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FIXED-POINT RESULTS ON COMPLETE G-METRIC SPACES
FOR MAPPINGS SATISFYING AN IMPLICIT RELATION OF A NEW TYPE

PE3VJIBTATHU ITPO HEPYXOMY TOYKY
HA IMOBHUX G-METPUYHUX MMTPOCTOPAX JIs1 BIJOBPAKEHD,
O 3AJOBOJIBHAIOTH HEABHE CIIIBBI/IHOINEHHSA HOBOI'O THUITY

We prove some general fixed-point theorems in complete G-metric space that generalize some recent results.

JloBezieHO 3arajibHi TEOPEMHU MPO HEPYXOMY TOYKY Y MOBHUX (G-METPHUYHHX MPOCTOPAX, IO Y3arajJbHIOITH JACAKI Pe3yiib-
TaTH, OTPUMAaHi HEIIOJaBHO.

1. Introduction. In [3, 4] Dhage introduced a new class of generalized metric space, named D-metric
space. Mustafa and Sims [7, 8] proved that most of the claims concerning the fundamental topological
structures on D-metric spaces are incorrect and introduced appropriate notion of generalized metric
space, named G-metric space. In fact, Mustafa, Sims and other authors [2, 9—-11] studied many
fixed-point results for self mappings in GG-metric spaces under certain conditions.

Quite recently [12], Mustafa et al. obtained new results for mappings in G-metric spaces.

In [13, 14], Popa initiated the study of fixed points in metric spaces for mappings satisfying an
implicit relation.

Let T be a self mapping of a metric space (X, d). We denote by Fix (T') the set of all fixed
points of 7. T is said to satisfy property (P) if Fix (7') = Fix (I™) for each n € N. An interesting
fact about mappings satisfying property (P) is that they have not nontrivial periodic points. Papers
dealing with property (P) are, between others, [2, 13-15].

The purpose of this paper is to prove a general fixed-point theorem in complete G-metric space
which generalize the results from [1, 10— 12] for mappings satisfying a new form of implicit relation.

In the last part of this paper is proved a general theorem for mappings in G-metric space satisfying
property (P), which generalize some results from [1].

2. Preliminaries.

Definition 2.1 [8]. Let X be a nonempty set and G: X3 — R, be a function satisfying the
following properties:

(G1) G(z,y,2) =0ifz =y =z

(G2) 0 < G(z,x,y) for all x,y € X with x # y;

(G3) G(z,z,y) < G(z,y,z) for all x,y,z € X with z # y;

(G4) G(z,y,2) = G(z,2,y) = Gy, z,x) = ... (symmetry in all three variables),
(G5) G(x,y,2) < G(z,a,a) + G(a,y, z) for all z,y,z,a € X (rectangle inequality).

Then the function G is called a G-metric and the pair (X, G) is called a G-metric space.

Note that if G(z,y,2) = 0 then x =y = 2 [8].

Lemma 2.1 [8]. G(z,y,y) < 2G(x,z,y) for all z,y € X.

Definition 2.2 [8]. Let (X, G) be a metric space. A sequence () in X is said to be:

a) G-convergent to v € X if for any € > 0 there exists k € N such that G(x,xy, Ty) < € for all
m,n > k;
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b) G-Cauchy if for € > 0, there exists k € N such that for all n,m,p > k, G(xp, Tm,zp) < €
that is G(xpn, T, xp) — 0 as m,n,p — oo.

A G-metric space is said to be G-complete if every G-Cauchy sequence in X is G-convergent.

Lemma 2.2 [8]. Let (X, G) be a G-metric space. Then, the following properties are equivalent:

1) (z,) is G-convergent to x;

2) G(z,xp,xn) — 0 as n — oc;

3) G(zp,z,x) — 0 as n — oo.

Lemma 2.3 [8]. Let (X, G) be a G-metric space. Then the following properties are equivalent:

1) The sequence (x,,) is G-Cauchy.

2) For every € > 0, there exists k € N such that G(xy, Ty, Ty,) < € for n,m > k.

Definition 2.3 [8]. Let (X, G) and (X', G') be two G-metric spaces and f: (X,G) — (X', G").
Then, f is said to be G-continuous at © € X if for € > 0, there exists § > 0 such that for all x,y € X
and G(a,x,y) < 9, then G'(fa, fx, fy) < e. f is G-continuous if it is G-continuous at each a € X.

