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NEWTON – KANTOROVICH ITERATIVE REGULARIZATION
FOR NONLINEAR ILL-POSED EQUATIONS 
INVOLVING ACCRETIVE OPERATORS

ITERACIJNA REHULQRYZACIQ 

N|GTONA – KANTOROVYÇA 

DLQ NELINIJNYX NEKOREKTNYX RIVNQN| 

Z AKRETYVNYMY OPERATORAMY

The Newton – Kantorovich iterative regularization for nonlinear ill-posed equation involving monotone
operator in Hilbert spaces is developed for the case of accretive operator in Banach spaces.  Estimate for
convergence rates of the method is established.

Rozrobleno iteracijnu rehulqryzacig N\gtona – Kantorovyça dlq nelinijnyx nekorektnyx

rivnqn\ z monotonnym operatorom u hil\bertovyx prostorax dlq vypadku akretyvnoho operatora

v banaxovyx prostorax.  Vstanovleno ocinky ßvydkostej zbiΩnosti metodu.

1.  Introduction.  Consider the operator equation of the first kind

A ( x )  =  f,    f ∈ R( A ) ⊂ X, (1)

where the operator  A :  D ( A  )  =  X → X  is a nonlinear and  m-accretive operator,  X
together with  X*  and the adjoint space of  X  are uniformly convex  Banach spaces,  X
possesses the approximations (see [1]), and  D ( A ) ,  R( A )  denote the domain and the
range of  A,  respectively.  For the sake of simplicity, norms of  X   and  X*  will be
denoted by the symbol  || ⋅ ||,  and we write  〈x, x*〉  instead of  x* ( x  )  for  x* ∈ X*  and
x ∈ X.  If the normalized dual mapping  J  of  X  is continuous and sequential weak
continuous, then the condition

〈A ( x ) – f, J ( x )〉  >  0,      x r> ˜ , (2)

with some positive constant  r̃   is sufficient for the existence of a solution of (1) (see
[1]).  It is well known that problem (1) is ill-posed (see [2]).  For the case where  A  is a
monotone operator in the Hilbert space  X ,  the operator version of Tikhonov
regularization method was considered in [3].  Later, the results were generalized for the
equations involving monotone operator in Banach spaces (see [4]).

Meantimes, the Newton – Kantorovich iterative regularization

x0 ∈ X,      A ( xn )  +  αn 
xn  +  (A ′( xn ) + αn I)( x n + 1 – x n )  =  f (3)

was investigated in [5] for the monotone operator  A  in the Hilbert space  X,  where  I
denotes the identity operator in  X  and  {αn}  is the sequence of positive numbers.
Then, algorithm (3) was developed for the case of the monotone operator  A  from
Banach space  X  into  X*  with some modification in the form

x0 ∈ X,      A ( xn )  +  A ′( xn )( x n + 1 – x n )  +  αn 
J 

s( x n + 1 )  =  f, (4)

where  J 
s
 :  X → X*  satisfies the condition (see [6])

〈x, J 
s( x  )〉  =  || x ||s,      || J 

s( x  ) ||  =  || x ||s  
–

 
1
,    s  ≥  2.

On the other hand, it is well known that the theory of accretive operators is a
direction of developing the theory of monotone operator in Hilbert space.  Therefore,
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the consideration of Newton – Kantorovich iterative regularization for equations
involving accretive operator is a necessary problem.  The purpose of the paper is to
fulfil the task, and to give an estimate for convergence rates of the method.

Below, the notation  a ∼ b  means that  a  =  O( b  )  and  b  =  O( a  ).
In the following section, we suppose that all above conditions are satisfied.
2.  Main results.  First, consider the operator equation

A x f
nα ( ) = ,    A A I

n nα α= + . (5)

Equation (5) for every fixed  αn  possesses a unique solution denoted by  x
nα ,  because

the operator  A  is  m-accretive and  αn  >  0.
Theorem 1.  Assume that the following conditions hold:
i)  A  is Frechet differentiable with

A x A x J A x J x x A x A x( ) ( ˜) ( ˜) ( ˜) ( ) ( ˜)* *− − ′ − ≤ −τ     ∀ x ∈ X, (6)

where  τ  >  0  is some constant,  x̃ S∈ 0  is the set of solutions of (1), and   J*

denotes the normalized dual mapping of  X*;
ii)  there exists an element  z ∈ X  such that  ′ = −A x z x( ˜) ˜ .

