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POSITIVE SOLUTION OF A CERTAIN CLASS OF OPERATOR EQUATIONS *
JAOIATHI PO3B’A3KHU AEAKOI'O KJIACY OIIEPATOPHUX PIBHSIHb

The positive solutions of certain class of matrix equations have been recently considered by Bhatia et al. [Bull. London
Math. Soc. —2000. — 32. — P. 214-228], [SIAM J. Matrix Anal. and Appl. — 1993. — 14. — P. 132-136; 2005. - 27. —
P. 103-114], Kwong [Linear Algebra and Appl. — 1988. — 108. — P. 177-197] and Cvetkovi¢ and Milovanovi¢ [Linear
Algebra and Appl. — 2008. —429. — P. 2401 —2414]. Following the idea used in the last paper, we study a class of operator
equations in infinite-dimensional spaces for which we prove that the positivity of a solution can be established provided
that a certain rational function is positive semidefinite.

JlomaTHi po3B’S3KU EAKOTO KIacy MaTPpHYHHX PiBHSAHB OyJI0 HEIIOJaBHO BHUBYECHO B poborax bxaria Ta iH. [Bull. London
Math. Soc. —2000. — 32. — P. 214-228], [SIAM J. Matrix Anal. and Appl. — 1993. — 14. — P. 132-136; 2005. - 27. —
P. 103 -114], Ksonra [Linear Algebra and Appl. — 1988. — 108. — P. 177-197] ta LierkoBu4a ta MinoBanosuy4a [Linear
Algebra and Appl. — 2008. — 429. — P. 2401 -2414]. 3 BuKopHCTaHHSIM i/ie], 3alIPONIOHOBAHOI B OCTaHHii poOOTi, BUBYECHO
KJ1ac OIEpaTopHUX PiBHSIHb B HECKIHYCHHOBUMIPHHX IPOCTOPAX, [UIS SKOTO JOBEACHO, IO JONATHICTh PO3B’SI3KY MOXKHA
BCTAaHOBHTH 32 YMOBH, IIIO JIesiKa parioHadbHa (PYHKIIIS € TO3UTUBHO HAIliBBU3HAYECHOIO.

1. Introduction and preliminaries. Matrix equations appear in several fields of mathematics, e.g.,
linear algebra, differential equations, numerical analysis, optimization theory, etc. (cf. [1, 9, 11]).
Also, these equations play important roles in many applications in system theory, e.g., stability
analysis and optimal control (cf. [10, 20]), observer design [8], as well as in other computational
sciences and engineering.

In a survey paper, Lancaster [18] reviewed the existence and uniqueness results, as well as the
methods for obtaining explicit representations for a solution X for matrix equations of the form

p
ZAkXCk = B, (1.1)
k=1

with Ay, Ck, and B being known matrices not necessarily square. A special case of (1.1)
AX+XC=8B (1.2)

is known as the Sylvester equation (cf. [10], Chapter 9). A further important special case is obtained
by putting C = A*, where A* is the conjugate transpose of A (or C' = AT in the real case). Such an
equation

AX + XA* =B (1.3)

is the well-known Lyapunov equation, which has been studied extensively. The equation (1.3) has a
great deal with the analysis of the stability of motion (cf. [10, 20]).
In a recent paper [3], Bhatia and Drisi have considered the following matrix equations:

* The authors were supported in part by the Serbian Ministry of Education, Science and Technological Development
(grant numbers #174015 and #44006).
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AX +XA=B,
A’X + XA? +tAXA = B,
A3X + X A3 +t(A2X A+ AX A?%) = B, (1.4)

AYX + XA +t(A3X A+ AX A%) + 642X A% = B,
A'X + XA +4(A3X A+ AXA®) +tA’X A? = B,

where A is a given positive definite matrix and matrix B is positive semidefinite. The first equation
in (1.4) has the form (1.2), with C' = A. The second equation has been studied by Kwong in [17],
where he gave proof of the existence of the positive semidefinite solution. In [3] (see also [2, 4])
necessary and sufficient conditions for the parameter ¢ were given in order that the previous equations
have positive semidefinite solutions, provided that B is positive semidefinite matrix. There is also
a strong connection between the question of positive semidefinite solutions of these equations and
various inequalities involving unitarily equivalent matrix norms (see [2, 12, 13, 15, 16]).