Lemma 2.4 [8]. Let (X,G)and (X', G') be two G-metric spaces. Then, a function f: (X,G) —
— (X', G") is G-continuous at a point x € X if and only if [ is sequentially continuous, that is,
whenever () is G-convergent to x we have that f(xy) is G-convergent to fx.

Lemma 2.5 [8]. Let (X, G) be a G-metric space. Then, the function G(x,y, z) is continuous in
all three of its variables.

Quite recently, the following theorem is proved in [12].

Theorem 2.1. Let (X,G) be a complete G-metric space and T: X — X be a mapping which
satisfies the following condition, for all x,y € X

G(Tx,Ty,Ty) < max{aG(z,y,y),b|G(x, Tz, Tx) + 2G(y, Ty, Ty)],

blG(z, Ty, Ty) + G(y, Ty, Ty) + G(y, Tz, Tx)]}, (2.1)

1
where a € [0,1) and b € [0, 3) . Then T’ has a unique fixed point.

The purpose of this paper is to prove a general fixed point theorem in G-metric space for map-
pings satisfying a new type of implicit relation which generalize Theorem 2.1 and other results from
[1,2,10-12].

3. Implicit relations.

Definition 3.1. Let §,, be the set of all continuous functions F(ty1,...,tg): Ri — R such that

(Fy) F is nonincreasing in variables t5 and tg;

(Fy) there exists h € [0,1) such that for each u,v > 0 and F(u,v,v,u,u+ v,0) < 0, then
u < hv;

(F3) F(t,t,0,0,t,2t) >0 VYt > 0.

Example 3.1. F(t1,...,ts) =t —max{ate, b(t3 + 2t4),b(ts +t5+ts)}, where a € [0,1) and

1
ve o).

(Fy) Obviously.

(F») Let u,v > 0 be and F(u,v,v,u,u + v,0) = v — max{av,b(v + 2u)} < 0. If u > v,
then u[l — max{a,3b}|] < 0, a contradiction. Hence u < v, which implies v < hv, where h =
= max{a,3b} < 1.

(F3) F(t,t,0,0,t,2t) = t(1 — max{a,3b}) >0 Vt>0.
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Example 3.2. F(ty,...,tg) = t1—ata—b(t3+2t4)—c(t5+ts), where a,b,c > 0, a+3b+2c < 1
and a + 3¢ < 1.

(F7) Obviously.

(Fy) Let u,v > 0 beband F(u,v,v,u,u +v,0) = u —av — b(v + 2u) — ¢(u + v) < 0. Then

a+b+c

ughv,whereh:m<l.

(Fy) F(t,t,0,0,£,2t) = [l — (a+3¢)] >0 V¢ > 0.

Example 33. F(t1,...,ts) = t; — ata — bmax{ts, t4} — cmax{ts,ts}, where a,b,c > 0,
a+b+2c<1.

(F) Obviously.

(Fy) Let u,v > 0 be and F(u,v,v,u,u + v,0) = u — av — bmax{u,v} — c(u +v) < 0. If
u > v, then u[l — (a + b+ 2¢)] < 0, a contradiction. Hence, u < v which implies u < hv, where

poatbte o
1—c

(F3) F(t,1,0,0,t,2t) = t[1 — (a +2c)] > 0 ¥t > 0.
1
Example 34. F(t1,...,ts) =t1 — kmax{to,ts,...,t}, where k € [O, 2) )

(F7) Obviously.
(F») Let u,v > 0 be and F(u,v,v,u,u + v,0) = u — k(u + v) < 0 which implies u < hv,
k
here h = —— < 1.
where 1 <
(Fy) F(t,1,0,0,t,2t) = t(1 — 2k) > 0 V¥t > 0.
Example 3.5. F(t1,...,ts) = t1—ata—bts—cmax{ts+ts,2ts}, where a,b,c > 0, a+b+3c <
<l,a+4c< 1.
(Fy) Obviously.
(F») Let u,v > 0 be and F'(u,v,v,u,u + v,0) = u — av — bv — ¢(2u + v) < 0. Then u < hv,
a+b+c
where h = ——— < 1.
1—2¢
(F3) F(t,t,0,0,t,2t) = t[1 — (a+4c)] >0 Vt > 0.
2ty +tg 2ts +1t3 t5+ s
3 7 3 7 3

Example 3.6. F(tl, ce ,tﬁ) =11 — k max {tg,tg,t4,

ke 0,1).
(F1) Obviously.