Then

x x O
n nα α− = ( )˜ .

Proof.  Since

x x x x J x x
n n nα α α− = − −˜ ˜, ( ˜)

2
  =

=  
1
α α α α

n
f A x J x x x J x x

n n n
− − − −( ), ( ˜) ˜, ( ˜)   ≤

≤  z A x J x x
n

, ( ˜) ( ˜)*′ −α   ≤  z A x J x x
n

′ −( ˜) ( ˜)*
α   =

=  z J A x J x x
n

* *( ˜) ( ˜)′ −α   ≤  ( )τ α α+1 n z x
n

,

we have the boundedness of  x
nα{ }.  Therefore, we obtain from the last inequality that

x x O
n nα α− = ( )˜ .  The theorem is proved.

The conclusion that the sequence  x
nα{ }  converges to  x̃   as  n →  ∞  if (1) has

only unique solution and  J  is sequential weak continuous and continuous, was
considered in [7].  Unfornately, the class of proper Banach spaces having the dual
mapping  J  with sequential weak continuity is small (only the finite-dimensional

Banach spaces and  lp).  Moreover, the problem of convergence rates for  x
nα{ }  is still

opened upto now.  Hence, the results obtained in the present paper are essential has
because they permit us to use the method in the spaces of type  Lp ,  W p ,  and, in
particular, even if (1) possesses nonunique solution.

Note that the requirement of uniqueness for solution of (1) will be redundant, when
we have (6) for some  x̃ S∈ 0.  This condition can be replaced by

A x A x J A x J x x x x( ) ( ˜) ( ˜) ( ˜) ˜* *− − ′ − ≤ −τ ′ −A x J x x( ˜) ( ˜)     ∀ x ∈ X,

which is proposed in [8] for the case where  X  is a Hilbert space.  Then it is applied for
estimating the convergence rates of the regularized solutions for nonlinear ill-posed
problems involving monotone operators in Banach spaces (see [9]).

We now return to the problem of convergence of the iteration sequence {xn}
obtained by (3) if  X   is a Banach space.  As in [5], assume that  A   is twice
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differentiable in the sense of Gateau,  ′′ +A x th h J h( ) , ( )2   is summable for each fixed

x  and  h,  and  ′′ ≤A x N( )   ∀ x ∈ X.

Theorem 2.  Assume that the conditions of Theorem 1 are satisfied, the sequence
{αn} ,  αn  >  0  and  x0  satisfy the following conditions:

lim
n

n
→∞

=α 0,      1 1≤ ≤−α
α
n

n
r ,    n  =  1, 2, … ,

N x x
q

r
0 0

0
2

1−
≤ <α

α
,      

α α
α

n n

n

r q q

Nd
−

−

− ≤ −1

1
2

1( / )
,

d x≥ ˜ ,    x̃ S∈ 0.

Then we have

lim ˜
n

nx x
→∞

− = 0.

Proof.  Set

˜ ( ) ( ) ( ) ( )A x A x A x I x x
n n n n n nα α α
− −

≡ + ′ +( ) −− − − −1 1 1 1 1 1 . (7)

On the basis of (3) and the accretive property of  A′ ( x ) ,  x ∈ X  (see [1]), we obtain

˜ ( ) ( ), ( )A x A x J x x
n n n n n nα α α α α− − − − −

− −
1 1 1 1 1

  =

=  A x A x J x x
n n n nn nα α α α− − − −− − −

1 1 1 11( ) ( ), ( )   +

+  ′ +( ) − −− − −− −
A x I x x J x xn n n nn n

( ) ( ), ( )1 1 11 1
α α α   =

=  A x A x I x x f J x x
n nn n n n n nα αα
− −− − − −+ ′ +( ) − − −

1 11 1 1 1( ) ( ) ( ) , ( )   +

+  ′ +( ) − −− − − −
A x I x x J x xn n n nn n

( ) ( ), ( )1 1 1 1
α α α   ≥  α αn nx x

n− −
−1

2

1
.

On the other hand, (7) and equality

A x A x A x x x
n nn n n( ) ( ) ( )( )α α− −

= + ′ −− − −1 11 1 1   +  
′′ − −

− −− −
A c

x x x x
n nn n

( )
!

( )( )
2 1 11 1α α ,

where  c  is some element in  X,  imply that

˜ ( ) ( ), ( )A x A x J x x
n n n n n nα α α α α− − − − −

− −
1 1 1 1 1

  ≤  
N

x x x x
n nn n2 1 11

2

! α α− −
− −− .

