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GENERALIZED ELASTIC LINE DEFORMED ON NON-NULL SURFACE
BY AN EXTERNAL FIELD IN THE 3-DIMENSIONAL
SEMI-EUCLIDEAN SPACE E?

V3ATAJIBHEHA TIPYKHA JIIHIA, JE@OPMOBAHA HA HEHYJILOBII
IHOBEPXHI 30BHIIIHIM ITIOJIEM Y TPUBUMIPHOMY
HAMNIBEBKIJOBOMY IIPOCTOPI E?

We deduce intrinsic equations for a generalized elastic line deformed on the non-null surface by an external field in
semi-Euclidean space E} and give some applications.

BuBeneHo npupoHi piBHSHHS [UIs y3arajibHEHOT MPY>KHOT JiHii, 7e(opMOBaHOT Ha HEHYIBOBIH MOBEPXHI 30BHIIIHIM MOJEM
y TPHBHMIpHOMY HarliBeBKITiIoBOMY TpocTopi B, Ta HaBeneHO NesKi 3aCTOCYBaHHSL.

1. Introduction. In this section we give some definitions and theorems.

E" with the metric, (v,w) = — Z;l viw; + Z::VH vjwj, v,w € E* 0 < v < n, is called
semi-Euclidean space and is denoted by E?, where is called the index of the metric. For n = 3, E$
is called semi-Euclidean 3-space. Let E]’ be a semi-Euclidean space furnished with a metric tensor
(,). A vector v to E? is called, spacelike if (v, v) > 0 or v = 0 and timelike if (v, v) < 0. Spacelike
and timelike vectors are non-null vectors [1].

Apart from the Frenet frame { F1, n, b}, there also exist a second frame at every point of the curve
7. At the point vy(s) of ~, let E1(s) = 7/(s) denote the unit tangent vector to v, N denote the unit
normal of non-null surface and F5(s) = eoN A Ey. Then {E;, E2, N} gives an orthonormal basis
for all vectors at y(s) [2].

The analogue of the Frenet—Serret formulas is given

E! 0 ga¢g €3¢ | |En
Eé = | —€1¢q 0 —E&3Tyg E2 s (1)
N’ —€1Cn €27y 0 N

where ¢, is the geodesic curvature, 7, is the geodesic torsion, ¢, is the normal curvature and
<E1,E1> = €1, <E2,E2> = &9, <N, N> = £€3.

Let z(u,v) be the timelike surface, having parameter curves which are perpendicular to each
other passing through point v(s) of any curve . y is angle between u = constant curve with tangent
vector of timelike surface, (¢g)1, (cg)2 are curvatures u = constant and v = constant curves. The
geodesic curvature is [2]

. d
cg = (cg)1coshx — (¢g)2sinh y — d—;( )
Here (c,) 15 (cq) ! ~— and the normal curvature is
g1 =————=,(cgla= 2——5— urvatu
T 2qEe T 21Ee)
¢n = 1 cosh? y — o sinh? y, 3)
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where ¢y and ¢y are principal curvatures. The geodesic torsion is [2]
T4 = (c2 — ¢1) cosh x sinh x. @)

2. Equilibrium conditions for generalized elastic line deformed. - is called as an elastic
curve, if it is a critical point of total squared curvature energy functional

/ K2ds. (5)

v

The study of elastic curves have long research history. In the 1730, Bernoulli and Euler studied
the bending energy functional (5) for in R2. In last years, elastic problem has been reconsidered
many geometers [3 —8]. Problem play important role in the connection between the motion of curves
and integrable systems [9]: the equation describing the evolution of the torsion with respect to certain
length preserving vector fields coincides with the nonlinear Schrédinger equation. Vortex filaments
and patches in fluids [10-13], classical magnetic spin chains [14, 15], interface dynamic contexts
have such curve motions [16].

Generalization of the (5) is given by

H = [ h(k,T)ds. (6)
/

Here, x, 7 denote curvature and torsion of non-null curve . The arc ~ is called a generalized elastic
line if it is extremal for variational problem of minimizing the value of (6) within the family of all
arcs of length [ on non-null surface having the same initial point and initial direction as «y in the
semi-Euclidean 3-space E3 [17, 18].

In this paper, we study a special case of (6)

l

I = /TZRdS. (7

0

In [19], Manning study the intrinsic equations for elastic line deformed an external field in
Euclidean 3-space. In this paper, we study the equilibrium conditions for generalized elastic line
deformed on a non-null surface in semi-Euclidean space [E3.