Cvetkovi¢ and Milovanovi¢ [7] have considered the existence of positive semidefinite solutions
of a general matrix equation of the following form:

m
> a,A"VX A" = B, (1.5)
v=0

where A is a positive definite matrix, B is a positive semidefinite matrix, a, = anm—p € R, v =

=0,1,...,m, and agp = a,,, > 0.

For problems connected with differential equations where it is necessary to consider the operator
equations similar to those of the form (1.1), Daleckii and Krein in [9] (§ 3) considered general
equations of the form

n
> rAIXBF =,
4,k=0
where B is a bounded linear operator on a certain Banach space By, A is a bounded linear operator
on a certain Banach space B, and operator Y as well as the unknown operator X are bounded linear
operators from space B to By. They gave the conditions under which there exists a unique solution
of such an operator equation (see [9], Theorem 3.2).
In this paper we continue with ideas presented in [7] and study a certain class of operator equations
on infinite dimensional spaces.
Let V be a separable Hilbert space (for example £2) and let B(V) be the space of bounded linear
operators on V. We consider the following operator equation:

p
> apAPX AR =B, ag,a1,...,an €R, A,BeB(V), (1.6)
k=0

with symmetry a,, = ap—, K = 0,1,...,p, and ag = a, > 0. Our aim is to give conditions which

ensure that there exists a unique positive solution of the equation (1.6).
To express results easier, we introduce the polynomial

p
¢ (z,y) =Y apaby? .
k=0
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We note that ¢” is a homogeneous polynomial of degree p, for which we require that the coefficients
ag, k =0,1,...,p, be such that ¢*(z,y) > 0, z,y > 0.

We want to use an information from the spectrum of the operator A to solve this equation. We
assume that A and B are symmetric, and that A is strictly positive ((Ax,z) > 0, z # 0) and compact
operator. In this settings B has to be compact, if we are looking for the continuous solution X,
otherwise it need not. We assume that spectral resolutions of the linear operators A and B, provided
B is compact, are given by

A=>"MP, B=) APP
keN keN

where P,f and P,f are orthogonal projections onto the eigenspaces corresponding to the eigenvalue
)\f of the operator A and to the eigenvalue )\kB of the operator B, respectively.

For the brevity we introduce the notation qf; = qp()\,‘?, )\?).

Also, we denote the identity operator simply by 1, which will not lead to confusion since it will
be clear from the context when 1 denotes the identity operator and when it denotes the number.

Solution of the equation (1.6) need not be compact, even when both of operators A and B are
compact. For example,

ZAk XAP™F = (p41)A4P

has the solution X = 1 which is not compact.

The paper is organized as follows. In Section 2 we present some auxiliary results. The main
results on the positive solution of the operator equation (1.6), as well as two examples are given in
Section 3.

2. Auxiliary results. The following result is well-known, but we present the proof for the sake
of completeness.

Lemma 2.1. Let Py, k € N, be orthogonal projections with the properties

P.Pr=0, k+#¢, kleN and (ZP;C>$%JU, reV.

If X is continuous, then for every x € V and every € > 0 there exists ng, such that for every

n,m > ngp

kl(l

<e&.

In other words, Z P, X Py, converges to X strongly.

Proof. We obtaln result easily. If X = 0 the statement is trivial. So, we assume that X # 0.
First, due to property PPy = 0, k # ( k,¢ € N, we know that Zk_l Py, is an orthogonal projection.
Fix € > 0, then there exists n; € N such that for n > n; we have B

(57
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and there exists no € N such that for n > ny we obtain

H (Z Pk> Xz — Xz

Let ng = max {n1,ns}. Then for n,m > ny we get

m n
HXJ: — Z ZPkXng '

k=1 =1
<

m n

Xz — Z X Px + Z X Px — Z Z P X Pyx

k=1 (=1

X<1—Zpg>x

m

(1 - ZPk> XY Pa-— (1 - ZPk> Xz + (1 — Zpk> Xz
k=1 =1 k=1 k=1
(1 — Zpk> X (1 —ZPg) T
k=1 =1
+ <H1|| + ZPk ) I|X || H (1 — ZH) x
k=1 =1
(1 -y Pk> Xz
k=1
(1—213[);3 (1-2&))@
=1 k=1
This clearly proves the statement. We used the fact that HZ:_l PkH = 1, since it is orthogonal

projection.
Lemma 2.2. Assume X is the continuous solution of (1.6), then

<

< |x| H (1 - Za) x
(=1

(-$n)

k=1

< || X]] H(l—zf’e> x
=1

< 3\XH' <e.

