D. YA. PETRINA

Eo> 1
R 4\
<0| /dp/dk/’l/dEpl (W) 6(Ek;1 —Epl)x
1
by

l
XY Vi, (k1) Yin, (P)a(—k1)a(kr) X

ny=—

FEs 1
4 1
X/dkz/dEp2 (W) 6(Ek2 —Ep2)><
Eq 2

l
XY Viny (k2) Vi, (P)a™ (k2)a(—ks) |0) =

= (2m) V(20 + 1) (By — Ey), (1.16)
1>1, FEy=-2w+2u FE;=2w+2pu.

If one first performs integration with respect to p using orthogonality of Y},,(p) then
one obtains the following equivalent representation of (1.16)

0|/dk1/dEpl — )5(Ek1 E,,)a(—ky)a(ky)x

/ dk / dE,,z ) §(Ey, — E,,)x

3 Vi) Wikl (k) (—kp)0) =

n=-—I|
= (2m) V(20 + 1)(Es — Ey).

The same result will be obtained if one considers more general expression

E>
of [ars [ am,, (55 ) o0, - 5,0 S i da(— ki)
Eq

ny=—

/ dks / dEm ) (B, — Ep,)x

<3 Vin (e () ()0} =

nngl

= (2m)*V (2 + 1)(E2 — E1). (1.17)

We omit the same calculation as in (1.16).
It is obvious that functions

fEl Z fE In |k'| ( ) Ek - Z Yln Z 17
ne—1l ) n=—1 (1.18)
Fran(8) = (orms) OB = Ep)Yin(®), 0= 0.41,... 2L
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are also eigenfunctions of the operator H, with continuous eigenvalue —2w < E < 2w,
because

1
[o) 3 vuthay =0, 1=1,

n=-—I
and
% B B
(o —2) Fa(8) = (B, ~ 20) k). B, = B

In what follows for the sake of simplicity we will use expression (1.17), (1.18) calcu-
lating different averages.

1
Remark that we use the factor (%ld) i in (1.14) in order to have in formulae
E>

(1.16)—(1.18) (27) 2V (21 + 1) dE without any factor depending on E [12].

Note that fo(k) has been foundEl;y Cooper [10], but he did not calculate eigenfunction
corresponding to continuous spectra. We also used papers of Yamaguchi [11].

1.5. Superposition of eigenfunctions corresponding to continuous spectra. Denote
by fin(k) and f;(k) functions

E>

fln(lc):/( 1 )%(Ek—Emn(l%)dE, n=0,+1,...,+l,

Ekm?’

Eq
Es Eo> 4 ) I
70 = [ frawde = [ (505) B~ E) Y Via(b)dE -
E, Ey

n=—I1

l
=Y fmk), 1>1,

n=—1

E,

4 N gv(k)c
20 = [ (o) 0080 - By + 5202 ap
E — —FE—e
2m

that is superposition of functions fz ;(k) with respect to E with fixed unit vector p.
Note that fo(k) # f°(k) because fo(k) corresponds to discrete eigenvalue E, and
fO(k) corresponds to superposition of eigenvalues with continuous eigenvalues —2w <
< FE—2u < 2w and | = 0. The constant ¢; was defined in Subsection 1.3.

Denote by f(k) function

Fk) =" fulk). (1.19)
=0

Note that function f(k) is given by formal series (1.19) and it contains the wave
functions of excited pairs with arbitrary angular momenta.

2. Ground and excited states and grand partition function. 2.1. Ground and ex-
cited states of infinite system. The ground state ®( of infinite system can be represented
as follows:

By = (1,07/fo(kl)a+(k1)a+(—k1)dk1 10,0,...

ISSN 1027-3190. Ykp. mam. xypH., 2005, m. 57, N° 11



1518 D. YA. PETRINA

.y % /fo(kl)aJr(lcl)aJr(—kl)dkl .
../fo(kr)aJr(kT)a*(—k,«)dkr |o>,o...). @.1)

The state ®( is the coherent state of pair of electrons with opposite momenta and
spin with wave function f(k) that corresponds to the lowest eigenvalue Ey < 0 of Ha.
It can be represented as follows:

By = exp ( / f(k)a*(k)cﬁ(—k)dk) 10). 22)

®y is the ground state of system with the Hamiltonian H, because

H / folkn)at (kn)a™ (—ky)dky ... / folke)at (ke)a™ (—k.)dky [0) =
— rEy / folkn)a* (ky)a™ (—ky)d ... / folke)a™ (ky)a™ (—ky ) dk, [0).