} < 0, where

2u 2
(Fy) Let u,v > 0 be and F(u, v, v, u,u+v,0) :u—kmax{u,v,;,ugv, u;—v < 0} JIf
u > v, then u(1 — k) < 0, a contradiction. Hence, u < v which implies v < hv, where h = k < 1.
(F3) F(t,t,0,0,t,2t) =t(1 — k) >0Vt > 0.

t t 2
Example 3.7. F(t1,...,ts) =t — kmax {tg,tg,t4, 5;6} , where k € {0, 3) .

(F7) Obviously.
U+ v

(Fy) Let u,v > 0 be and F'(u,v,v,u,u +v,0) = u — kmax{u,v, < 0. If u > v, then
u(1 — k) <0, a contradiction. Hence, v < v which implies v < hv, where h = k < 1.

¢ k
(F3) F(t,1,0,0,t,2t) :t—kmax{t,?;} — [1— 32] >0 V> 0.
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Example 3.8. F(t1,...,t5) = t2 —t1(aty + btz +cty) — dtsts, where a,b,c > 0, a+b-+c < 1,
a-+2d<1.
(F1) Obviously.
(Fy) Let u,v > 0 be and F(u,v,v,u,u + v,0) = u? — u(av + bv + cu) < 0. If u > 0, then
o b
u — av — bv — cu < 0 which implies v < hv, where h = ;H_ < 1. Ifu=0, then u < hv.
(F3) F(t,t,0,0,t,2t) = t2[1 — (a +2d)] > 0 Vt > 0.
t ty t t 2
Example 3.9. F(ty,...,ts) =t1 — kmax {tQ, stta tst 6} , where k € [O, ) )

2 72 3
(F7) Obviously.

—C

u—+v

(F») Let u,v > 0 be and F(u,v,v,u,u + v,0) = u—kmax{v, < 0. Ifu > 0, then

u(1l — k) <0, a contradiction. Hence u < v which implies u < hv, where h = k < 1.

k
(F3) F(t,t,0,0,t,2t) =t [1 - 32] >0 Vt>0.

2
Example 3.10. F(ti,...,ts) =t; — kmax {tg, Visty, \/t5t6} , where k € [O, > .

3

(Fy) Obviously.

(F») Let u,v > 0 be and F(u,v,v,u,u + v,0) = v — kmax {v, Juv} < 0. If u > v, then
u(1 — k) <0, a contradiction. Hence, v < v which implies v < hv, where 0 < h =k < 1.

(F3) F(t,t,0,0,t,2t) =t(1 —v/2k) >0 Vt>0.

4. Main results.

Theorem 4.1. Let (X,G) be a G-metric space and T: (X,G) — (X, G) be a mapping such
that

F(G(Tx, Ty, Ty),G(2,y,v), G(x, Tz, Tx), G(y, Ty, Ty), G(x, Ty, Ty),G(y, Tz, Tx)) <0
.1

for all x,y € X, where F satisfies property (F3). Then T has at most a fixed point.
Proof. Suppose that T" has two distinct fixed points u and v. Then by (4.1) we have successively

F(G(Tu,Tv,Tv),G(u,v,v), G(u, Tu, Tu), G(v, Tv,Tv), G(u, Tv,Tv), G(v, Tu, Tu)) <0,
F(G(u,v,v),G(u,v,v),0,0,G(u,v,v),G(v,u,u)) <O0.

By Lemma 2.1 G(v,u,u) < 2G(u,v,v). Since F' is nonincreasing in variable ¢ we obtain
F(G(u,v,v),G(u,v,v),0,0,G(u,v,v),2G(u,v,v)) <0,

a contradiction of (F3). Hence u = v.

Theorem 4.1 is proved.

Theorem 4.2. Let (X,G) be a complete G-metric space and T: (X,G) — (X, G) satisfying
inequality (4.1) for all x,y € X, where F' € §y. Then T has a unique fixed point.

Proof. Let xg € X be an arbitrary point in X. We define x,, = Tx,—1, n = 1,2,.... Then by
(4.1) we have successively

F(G(Tl‘n,l, Ty, T:Cn), G(xnfly Tn, xn)» G(l'nfl’ Txp-1, T$n,1),
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G(xn, Txpn, Try), G(xn-1,Txn, Txy), G(xn, Txn—1,TrH-1)) <0,
F(G(l’n, Tn+1, .’En+1), G(an_l, Ty xn)7 G(.Tn_l, Tn, xn)a

G(:B'na Tn+1, wn—l—l)a G(xn—17 Tn41, xn+1)> O) S 0.