PAXP = (1/q),)P/'BP{',  k,leN.

If B =0, then X = 0 is the unique continuous solution of (1.6). If (1.6) has a continuous
solution, then it is unique solution in the set of continuous solutions.
Proof. Since P,fA = AP,;4 = )\‘,?P,f, k € N, we have

p
PMBP{ =P/ a0, AV X APV P = Zau AN APV PAX PY =
v=0

= ¢" (N M) P X P
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Conclusion holds, since the operator A is strictly positive.
It is obvious that X = 0 is a solution of the homogeneous equation

p
Z apAF X APF = 0.
k=0

But, for any k, ¢ € N, we get PKAOP,;4 = 0, hence PEAX P,f = 0, for any continuous solution X. For
any x € V, we obtain Xz = Zk ren

If X7 and Xs are two continuous solutions of (1.6), then X; — X5 is the solution of the
homogeneous equation. Hence, X; — X2 = 0 which proves our statement.
Theorem 2.1. Let B be compact. The series

I Appa
> —P/'BF;
k,LeN ok

0x = 0, hence, X = 0 is the unique solution.

converges strongly if and only if equation (1.6) has continuous solution.
Proof. According to [19, p. 166], if the sequence of linear operators converges, then it strongly

converges to a bounded linear operator. Hence, strongly convergent series Z P[‘BP,;4

kteN gb
converges to some continuous X. To prove that X is a solution of (1.6), we note

p p
S a4 x 4 =Y a4 [ 3 - pABPA | v =
v=0

qp
v=0 kteN 1kt

1 p
S IE B W
k,£eN D0 =0

1 (& , _
=2 o (Zamﬂ (A ) P{BP{'= ) PBF=B.
k,0eN Tee \ =0 k,leN

If X is a continuous solution of (1.6), then the series
1
Z PeAXPI?: Z TPZL‘BP/i
k,0eN koeny Lok

converges strongly to X.

Example 2.1. Let us illustrate the previous discussion using an example. Consider the case
PA=PP =(,ep)er, keN,p=1,qi(z,y) = v +yand A\ = (A\P)?/2 = 1/(2k?), k € N, where
{ex }ken is the Hilbert basis of V. Then

1 Okt
PABPA = 22pPPB =6, .kPE, ¢, keN. 2.1
M EAL v Doy Y2 e ¢k Py, (2.1

Consequently, for z = Z (1/m)ey,, we have

meN
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1
————PBPAx = 6, 1k(x, e )er = 0p per.
A AL k 0,k » €k )Ck 0,kCk
Al AL
Hence, the series
n m 1 min{m,n}
SN R R = Y .
A AL k k
k=1 ¢=1 Ao T A k=1

is not convergent. This means that even if B is strictly positive and compact, a continuous solution
need not exist (Theorem 2.1).

There is a special case in which we can claim that a continuous solution exists.

Theorem 2.2. Let B = CAP, C € B(V), and AC = CA. Then the equation (1.6) has the
solution X =1/¢P(1,1)C.

Proof. For x € V, we have

nomoq ) N n m ()\;?)p .
k=1 ¢=1 1kt i1 =1 4\ Ak e
min{m,n} A min{m,n}
(Ak )p A 1 A 1
=C ———Plr=—-C Pilz - ——Cu,
; POLAD T e (11) ; T er(1,1)

where we use the fact that AC' = C'A implies PAC = C P4, where P4 is any spectral projection of
A (see [5, p. 150]).

In the sequel we are dealing with the unbounded solutions of (1.6). We denote

”:ép,g‘v, neN, vit=Jv""
k=1 neN

Note that V{* is a linear space. Every z € V' is a linear combination of eigenvectors of the
operator A. In what follows we assume that B is a bounded operator, not necessarily compact. As a
consequence, we are searching for unbounded solutions of (1. 6)

A : A
Lemma 2.3. Suppose x € V", then the series Zk tent PZ BPk, T converges.

0k
Proof. Since x € V!, by definition of Vi, there exists some h € N such that = € VOA’h. Hence,

h
(Zkl P,f) z =z and Pz =0, k > h. For m > h we have

n

m 1 h n 1 h
33 rteta= 2 (St ) et Lot et

D
1 k=1 ek =1 \r=1 ek

as n,m — +oo, where we used the fact that (¢?(A\{},-)) "t :0(A) = R, k=1,...,h, is bounded on
the spectrum of A.