Define the following state:

D, = /f —ky)dk .. /f at(—ky)dks®o.  (2.3)

The state fEl(kl)a+(k1) T(=k1)... fe.(ks)a (ks)a+(—ks)<1>6 is the eigenvector of
H with eigenvalue ((E1 —2u)+ ...+ (Es — 2u) + rEO). The state f(k1)a™t (k1) x
xat(=ky) ... f(ks)at(ks)at(—ks)®f is superposition of states fg, (k1)a™ (k1) x
xat(—k1)... fe (ks)®5. ®, is excitation of the ground state ®g by s excited pairs
with wave functions f(k). Vectors ®, are orthogonal to @, and themselves and their
linear combinations forms the Hilbert space of states. In this Hilbert space all the averages
will be calculated.
Define the state

— ooi at at(— ot o _
tb—;S!/f(lﬂ) (k1)a™( k1)/f(kl) (ks)a™ (—ks)®o

_ e.l'f(k)cﬁ(k)a*(fk)dkeffo(k)a+(k)a*(fk)dk 10). (2.4)

® is excitation of the ground state ®( by arbitrary number of pairs with wave functions
f(k). Note that f(k) is orthogonal to fo(k) and therefore excitations are orthogonal to
®y. It is easy to construct the operator of creation and annihilation for which ® is the
vacuum (see [2]).

Remark 2.1. Now explain how to obtain ®y, ®, and ® for infinite system in R3
from those for finite system in cube A with center at the origin of coordinate. For system
situated in A the ground state is defined as follows by analogy with the BCS ground
state [8]

‘Pf} = H(1+f0( )ak (— k)) 0) = (1 0, Zfo (k1) ak —k1 10),0

k

Z fo(k1)a;afkl ---fO(kr)azTaJ_rkr |0>7"'>7

kl# Fhr (2.5)
Z fky) aklaf,Cl o fks )a',fa k. b,
kl# Fks
Z Z f kl akla y - f(ks)alafksfbé\,
=0 % kit £k
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where k is quasimomenta k = 2—7rn, n = (ny,n9,n3), n; € Z, and L is length of the
edge of the cube A. Note that in (2.5) summation is carried out over all ky # ... # k,
and k1 # ... # ks;. We have taken into account that pairs of electrons cannot have
the same momenta, but they can have the same wave functions because the operators
ay,a’y ,a) a’,  commute for k; # kj.

In order to obtain ®y, ®,, ® for infinite system in R3 one formally replaces the
operators a; ,a®, by a*(k),a*(—k) and sums Zk by integrals / dk according to

the formulas

1 T 3
o (+k) = lim (%)zaik, lim (QV) S (k) = / F(k)dk.
k

V—

It is easy to see that <I>6\, <I>Q, dA (2.5) become Py, P, P (2.2)—(2.4) in this
limit.

2.2. Grand partition function. Eigenvalues Fy, < E < FE, are degenerated by
angular momenta [ = 0,1,2,.... Each [ is again degenerated (2] + 1) time. The
eigenfunction fg (k) corresponds to energy E and above described angular momenta.

According to law of quantum statistical mechanics it is necessary to take into account
the angular momenta together with energy. Denote by M the operator of angular mo-
mentum. In spherical system of coordinate

sin 6 90 o0 sin? 6 Op2’

k = (cos 6 cos ¢, cos B sin ¢, sin 6).

2 ~ A~
m2o L9 <sin9§)+ Lo M?Yy, (k) = (14 1)1Y,(k),

Denote by
M2=M?’Q@I®..QI+...+1IR®...0 M? (2.6)
and by
M2 ="M (2.7)
s=1
Recall that

MZ(f(k1).. f(ks) = (M2 f(k)) ... flhs) + .ot flh) .o (MPf(ks)).  (28)

Denote by 3 the inverse temperature, and by 3; = %, where I; isinertia momenta
l

of pair with angular momenta /.
In statistical averages of considered system at the inverse temperature 3 one should

- L2 — — B, M2 . _
use the operator e BH + 57 M%) _ e BH - M instead of the operator e pH .

(Recall that I, B = % depend on [ when the operator M? acts on function with an-

gular momentum [, for the sake of simplicity one omits sign [ in 3; and oftenin [ >

Consider expression

(B, e PH=PIM 5y — (0| > Sill/f(kl)a(—kl)a(kl)dkl...

51:0

.../f(ksl)a(—ksl)a(ksl)dkslx
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x Z /fo (p1)a(—=p1)a(p1)dp: - .

r1 —0

.'/fO(pn)a(fph)a(pTl)dprlX
wo—BH— mMzZ /f (K))a™ (k) at (=K, dk, ...
y / FRL)at (K, Y (—K)dk, x
« g = / Fo@h)a* (h)a* (—p))d, ..

y / fole)a* ()a* (=) )dpr [0). 2.9)

It is obvious that expression (2.9) is grand partition function E because (s + n) -
particle states are invariant with respect to action of the Hamiltonian H and operator
M?. Therefore in (®,e~#H-A1M* ) different from zero contributions belong to equal
s=s1, r=11, L =11 and E = FE’, but it is the grand partition function. Thus
we have taken into account pairs in ground state and all excited states of pairs with all
energies and angular momenta and therefore

2= (B¢ PH-HM ) — Tye PH-A1M7, (2.10)

Now calculate =. We begin with calculation of some integrals

(0] /fo ki)a(—ki)a(k: dkl/f() ko)a™ (k2)a™ (—ke)dks |0) =

= V/fo(k)Qdk =V, /fo(k)zdk =1,
(0] / 72dE (E]:tng )i (B — E)Y;,(k1)a(—k1)a(k:) ¢ dkix
Ey

X /fo(kg)a+(k2)a+(—k2)dk2|0> = 0, I+ |n| > 1.