By (G5), G(Tn-1,Tn+1, Tnt1) < G(Tn—1,ZTn, Tn) + G(Tn, Tnt1, Tni1). Since F is nonincreas-
ing in variable t5 we obtain

F(G(xn, Tpi1, Tni1), G(Tn—1,Tn, ), G(Tn-1, Tn, Tn),
G(Tn, Tnt1, Tnt1)s G(Tn—1, Tn, xn) + G(xn, Tni1, Tny1,0) <0
which implies by (F3) that
G(xn, Tpy1, Tpy1) < hG(Tp—1, Tn, Ty).
Then
G(xn, Ty, Tny1) < hG(Tp—1,xn, 2n) < ... < W"G(x0, 21, 21).
Moreover, for all m,n € N, m > n, we have repeated use the rectangle inequality

G(l'ny Tm, xm) < G(xn, Tn+1, xn«H) + G(anrla Tn+2, $n+2) +...+ G(l'mflv Tm, xm) <

n

< (W + " BTG (o, w1, 11) < -

G(xo,z1,21),

which implies limy, ;,—s00 G(Zn, Tm, Tm) = 0. Hence, (z,,) is a G-Cauchy sequence. Since (X, G)
is G-complete, there exists u € X such that lim, o z,, = u.
We prove that w = T'u. By (F}) we have successively
F(G(Txp-1,Tu,Tu), G(xp-1,u,u), G(xp_1,Txn_1,TTH_1),
G(u,Tu,Tu), G(xp-1,Tu,Tu), G(u, Txp_1,Trn-1)) <0,
F(G(xp, Tu,Tu), G(xp—1,u,u), G(Tp_1, T, Tp),
G(u,Tu,Tu), G(xp—1,Tu,Tu), G(u, Ty, x,)) < 0.
By continuity of F' and G, letting n tend to infinity, we obtain
F(G(u,Tu,Tu),0,0,G(u, Tu, Tu), G(u, Tu, Tu),0) < 0.

By (F») we obtain G(u,Tu,Tu) = 0, hence v = T'w and w is a fixed point of 7. By Theorem
4.1 w is the unique fixed point of 7.

Theorem 4.2 is proved.

Corollary 4.1. Theorem 2.1.

Proof. The proof follows from Theorem 4.2 and Example 3.1.
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Corollary 4.2 (Theorem 2.2 [11]). Let (X, G) be a G-complete metric space and T: (X,G) —
— (X, G) be a mapping satisfying the following condition:

G(Tx, Ty, Tz) < aG(x,y, 2) + BG(z, Tx, Tx) + Gy, Ty, Ty) + G(2, Tz, T=)], (4.2)

forall x,y,z € X and 0 < a+ 38 < 1. Then T has a unique fixed point.
Proof. By (4.2) for z = y we obtain

G(Tz, Ty, Ty) < aG(x,y,y) + BIG(z, Tz, Tx) + 2G(y, Ty, Ty)],

for all x,y € X. By Theorem 4.2 and Example 3.2 for & = a, = b and ¢ = 0 it follows that 7" has
a unique fixed point.

Corollary 4.3 (Theorem 2.3 [11]). Let (X, G) be a G-complete metric space and T': (X,G) —
— (X, G) be a mapping satisfying the condition

forall z,y,z € X and 0 < o+ B < 1. Then T has a unique fixed point.
Proof. By (4.3) for z = y we obtain

G(Tz,Ty,Ty) < aG(z,y,y) + Bmax{G(z, Tz, Tx),G(y, Ty, Ty)},

for all x,y € X. By Theorem 4.2 and Example 3.3 for &« = a, 5 = b and ¢ = 0 it follows that 7" has
a unique fixed point.

Corollary 4.4 (Theorem 2.1 [10]). Let (X, G) be a G-complete metric space and T: (X,G) —
— (X, G) be a mapping satisfying the condition

G(Tz,Ty,T2) < kmax{G(z,y, 2),G(z, Tz, Tx), G(y, Ty, Ty),
4.4)
Gy, Tz,Tz2),G(z, Ty, Ty),G(y, Tz,Tz),G(2,Tx,Tx)},

1
forall z,y,z € X, where k € [0, 2> . Then T’ has a unique fixed point.
Proof. By (4.4) for z = y we obtain
G(Tz, Ty, Ty) < kmax{G(z,y,y), G(z, Tz, Tx),G(y, Ty, Ty),G(z, Ty, Ty), G(y, Tz, Tx) }.