If generalized elastic line is deformed an external field, it minimizes the sum of its generalized
elastic energy and its energy of interaction with the field.

The problem is to minimize the energy

[
J= / (2 — C8)ds = Iy (t) — CTa(t), ®)
0
[
I(t) = [ 7%kds, Q)
/
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!
I(t) = /gbds. (10)
0
Here ( is a constant measuring the strength of the external field and ¢(u,v) gives its shape. For ~y

regular curve in E3,

, <,y/ /\,y//7,y///>
’<,.y//\,y//’,.)//\,y//>|’

A //7//\ m1/2
o= A A A and - —

(', )/

E1(s) and Es(s), respectively, are expressed with suitable scalar functions f(s) and g(s)

v ordv
 Quds  Ovds’

f and g are expressed for spacelike surfaces and timelike surfaces with timelike arc v as following [8]:

Ey(s) =7/(s) Ey(s) = f(s)zu + g(s)z,

f U F+vG UWE+vF
= ) g=— .
|EG — F2|/? |EG — F2|'/?
Here E = (xy, xy), G = (Ty, Ty) and F = (zy, ,).

We define

W(p;t) =z (u(p) +tn(p),v(p) +t&(p)) (1)

for 0 < p < 1*, W(p;t) gives an arc with the same initial point and initial direction as . For ¢t = 0,
U(p;0) is the same as v* and p is arc length. For ¢ # 0, the parameter p is not non-null arc length
in general. For fixed ¢, |t| < ¢, let L*(¢) denote the length of the non-null arc ¥(p;t), 0 < p < I*.
Then

L*(t)=7(’<(§(p;t%§z(p;t)>D1/2dp
0

with L*(0) = I* > [. We can restrict ¥(p; t), to an non-null arc of length [ by restricting the parameter
p to an interval 0 < p < w(t) < I*, w(0) = [ by requiring

w(t)

oUW\ [\ /2
[([(55)]) = 2
0

and
i l
& =€ /5cgds. (13)
dt |,_o
0
The proof of (13) and of other results below will depend on calculations in (11) such as
v
or Ei, 0<p<i
Ip |1—o
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which gives

0*v
Tpg = Ei = 6209E2 + €3CnN, (14)
83\1} / 2 2 / /
Erl = By = —c1(e2c; + e36;,) E1 + (e2¢, + 2630 7g) Eo — (e263¢47g + €3¢,,)N,  (15)
t=0
ov
— = 0F,. (16)
Ot {,—g
(17), (18) are obtained with aid (14)—(16)
0% ,
otop = —61(5CgE1 + 6 Fy — 635T9N, 17
t=0
Foaa\j
W . = <—2£1(5’cg — 8156; + 6153579cn> Ei+
+ (5” — 5152(563 — 52536792)E2 - (2536'7'g + e130¢4Cn + 5357-;) N. (18)

To prove (13), differentiate (12) with respect to ¢ and evaluate at t = 0,

P (L6 -1 A
dt |;_g dp t:O’ 9p 1o
l (W
i 9p 4o’ 9P |1z
= = dp =0
+0/<8pt0 Opot |, 0> <8\P v >
dp t:07 9p |10

I, (t) is given as following from (9):

w(t)
oU 92U PU\2|/0U 020 v 92w\ |2
Il(t):/ —— A=, —— — A A

A BUAAN B
ap " ap2 9’ ap 92 Bp " 9p2 ap’ Bp P
We have
dw [ /00 20 PU\?|/0¥ 020 ov 92w\ | ?| /0w aw\ |
Ot)y= —3{ —AN—ms, = Aoy A s —, +

dt Op  0p%’ 0p3 Op ~ 0p2’ dp  0Op? dp’ dp it
/8 00\ TN (922 0w, o VLA .

at 2 9p3 ap " 9p2 Bp " 92 ap’ Bp P
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ov ow\ |t
(e Yo oo

vanishes at t = 0, since (E7, E1) = 0. After complicated computations, with differen-

() ,
ov 92U 9w 0 ov 9%V v 9%V
+ [ (ns= o) S ([ (oA, = A
Op  9Op2’ 0p3/ Ot Op  0p2’ dp  Op?
0

o ow
op?’ dp
tiating of (10) at t = 0 [8],

- [[(3)

As function of coordinates along ¥

¢ = olulp) +td(p)f(p),v(p) + td(p)g(p)]

()l G) +o(50)])

From (19) for t = 0 and (20), J’(0) is obtained as following:

-3/2

—e10cg(¢p — qb(l)] ds. (20)

t=0

and

!
J'(0) = /5 [(UT)” — 2e5(c,U)" + (UQ) +&1U(1) —

o (£(5) +a(5) - erento— ot ) as -

— 268" (D en(HU (1) + 8 (1) [(_252(%@’(1) LU +

+ 0()[(2e2(cn)" (1) — (UT)'(1) + U(l)Q(l)}, 21
where
U= (eytn) + colenTy) — ealey) V= ‘5263 + 53C%|_1 ((cgen)’ + Tglesen — €cy)),

‘Egcg + 830%}3/2 ,

Q= (2¢) +2(3 — de1)enc] + 4e1¢y7) + de3c), Ty — besenTy — 6Ty — 3(e2enT) + cgT)V), (22)

Y = (2e1830, — degTg + 3e1¢4V).

3. Intrinsic equations for generalized elastic line deformed on timelike surface with timelike
arc. For E; is timelike, F» and N are spacelike, respectively,

<E1,E1> = &1 2—1, <E2,E2> :[-:2:1 and <N,N> :63:1. (23)
We consider the case cg > c2.
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Using (21), (22) and (23) for all choices of the function §(s) with arbitrary values of (1),
d'(1),46"(1), and J'(0) = 0, the path of timelike arc ~y(s) must satisfy as following boundary conditions
and differential equation

en(DU (1) = 0, 24)
2(c,U)' (1) = =U)Y(1), (25)
2(caU)"(1) = (UY)'(1) = U)QA(1), (26)

UQ) +UY)" —2(c,U)" = U(l) - ¢ (f (?5) +g (2705) + (¢ — ¢(z>)> =0, (27)

where

cgen) + Tg(cn — ¢qg)

(
U p—
(2 +c2)3/2 ’

V= (cg+ ) ((cgen) + 1ylen — ),

Q=(2c + 14Cn03 - 409792 + 4c, 1y — 60n7'g2 — 6cy7y — 3(cnT, + 3097'5)‘/),

Y = —(2d), + 4cgTy + 3¢4V).

4. Intrinsic equations for generalized elastic line deformed on spacelike surface. If F, F,
are spacelike and NV is timelike,

<E1,E1> = €1 :1, <E2,E2> 262:1 and <N,N> 283:—1. (28)

We consider the case cg < 2. With aid (21), (22) and (28), for all choices of the function 6(s) with
arbitrary values of §(1), ¢'(1), 6”(l), and J'(0) = 0, the path of spacelike arc -y(s) must satisfy as
following conditions and differential equation

—2(e,U)' (1) + U)Y(1) =0,
9
2(ea1Y'1) ~ (UY) () + U@ =0,
)" = 20’ - ) + 00 - (7(52) +o( 52 ) ~ cato - o) =

where

(Ccn>’_7'(6n—c> 3
U=-=5 (2 — z2)3/2 , V=(ci — ) (cgen) — mglcn — ),
n %

Y = (=2, — 4egTy + 3¢,V),

Q= (205’1 — 2cnc§ + 409792 — ATy + GCnTs — 6097; — 3cn(—CnTé + CngQ)V)-
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5. Applications.
Theorem 1. On S x R Lorentz cylinder in B3, there is not generalized elastic line deformed.
Proof. Parametric equation for r radius Lorentz cylinder

x(u,v) = (rsinhu, r coshu,v).
Using shape operator, principal curvatures are obtained as following:
cCl = —— and Coy = 0.
r
With aid (3) and (4), respectively,

1
¢n = —— cosh? y,
r
(30)

1
Cg = cosh x sinh y,

boundary conditions (24) are just satisfied at y = 0, using (30). Therefore, on S{ x R Lorentz
cylinder, there is not generalized elastic line deformed.
Theorem 2. There is not generalized elastic line deformed on H?(r) hyperbolic 2-space in Ej.
Proof. H?(r) hyperbolic 2-space satisfy

—2? +y? + 2= —r?
and matrix for shape operator
1
—— 0
r
0 _
r
1 1 9 . 9 1 .
c1=——and co = ——, ¢, = €1 COs” X + cosin® x = —— # 0. From (29), proof is clear.

r r
Theorem 3. Ify is generalized elastic line deformed for non-null surface which geodesic torsion
and normal curvature is zero, v must satisfy the following differential equation:

f (?Z) +g (gf) =e1¢4(0 — 9(1)).

Proof. If ¢, = 0 and 74, = 0, proof is trivial from (21).
Theorem 4. Any arc on spacelike plane is generalized elastic line deformed.
Proof. For spacelike plane, ¢, = 0 and 7, = 0. Thus, (29) is satisfied.
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