@2.11)

In these equalities we used orthogonality fo(k) to Yi,(k), I + |n| > 1. We will also
use equality (1.16) or equivalent equality (1.17) with fg;(k) (1.18), and orthogonality
fo(k) and fO(k) that corresponds to different eigenvalues of Ho.

It is obvious that
1 S
e—BH=pI (/ Jin(k (—k:)dk> x

x—(/ﬂ) (—m%y(»z

T (/fln(’ﬁ) T (k)at (=k1)dky ...
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X%(/fo(ks+1)a+(ks+1)a+(—k‘s+1)dk‘s+1---
~~/fO(ks+r)a+(ks+r)a+(_ks+r)dks+reBEOT) |0) =
=3 (/fln —2p) g =B (1411 +(k) (= k)dkz) %
</f0 “PEoat (k) *(—k)dk) 0). (2.12)

We used formulae
PN, (R) = e Y (R, n= 0,51, L

If one considers fi,,(k;) with different I;n;, ¢ = 1,...,s, then one will have in (2.12)
1 2k2
S (/ Fiim, (ky)e PG =2m = O1tDh o+ (kYo t (—ky ) dy . . .
~o/flsns(ks)eﬁ(22’j§2M)661(l5+1)15a+(ks)a+(_ks)dks> )

Recall that spectra of the operator M? with eigenvalue (I + 1) is degenerated 2I + 1
times. Using formulas (1.16), (2.11), (2.12) one obtains

Z = (B, e PH-AIM" g) - 0|Z </f )dk)81><

310

S—_

o 1 B ) )
X Z; /dk/dE Z fE,ln(k)e B(E—2p) ﬁl(l+1)la+(k)a+(7k})dk %
s=0

I+[n]>0

( [ et (e ) =

Zl' (27m)~ 3V/ —AE= 2ﬂ>< )+ (2 +1)e M“”) dE| x
St
=1

s= B

Ey

S

X Z 3V _BEO)

Eo o
= exp (27r)*3v/6*ﬁ(E72H) ( + Z 2l + 1 Bl lJrl)l) dE %
o =1
x exp((2m) 3Ve FE0) =
2w k2 .
2
= exp [(2W)_3V / o BET —2u) (a(ﬁ) +Z(2l+ 1)6—31(z+1)z> «
—2w =1
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k? .
xd (— - Qu) ] exp((2m) 2Ve PFo),
m
(2.13)
Fy=-2w+2u, Fy=2w+2u.
Note that factor 2141 is connected with degeneracy of eigenvalue (I41)I by 20+1
time (n =0,+1,...,£l).
Remark 2.2. We calculated exactly factor e PE —2p) only for [ > 1 (see (1.16),

(1.17)). Show that for [ = 0 we have the factor e—BE - 2“)04(E) where function
a(E) will be defined below. If follows from formulae

E>
/{;/WE,70(|k|)dE’/WE,O(|k|)eﬁ(Ez”)dE d|k| =
1

Eo Eo>
= [ap [ apese- { / wE/,o<k|>wE,o<k|>d|k|} -
FEq Eq

E; Es E,
= / dE’ / dEe P E=20§(E' — E)a(E') = / dEe PE=2 o(E).
FEq Ey B,

We used condition of orthogonality of eigenvectors U g o(|%|)
/\T’Ef(lk\)\I’E(\kl)dlkl = 0(E' — E)a(E").

We can not prove directly that «(E) = 1. Thus we calculated exactly the grand par-
tition function for system of pairs with one ground state with eigenvalue F( and excited
states with continuous spectra in interval —2w < E'—2p < 2w. This system of pairs can
be considered as system of unpenetrated bosons in momentum space, because according
to the Fermi statistics pairs can not occupy the same momenta. We used extensively that
state @ is the coherent state of pairs in ground and excited states.

Note that obtained grand partition function does not coincide with those for Bose —
Einstein or Fermi — Dirac statistics. It is the grand partition function of system of nonin-
teracting pairs of electrons with opposite momenta and spins. We have taken into account
that pairs of electrons cannot have the same momenta, but they can have the same wave
functions because the operators a; a”; . a; a®; ~commute for k; # k;.