By Theorem 4.2 and Example 3.4, T" has a unique fixed point.
Corollary 4.5. Let (X,G) be a G-complete metric space and T': (X,G) — (X, G) be a map-
ping which satisfy the following inequality for all x,y € X,

G(Txz, Ty, Ty) < kmax{G(y, Ty, Ty) + G(x, Ty, Ty),2G(y, Tz, Tx)}, (4.5)

1
where k € [0, 3) . Then T' has a unique fixed point.
Proof. By Theorem 4.2 and Example 3.5 for a = b = 0 and ¢ = k, T has a unique fixed point.
1
Remark 4.1. In Theorem 2.8 [10], k € [0, 2) .
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Corollary 4.6. Let (X,G) be a G-metric space and T: (X,G) — (X, G) be a mapping satis-
fying the following inequality for all x,y,z € X,

G(T‘Ta Tya TZ) < h max {G(‘Ta Y, Z)? G(SL', T$, T$)7 G(ya Tya Ty)a G(Z, TZ, TZ),

Gy, Tz, Tx) + G(y, Ty, Ty) + G(y, T2,Tz) G(z,Tx,Tx) + Gy, Ty, Ty) + G(2,T72,T%) }
3 ’ 3 ’

(4.6)

where k € [0,1) . Then T has a unique fixed point.
Proof. 1f y = z, by (4.6) we obtain that

G(Tz,Ty,Ty) < hmax {G(x, v,y),G(x, Tz, Tx),G(y, Ty, Ty),

<

Gy, Tz, Tx) +2G(y, Ty, Ty) G(x,Tz,Tx)+2G(y, Ty, Ty) }
3 ’ 3

G(y, Tz, Tx) +2G(y, Ty, Ty)
3 b)

< o { Gl 9), Gl T, 7o), Gl T T).

G(z,Tx,Tx) +2G(y, Ty, Ty) G(x, Ty, Ty)+ G(y,Tx,Tx) }
3 ’ 3 ’

forall z,y € X.
By Theorem 4.2 and Example 3.6, T" has a unique fixed point.

1
Remark 4.2. Corollary 4.6 is a generalization of Theorem 2.6 [1], where k£ € |0, 3]

Remark 4.3. By Theorem 4.2 and Examples 3.7—-3.10 we obtain new results.

5. Property (P) in G-metric spaces.

Theorem 5.1. Under the conditions of Theorem 4.2, T' has property (P).

Proof. By Theorem 4.2, T has a fixed point. Therefore, Fix (1T") # & for each n € N. Fix
n > 1 and assume that p € Fix (7). We prove that p € Fix (T"). Using (4.1) we have

F(G(T"p, T p, T 'p), G(T™'p, T"p, T"p), G(T" ' p, T"p, T"p), G(T"p, T"'p, T"*'p),
G(T" p, T p, T ), G(T"p, T™p, T"p)) < 0.
By rectangle inequality
G(T"p, T Ip, T p) < G(T"~'p, T"p, T"p) + G(T"p, T"'p, T"*'p).
By (F}) we obtain
F(G(T"p, T 'p, T p), G(T" ' p, T"p, T"p), G(T"'p, T"p, T"p), G(T"p, T"'p, T"*p),
G(T™" 1p, T"p, T™p) + G(T"p, T" M p, T"p),0) < 0.
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By (F>) we obtain
G(T™p, T p, T p) < hG(T" p, T™p, T"p) < ... < h"G(p,Tp, Tp).
Since p € T™p, then

G(p,Tp,Tp) = G(T"p, T" p, T"'p).

Therefore

G(p,Tp,Tp) < h"G(p,Tp, Tp)

which implies G(p, T'p, Tp) = 0, i.e., p = T'p and T has property (P).

Theorem 5.1 is proved.
Corollary 5.1. In the condition of Corollary 4.6, T' has property (P).
Remark 5.1. Corollary 5.1 is a generalization of the results from Theorem 2.6 [1].

1
Corollary 5.2. In the condition of Corollary 4.4 with k € [O, 2) , instead k € [0,1), T has

property (P).

10.

11.

12.

13.

14.

15.

Remark 5.2. We obtain other new results from Examples 3.1-3.10.
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