Therefore,

∆n n nx x x x x x
n n n n

:= − ≤ − + −
− −α α α α1 1

  ≤  
N

x x
n

n n n2 1
1

2
1α α α

−
− + −

−
∆ .

(8)

By virtue of (5), we have

A x A x J x x x x J x x
n n n n n n n nn( ) ( ), ( ) , ( )α α α α α α α αα− − + − −

− − − −−1 1 1 11   =

=  ( ) , ( )α α α α αn n x J x x
n n n− − −
− −1 1 1

or

x x x x
n n n

n n

n

n n

n
α α α

α α
α

α α
α− −

− ≤ − ≤ −−

−

−

−
1 1

1

1

1

1
2 ˜ .
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The last inequality follows from  x x x
nα − ≤˜ ˜   ∀ n  (see [7]).  Now inequality (8)

has the form

∆ ∆n
n

n
n n

n

N
x≤ + −

−
−

−

−2
2

1
1

2 1

1α
α α

α
˜ .

As in [5], we have  N qn n∆ / 2α ≤   ∀ n.  Thus,

∆n
nO x x O q

n n
= −( ) +

−α α1
( )  =  O x x O q O O q

n

n
n

n
α α

−
−( ) + = ( ) +−1 1˜ ( ) ( ) .

The theorem is proved.
For an accretive operator  A,  algorithms (3) and (4) are alike because, in this case,

we need to replace  J  in (4) by the identity operator  I .  Then (4) is completely
transformed into (3) without any change.

Suppose that instead of  ( A, f )  we have the approximations  ( , )A fn n   such that

A x A x h g xn n( ) ( )− ≤ ( ) ,      f fn n− ≤ δ ,

hn n, δ → 0   as  n → +∞ ,  where  An  is also  m-accretive and continuous, and  g( t )  is a
continuous, bounded, and nonnegative function.  The Newton – Kantorovich iterative
regularization is defined as follows:

x X0 ∈ ,      A x x A x I x x fn n n n n n n n n n( ) ( ) ( )+ + ′ +( ) − =+α α 1 . (9)

In addition, suppose that  An  possesses the same properties as  A  has.  For each fixed
n,  an element  xn+1  is well defined, because  ′ +A x In n n( ) α   is strongly accretive.

The convergence and convergence rates of the method defined by (9) will be
established on the basis of the following result:

Theorem 3.  Assume that the conditions of Theorem 1 hold, and  δ αn n/  →  0,
hn n/ α  → 0,  αn → 0  as  n → 0.  Then the solution  x̃n   of the equation

A x fn n( ) = ,      A A In n n= + α , (10)

converges to  x̃ .  Moreover, if  αn  is chosen such that  α δn n n
ph∼ +( ) ,  0  <  p < 1,

then, for  0  <  δn + hn < 1,  we have

˜ ˜ ( )x x O hn n n− = +( )δ θ ,      θ = −{ }min , /1 2p p .

Proof.  Since  An  is  m -accretive, then there exists a unique solution  x̃n   of (10).
From (5), (10) and the property of  J,  we have

˜ ˜ ˜ ˜, ( ˜ ˜)x x x x J x xn n n− = − −2   =

=  
1
αn

n n n n nf A x J x x x J x x− − + − −( ˜ ), ( ˜ ˜) ˜, ( ˜ ˜)   ≤

≤  
1
α

δ
n

n n n nh g x x x z A x J x x+ ( )( ) − + ′ −˜ ˜ ˜ , ( ˜) ( ˜ ˜)* . (11)

Hence,  x̃n{ }   is bounded.  On the other hand,

z A x J x x z J A x J x xn n, ( ˜) ( ˜ ˜) ( ˜) ( ˜ ˜)* * *′ − ≤ ′ −   ≤  z A x fn( ) ( ˜ )τ + −1   ≤

≤  z A x f h g xn n n n n n( ) ( ˜ ) ˜τ δ+ − + + ( )( )1   ≤

≤  z x h g xn n n n n( ) ˜ ˜τ α δ+ + + ( )( )1 .