2.3. Definition of energy connected with orbital momenta. Now we proceed to
calculate inertia momenta. Use the following formula [12] (see formulae (2.57))
ikr 4

o <m7’f) U3 () Yo (7)Y () =
In

1 (mk\? o
. (%) Sdukr) @+ DR -R), (k=107 =1, (2.14)
=0
where

1
1 2
w(kr) = <§7rkr) Jig 1 (kr)
and jy, 1 (kr) is the Bessel function, Fj(7 - k) is the Legendre polinom.
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Function w;(kr) has the following asymptotic expression:
St

y Ui(z) z—>0 (2l+ ) (2.15)

1
w(z) A sin(z — §7rl)

dr mk 1 ? 9 . . .- .
Recall that k_(T) 2uy(kr)| r* is the density of probability with respect to r for
T

given [, n. Now define energy connected with orbital momenta [:

(1+1) /Oom 2,25 _
7 1) 5,2 \ul(kr)| rodr =
0

yi 47N\ 2mk 9
) = > 1. .
1)z/(kr) k) Pdr, 121 (2.16)
0

It follows from asymptotic behavior of function u;(kr) (2.14) that integral (2.15) is con-
vergent and inertia momenta I; depend on [. Moreover, I; can be calculated exactly.
We have (see [13, p. 443], §13.42, formulae (1))

1+ 1)l T/ an\2 mk 1
( ) :(l+1)l/(ﬂ> - 27rkr|]l+ L (kr)2dr =

I;
l+1) J I+ 1)l(2m)?
(—|— m/|l+ _(—|—)(7T)m. 2.17)
2(21+1)
It follows from (2.17) that
1 2)3
1_ Q@mm 2.18)
I, 20204+1)
This means that inertia momenta
2(21+1)
I, =
(2m)3m
is proportional to 2/ 4+ 1 and it grows together with [. The series
o0 o0 1 . 3
Y@+ 1)e =S @4 1)
1=1 1=1
is absolutely convergent.
2.4. Free energy. As known the free energy per volume is defined as follows:
1 1
TpV v NES
_3 B 00
__ (272 e~PFo 4 / e=BE=20) ( +3@I+1 M“”) dE|. (2.19)
B 1=1

Consider asymptotic of the free energy in limit of low temperature 5 — oo. Itis obvious
that due to the fact that Fy < 0 we have for § — oo
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0
-3
11 . @n) (eﬁm /ﬁ(—)

—2w

AR K2
« (04 (_) + (21 + 1)6—51(l+1)l>d (— — 2/,@) > (2.20)
m =1 m

2 2
It follows from (2.20) that for § — oo system exists in layer —2w < o 21 <0

m
below Fermi sphere. If one takes into account that Ej is divided from the continuous
spectra by gap A = mbin(EO — E) <0 then

0
11 (2m)~3 ( 2 2
———InEx L bk 1+/eﬁ(E° w2 (o (=) +
1%
B B ) m
(oo} k‘2
+) (20 + 1)e—51<l+1>l>>d <E - 2u> ~ e PEo, (2.21)
=1

This means that for low temperature % In= = e AP0 and system is in state of pairs of
ground state, i.e., we have condensation of pairs in ground state. May be this phenomena
of condensation explains hypothesis of Schafroth, Butler and Blatt [14]. Note that this
condensation of pairs in ground state is different from Bose —Einstein condensation of
free boson system. There does not exists any critical temperature. Note that we are able
to calculate the grand partition function and free energy per volume directly for infinite
volume. We obtained complete and detailed description of eigenvectors and eigenvalues
of the BCS Hamiltonian and it permits us to prove that the grand partition function is
exponent which depends on volume multiplied by finite expression proportional to the
free energy.

3. Equation for correlation functions and “pseudogap”. 3.1. Equation for corre-
lation functions. Consider the operator a(p),a™ (p) in the Heisenberg representation

a(t,p) = ea(p)e’™, a* (t,p) = e 'aT (p)e . 3.1)
They satisfy the Heisenberg equations
Zaa’(t7p) J—
ot
2 o 3
— (4 - #) attn) + ot -0 ZFE [ owatesattsip.
0a*(tp) _ G2
ot T
p2 + (27)3 N+ N+ N g7
— (2 - u)at e+ L [owat et (- opratt. —p).

It is easy to derive equations for a(t,—p), a™ (¢, —p).
Consider the following correlation functions:

1 _BH_3. N2
(@t (t1, pr)altz,p2)) = =T (a* (b, pr)alts, pe)e #1707,

—_

(a®(t1,p1)at (t2,p2)) = =Tr <a+(t1,pl)a+(t27p2)€7ﬁH7ﬁlM2> ; (3.3)

—_
—

(a(ti,p1)a(tz, p2)) =

(11| —

Tr (a(tlvpl)a(tbP2)€7ﬁH761MZ) ,
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and derive for them equations using the Heisenberg equations (3.1). Begin with the first
correlation function (3.3). One obtains

2
i%<a+(tlapl)a(t27p2)> = (p_2 — u) (a*(t1,p1)alts, p2)) +

2m

(QW)S N+ + . o Ny 4
v U(p)<a (tlvpl)a (t27 pQ)a(tQa p)a(tQap)> D - (3 )
Note that average {(a™(t1,p1)a™(t2, —p2)a(tz, —p')a(tz,p’)) is invariant with re-
spect to transformation t; — t; + tg, to — to + to with arbitrary ty. For example,
substitute in the average operators e (=t2)gt (¢ pi)et(=t2) T (=t2)
Xa+(t2, _pQ)GiH(_t2), e—iH(—tz)a(t27 _p/)eiH(—t2)7 e_iH(_tZ)a(t27pl)eiH(_tZ) in-
stead of the operators a*(t1,p1), a%t(ta,—p2), a(ta, —p'),a(t2,p’) and use that av-
erage is invariant with respect to cyclic permutation of operators. Then one obtains the

+v(p2)

equality
(a™(t1,p1)a™ (t2, —p2)alts, —p')a(tz,p")) =

= <a+ (tl - tQapl)a+ (07p2)a’(07 _pl)a‘(oapl»a (35)

a™(0,p2) = a™(p2), a(0,—p') = a(—p'), a(0,p’) = a(p’) and substitutes it in (3.4).
Proceed to investigate the second term in the right-hand side of (3.4).
Consider expression

™ 3 o2
EL [ uwa-atpape - -

B @ /“(P'>a(—p')a(p’)dp e TP

>3 (/f (—k)dk:)sx

x Z}% (/ fo(k)a+(k)a+(—k)dk> ' 0) =

_ @n?
Vv

(/dk/dE > fean(k

I+|n|>0

[oat-sa(0!)a

Xeﬁ(Ezu)ﬁl(l+1)la+(k)a+(k)) «

ii' (/ f°<’“>6ﬁE°a*<k>a+<—k>dk)r 0) =

:/v(p’) fo(p")e PP +/fE o(p)e PE2 o(E)dE |dp' x

XZ (/dk/dE Z fEn(k

I+|n|>0
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Xeﬂ(EQN)ﬁl(l+1)la+(k)a+(_k)> «

~ i ¥ (/ fo(k)e_ﬁE°a+(k)a+(—k)dk>T 0) =

—~ 7!
o ] 2w s
_ _ 72
— ce PH-PLM ZE /dk / dE Y feun(k)at(k)at(=k) | x
s=0 9w I+|n|>1

X Zl’ </ fo(k)a+(k)a+(k)dk>r 0) = ce™?-2Fa, (3.6)

Es
c= / v(p) | fo(p)e PP + / frop)e PE2Wo(E)dE | dp.
E;

We used orthogonality of v(k) to fg (k) with [ > 1.
Now substitute obtained expression in the second term of the right-hand side of (3.4).
One obtains

v(p2) (27)°
|4

\/,U(pl)(@a a+(t17pl)a+(t23 7p2)a(t2, 7p/)a(t2ap/)eiﬁH751M2(I)) =

v

[1]

—
~

b2

=c (®,a™ (t; — ta,p1)a™ (0, —pz)e_BH_ﬁerz@) =

(1]

= cv(p2){a™ (t1, p1), a™ (t2, p2)).

We used again that averages are invariant with respect to cyclic permutation of operators
and therefore (a™ (t1 — t2,p1)a™(0,p2)) = (a* (t1, p1)a™ (t2,p2)).
Taking the last formula into account one obtains equation (3.4) in the final form

.0
Za—h<a+(t1,p1)a(t2,p2)> =

= (% - M) (a™(t1,p1)a(tz, p2)) + cv(p2){a™ (t1, p1)a™ (t2, —p2)). 3.7

Derive equation for the third correlation function (3.3). One obtains

0 (a(ti,p1)a(tz, p2)) =

= (2])—; — u) (a(t1,p1)a(tz, p2)) +
T 3
+v(p2)(2v) /U(P')<a(t17p1)a+(t2,—p2)a(t2a—P')a(tzap/»dpl- (3-8)

By using formulae (3.6) in the second term of the right-hand side of (3.8) one represent
equation (3.8) in the following form:

i%(a(thm)a(tz,m» =

- (2% - M) (a(tr, pr)altz, p2)) + cv(p2){a(ts, pr)a’ (t2, —p2)).  (3.9)
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Equation for the second correlation function one obtains by conjugation of the equation,
for {a(t1,p1)a(t2,p2))

.0
—Za—tz<a+(tzypz)a+(t17p1)> =

2
= (52 — i) (@* (12, p2)a* (11, p0)) + co(p2)altz, —p2)a* (t1,p1)) (B.10)

Recall that fg o(k) is complex function and therefore constant ¢ is complex number.