Therefore, (11) implies that
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˜ ˜ ˜ ˜ ( )x x C
h

x x C hn
n n

n
n n n

p− ≤ + − + +2
1 2
δ

α
δ   ≤

≤  C h x x C hn n
p

n n n
p

1
1

2( ) ˜ ˜ ( )δ δ+ − + +− ,    0  <  δn + hn < 1,

where  Ci  are the positive constants.  Hence, the conclusions of the theorem follow
from the last two inequalities (see [9]).

The theorem is proved.
Theorem 4.  Assume that the following conditions hold:
i)  conditions of Theorem 2;
ii)  the sequence  αn{ } ,  αn  >  0,  is chosen such that

lim
n

n
→∞

=α 0,      1 1≤ ≤−α
α
n

n
r ,    n  =  1, 2, … ,

N x x
q

r
0

0

0

2
1−

≤ <α

α
,      a

r q q

Nn ≤ −
2

1( / )
,

where

a
h h

x bn
n n

n

n n

n
n

n n

n

= − + +





+( ) + +−

−

−

−

−

−

α α
α α

δ δ
α

1

1
2

1

1
2

1

1
22 ˜ ,

b
h g x h g x

n
n n

n

n n

n
= + ( ) + ( )








− −

−
max

˜
,

˜δ
α

δ
α

1 1

1
.

Then, we have

lim ˜
n

nx x
→+∞

− = 0,

where  xn  is defined by (9).
Proof.  Setting

˜ ( ) ( ) ( ) ( )A x A x A x I x xn n n n n n n− − − − − − −≡ + ′ +( ) −1 1 1 1 1 1 1α ,

we have

˜ ( ˜ ) ( ˜ ), ˜ ˜A x A x J x x x xn n n n n n n n n− − − − − − −− −( ) ≥ −1 1 1 1 1 1 1
2α .

Using the differential property of  An−1,  we can write

A x A x A x x xn n n n n n n n− − − − − − −= + ′ −( )1 1 1 1 1 1 1( ˜ ) ( ) ( ) ˜   +

+  
′′ −( ) −( )− − − −

A c
x x x xn

n n n n
( ˜)
!

˜ ˜
2 1 1 1 1 ,

where  c̃   is some element in  X.  Therefore,

˜ ( ˜ ) ( ˜ ), ˜A x A x J x xn n n n n n− − − − −− −( )1 1 1 1 1   ≤  
N

x x x xn n n n2 1 1
2

1˜ ˜− − −− − .

Hence,

˜ : ˜ ˜ ˜ ˜∆ ∆n n n
n

n n nx x
N

x x= − ≤ + −
−

− −2 1
1

2
1α

.

Relation (10) implies that

A x A x J x x x x J x xn n n n n n n n n n n( ˜ ) ( ˜ ), ˜ ˜ ˜ ˜ , ˜ ˜− −( ) + − −( )− − − − − −1 1 1 1 1 1α   =

=  f f J x x x J x xn n n n n n n n n− −( ) + −( ) −( )− − − −1 1 1 1, ˜ ˜ ˜ , ˜ ˜α α
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and

˜ ˜ ˜x x
h

g xn
n

n

n

n
≤ + + ( )2

δ
α α

    ∀ n.

Thus,

˜ ˜ ˜x x xn n
n n

n
n−

−

−
− ≤ −

1
1

1

α α
α

  +  
h h

x an n

n
n

n n

n
n n

+ + + ≤−

−
−

−

−
−

1

1
1

1

1
1α

δ δ
α

α˜ .

Consequently,

˜ ˜∆ ∆n
n

n n n
N

a≤ +
−

− −2 1
1

2
1α

α .

As in [5], we have  N qn n
˜ /∆ 2α ≤   ∀n.  Thus,

˜ ˜ ˜ ( ) ( )∆n n
n

n
nO x x O q O O q= −( ) + = ( ) +− −1 1α .

The theorem is proved.
Remark.  For the given  δn  and  hn 

,  we can chose  α α δn n nh= ( , )  such that

δ
α

n

n
,   

hn

nα
,   

δ δ
α

n n

n

+ −

−

1

1
2 ,   

h hn n

n

+ →−

−

1

1
2 0

α
    as    n → ∞.

Indeed, for example, if  δn  =  hn  =  qn,  then we can take  αn
nq= /3 .  Consequently,

for sufficiently large  n  =  N0,  we have  αN r q q N
0

2 1≤ −( )/ / .  Then we can chose

α α0 0
= N   such that

N x x
q

r
N

N

0
0

2
1

0

−
≤ <

α

α

and replace  n  in (9) by  n + N0 
.
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