3.2. Cluster property and equation for Green functions. In the second term of
the right-hand side of (3.4) one is faced with the problem of giving a meaning to the
integral with inverse volume V. The analogical problem has been already solved for
equations for correlation function for models of superconductivity, superfluidity, Huang —
Yang — Luttinger model and other model [15]. We will follow the method used for above
mentioned models.

Namely we suppose that correlation functions satisfy the cluster property. For
example

(a*(ty, p1)a® (t2, p2)alts, —p')a™ (t2,p")) =
= (a* (t1,p1)a™ (t2,p2))(alta, —p)alte, p')) + . ., (3.11)

where the rest terms consist from sum of all possible two particle correlation functions.
If one substitutes the right-hand side of (3.11) in (3.4) then one obtains

i6—t2<a+(t1,p1)a(t2,pz)> =
- (% - M) (a*(t1, p1)altz, p2)) + cv(p2)(a™ (t1, p1)a™ (t2, —p2)),
where
T 3
c= % /”(p’)<a(0, —p1)a(0,p"))dp'. 3.12)

It was used that correlation function {(a(ts, —p})a(te,p’)) does not depend on time
(it depends on difference of times of operators a(t2, —p’) and a(t2,p’)).

2 3
( ‘7;) /v(p’)(a(O7 —p")a(0,p"))dp’ exactly as in Subsection 3.1

One can calculate

(2)?
Vv

(@5 [ o0/)al0.~p)a(0.f)ap'e 5 g
(®, e~ BH-B M2 D)
Thus we obtained the same result as before in Subsection 3.1.
4. Model and approximating Hamiltonian. 4.1. Model Hamiltonian on state ®.
Consider model BCS Hamiltonian on the state ®

_ k2 -
+ A
/a (k) (Qm ,u) a(k)dk+
Rk k)at (k)at (—k) ok )a(—k")a(k')dkdk'
v v(k)a™ (k)a™ (=k)v(k')a(—k")a(k) X
Xeff(k)a*’(k)a'*’(fk)dkef fo(k)a™ (k)at (—k)dk 0)

_ U o (k) (% ~ i)a(R)dF + c/v(k)a*(k)a*(k)dk}b, @.1)

= C.

H® =
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where
Es
c= /U(p) fo(P)+/dEfE,o(P) dp. (4.2)
E
Calculating H® one uses that
)3
%/v(k) dk’/f —k)dk |0y =
)3
_ (QV) /5(k — R)o(k) f(k)dk [0) = %/v(k) (/nyo(k)dE) dk
Ey
because /fEl (k)dk =0 for | > 1. It was also used that
)3
(QV) [otraraw s [ e (- 10) =

(2m)” /61: kyv(k) fo(k)dk [0) = V/ k) fo(k)dk |0).

Taking into account that

d—¢ f(k)a*(k)ﬁ(—k)dke.! fo(k)aT (k)aT (—k)dk |0>

one obtains that
(2m)?
V

4.2. Approximating Hamiltonian on state ®. Define the approximating Hamiltonian

i, / <_ _ M) a(F)di+
o / v(k)at (k)at (—k)dk + & / v(k)a(—k)a(k)dk — [c[2V, @4)

where c is defined according to (4.2). Show that

/ (k) a( K )a(K )dk D = c®. “3)

H® = H,d. (4.5)

The action H® was already calculated (4.1), (4.2). To prove (4.5) it is sufficient to show
that

(c/v(k)a(—k:)a(k:)dk — |c|2V) d =0, (4.6)

but it is simple consequence of (4.3).
Remark 4.1. It is obvious that

P —¢ f(k)a*(k)a*(—k)dk-e.f’ fo(k)a™ (k)at (—k)dk |0> — ¢ [f(k)+fo(K)]at (k)a™ (—k)dk |0>
Include f°(k) in fo(k) and introduce the functions
folk) = folk)+ fOk), k)= _ f'(k),
and define the following vectors:
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by = ol fo(k)a® (k)a™ (—k)dk 10),

- 1 - - -

D, = - /f(kl)aJr(kl)a*(fkl)dkl . ../f(ks)a+(ks)a+(fks)dks%, 5> 0.
s!

The vector ® can be represented as follows:

H — Z <i>s — f(k)a*(k)aﬂ—k)dkef fo(k)at(k)at (—k)dk 0) =
s=0

= ! VW +foB)a® (k™ (=k)dk |0} = ¢ (k) +fo(W)aT (RaT (=k)dk | )

—¢ f(k)a*(k)a*(fk)dkef fo(k)at (k)a™ (—k)dk 10).

We have proved that H® = H,®, but we also have H<i>S = Haés, s > 0, because

@ /v(p)a(*p)a(p)dp@s = cd,, /v(p)f(p)dp =0,

where as above ¢ = /v(p) [fo(p) + f°(p)]dp, and it was used that /U(p)f(p)dp =0.

This means that H coincides with H, not only on vectors ¢ and <i>0 but also on
all the excitations Cfs, s > 1, of the state ®,. Excitations @, are orthogonal to o,
and to themselves and linear combinations of ‘io, i)s, s > 1, form the Hilbert space of
states. On this Hilbert space the BCS and approximating Hamiltonians coincide.

The approximating Hamiltonian has its own branch of eigenvalues and eigenvectors.
It is operator — quadratic form of operators of creations and annihilations and therefore
it can be diagonalized

H, = /E(k)a+(/2)a(1%)dlé +C(o)V, 4.7

E(k) = \/2(h2 - 22(h), C(c) = / [2(k) — V2R T 20| dk — 2, (48)

k2

The operators o (k), (k) satisfy the same canonical anticommutation relations as

the operators a™ (k),a(k) and are expressed through the operators a™ (k),a(k) by the
following formulae [9, 16]:

a (k) = u(k)a™ (k) + w(k)a(=k), o (=k) = u(k)a™(=k) — w(k)a(k),
a(k) = u(k)a(k) + w(k)a® (=k), a(-k) =u(k)a(—k) —w(k)a(k),

) (4.9)
u(k) = —=(1+¢e(k 62/€+62U2/€_%%7
(k) \/5( (F)(e" (k) (k)"2)
]. 1.1
w(k) = —=(1 — e(k)(e%(k) + 2v*(k))~2)z.
(k) \/5( (k)(e” (k) (k)"2)
The approximating Hamiltonian H, (4.4) has the following eigenvectors:
P = e f6 (kK)a™ (k)a™ (~k)dk 0), (4.10)

where
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2

_1
2

fg(k):—<(52(k)+c2v2(k))%—5(k:)> ((EQ(k)+c2u2(k))%+e(k)) @11

Eigenvector ®¢ is the vacuum for operators ot (k), a(k) because a(k)®g = 0,
and eigenvector for H,

H,®8 = C(c) VL. 4.12)
The operator H, has also eigenvectors ot (ky)a...at (k,)®g
Hoat (k) ...a® (k)@ = (E(ky) + ...+ E(ky))at (k) ...at(k,)®%.  (4.13)

(Note that in this case the constant ¢ is defined from condition of minimum of the func-
tion C(c) and it is different from that defined according to (4.2).)

These eigenvectors are n-particle excitations of ®§. The eigenvectors (4.11), (4.14)
with k; # —kj, (i,7) C (1,...,n) are also eigenvectors of the operator H with the
same eigenvalues (see [8, 9]).

To eigenvectors (4.14) corresponds the following grand partition function

) dp .
"= eV«f PﬂE(p)+1+VC(c)’

[1]

i.e., the grand partition function of free system of fermions with energy E(p). Recall
again that in this subsection the constant ¢ is defined according to (4.2).

Remark 4.2. Note that the wave function of one pair of electrons with opposite mo-
menta and spin f§ (k) is not the eigenfunction of the two particle Hamiltonian Hs. The
wave function of n > 2 pairs f§(k1) ... f§(k,) also are not the eigenfunction of the
BCS Hamiltonian. Only the coherent state of pairs ®§ is eigenfunction of the BCS
Hamiltonian in the following sense [5, 9]

i (@0 Ha®G ) = im (@ 4 Hoa® ),
where ©f », Hq a, Hy are the restriction of @f, H,, H in a cube A. This formula is
also true if one puts excitations (4.14) instead of ®§.

Usually in presentation of the theory of superconductivity authors begin with equa-
tion (2) for the Cooper pair in the ground state f(k), but later continue with coherent
state (4.11), from condition of minimum of (@&A, HAQS,A) define f§(k) (4.12) thatis
different from the wave function of the original Cooper pair f(k) and is not eigenfunc-
tion of Hy. They also consider excitation of the ground state ®g (see for example [17]).

It is surprise that the eigenvalue problem has not been considered for H in 2n-
particle space in spite of promise made by Cooper in his pioneering paper [10]. This
problem has solved in our papers [1—6].

4.3. Approximating Hamiltonian and Green functions. Consider the approximating
Hamiltonian (4.4) but with parameter ¢ defined as in equations for Green functions

Es
c= / v(p) | fo(p)e PEo + / feo(p)e PE2Wo(E)IE | dp. (4.14)
Ey

It is easy to check that equations (3.7) —(3.10) for correlations functions of the BSC
model Hamiltonian H completely coincide with equation for the same correlation func-
tion of the approximating Hamiltonian H, (4.4) but with the constant (4.15).

We omit almost obvious calculation for arbitrary correlation functions and simple
proof that the equations for them for the BCS model Hamiltonian H coincide with the
corresponding equations for the approximating Hamiltonian H,.
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Remark 4.3. The sequence of correlation functions do not depend on the last fourth
term in (4.4). In our case of the second branch of eigenvalues and eigenvectors the fourth
term should be determined from condition of coincidence of the free energy of the Hamil-
tonian (4.4) (with unknown fourth term) with the free energy (2.19).

4.4. Pseudogap. We have proved that equations for correlation functions of the model
with the BCS Hamiltonian H and those equations of the model with approximating
Hamiltonian H, with constant ¢ (4.15) coincide. This means that their solutions, i.e.,
correlation functions also coincide if initial data coincide. In this sense model with the
BCS Hamiltonian H and model with the approximating Hamiltonian H, are thermody-
namically equivalent, i.e., their states, described by correlation functions, coincide.

At first sight we obtained well known result, first estalilished by Bogolyubov [9] for
zero temperature and by Bogolyubov [16] for arbitrary temperatures concerning thermo-
dynamic equivalence of the BCS and approximating Hamiltonians.

In fact there is one fundamental difference. It consists in the following. In our case
for the second branch of eigenvalues and eigenvectors the constant

E>
c= / v(p) | folp)e PFo + / frop)e PE-2Wa(E)dE | dp
E;

in the approximating Hamiltonian H,, is calculated exactly and it does depend on tem-
perature, and it is different from zero for arbitrary 3 > 0.

In Bogolyubov’s cases [9, 16] constant ¢ in his approximating Hamiltonian is solu-
tion of nonlinear equation that defines minimum of free energy and it also depends on
temperature. It is different from zero below certain critical temperature 7. and equal to
zero for temperature greater than 7.

The constant ¢ defines the gap in spectrum of excitation, namely one particle excita-
tion with momentum p has the following energy:

E@¢@%;§ﬂwwm

with the gap A(p) = |c[?v?(p).
In our case for the second branch of eigenvalues and eigenvectors the constant ¢
also depends on temperature, the one particle excitation with momenta p has also the

following energy
p?
£0) =) (3 - 1) +e20)

with the gap A(p) = |c|*v?(p), but the gap in our case does not vanish for temper-
ature greater than T, i.e., in the BCS model exists “pseudogap” that depends also on
temperature and exists for all the temperatures:

Es
CZ/’U(p) fo(p)e_BEO +E/ fE7o(p)6_ﬁ(E_2“)dE dp.

Note that for the second branch of eigenvalues and eigenvectors the approximating
Hamiltonian appears in two different cases. In the first one it coincides with BCS Hamil-
tonian H on ®, (®y, ®;) and with the constant ¢ (4.2). In the second one it appearers
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in the equations for the correlation functions, i.e., equations for correlation functions de-
fined for model with BCS Hamiltonian H coincide with those equations defined for
model with the approximating Hamiltonian H,, but the constant ¢ does depends on

Es
temperature ¢ = /v(p) fo(p)e=PEo 4 fro(p)e PE2WIE| dp.
E,

4.5. Three phases of BCS model. The model Hamiltonian has two branches of eigen-
values and eigenfunctions. It has been well known ground state ®§ (4.11) and its exci-
tations (4.14) and constant ¢ has been defined from condition of minimum of energy of
ground state C(c) per volume (for zero temperature). For different from zero tempera-
ture constant ¢ is defined from condition of minimum of free energy per volume or, that
is the same, from equations for correlation function. In this case constant ¢ depend on
temperature, it is different from zero for temperature less than critical temperature 7,
T < T, and vanish for temperature greater than 7., 7 > T.. This branch of spectra is
associated with superconductivity.

We have showed [1 —4] that the BCS hamiltonian H has the second branch of eigen-
values and eigenvectors, namely ground state ®, (2.2) and excited states ®, (2.3)
(or By, D, (4.7)).

We calculated the grand partition function and correlation functions, that coincide
with correlation functions of the approximating Hamiltonian H, but for second branch
constant ¢ (4.15) also depends on temperature and it is different from zero for arbitrary
temperature. The gap in spectrum A = |c¢|?v2(p) is different from zero for arbitrary
temperature and it is known as “pseudogap.”

In fact, the BCS Hamiltonian has also the third branch of spectra, namely spectra of
free system of electrons, that correspond to normal metal.

Summarizing above described three branches of spectra and eigenfunctions one can
say that system with the BCS Hamiltonian can exist in three different phases:

1) superconducting phase with gap different from zero for 7' < T;

2) phase with ’pseudogap” different from zero for all the temperatures;

3) normal phase that corresponds to free system of electrons.

These phases correspond to three branches of spectra and eigenvectors. The first and
third phases have been known, the second phase correspond to the second branch of spec-
tra and eigenvectors has been recently discovered in our papers [1—6]. It is possible that
for some temperature 7' > T, the system with Hamiltonian H is in the third normal
phase and in this sense “pseudogap” disappears.

Remark 4.4. We calculated the grand partition function and the Green functions tak-
ing into account the all orbitel momente [ = 0, 1,2, .... From phisical point of view one
should take into account only even [ = 0,2,4,....
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