Lemma 2.4. The closure of VOA coincides with V.

A " A
Proof. Take any x € V, then V" > Zk_l Pix — x,as n — 4o0.
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Lemma 2.5. Let Xj: VOA — V be the operator defined by
1
Xoz= Y  —P/BP{xz.
koeny Lok

Then Xy is a linear operator densely defined on V. Operator X is symmetric and closable.
For any x € VOA, we have

P
Z a, AY XgAP™Vx = Bx.
v=0
Proof. According to Lemma 2.3, we see that X is well defined. If x,y € VOA and if o, 3 are
scalars, then ax + Sy € VOA, and according to

1
Xo(az + By) = Y P BP{(az + By) =
k,eN ok

1 1
=a Y 5 PBP!s+p Y P/ BPl'y=aXx+ BXoy,
ke ek keen ek

we infer that X is a linear operator. Hence, according to Lemma 2.4, X is a densely defined linear
operator on V.
We prove that X is symmetric. Let x,y € VOA, then

n

. L AnpA
(Xox,y) = ngffoo ,E_:lqiepk BP/x,y | =

n

: L hAppa

We prove that X is closable. According to [5, p. 66], we have to prove that if x; € D(X),
lim zg, = 0 and lim Xgxj = v, then y = 0.
Let z € VOA be arbitrary. Then we get

m
. . . 1
(y,2) = lim (Xozp,2) = lim lim g TP,?BPfxn,z =
n—+o00 n—+oo | m—+oo
k=1 k¢
m
= lim |z, lim E p PABP/z | =
n—~+0o0o m—r+0o0
k=1 1kt

= lim (zp,Xo02) = (0, X0z) = 0.

n—-+o00

Since VOA is dense in V, we get y = 0. Thus, we conclude that X is closable.
Choose now an arbitrary x € VOA’". Then AYx € VOA’”, v =20,1,...,p. We conclude that the
left-hand side of (1.6) is well defined and we have
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p p
1
> ay A XgAP Ve => a,A” [ > —PBP} | AP Vx =
=0 =0 koeny Tkt

= Y P/BP{'z = Bua.
kleN

Definition 2.1. Operator X is the minimal closed extension of Xo. We call X the solution of the
equation (1.6).

Trivially X is symmetric, as being closure of a symmetric operator Xy. We call X the solution,
despite the fact, that we can claim that equation (1.6) is valid only on VOA.

There is a special case in which we can give some stronger results.

Lemma 2.6. Let B(Vy') C V{*. The solution X is self-adjoint.

Proof. 1f B satisfies the mentioned condition, then clearly solution of the equation (1.6), on the

set Vi, can be given by
n

Xo=)_ %P,fBPKAx,
kleqhé

where n = max {m, mo} and m; is such that z € VOA’m1 and mg is such that BPl;Ax € V()AMQ,
¢=1,...,mq. Since X is closure of X, we know that X [VOA: Xp and (X — \) [VOA: Xo — A,
where A [VOA denotes restriction of operator A to Vgt

Let A € C\R be arbitrary and choose = € ker (Xy — A). Then, we have A\(z,z) = (Xoz,z) =
= (x, Xoz) = Az, ). It follows that x = 0 and ker (Xo — \) = {0} for every A € C\R. Let us fix
A € C\Rand let z € rang (Xo — \)* N V. For y € V! arbitrary, we have 0 = ((Xo — Ay, z) =
= (y,(Xo — \)x). We conclude = € ker (Xo — X\) = {0}. Hence, it must be rang (Xo — \) = Vi
for any A\ € C\R.

Let X* denote the adjoint of X. Since X is densely defined and closed, we know that there exists
X*, which is closed and densely defined. Also (see [5, p. 70])

rang(X—)\)@ker(X* - =V

Since X is symmetric on D(X), we get X C X* (see [5, p. 97]). For A € C\R, we conclude that

ker (X* — \) = (rang (X — X))t C (rang (Xo — )+ = (V¢H*t = {0}
According to von Neumann’s formulae (see [5, p. 106]), we know that
D(X*) = D(X)+ker (X* — \)+ker (X* — ),

where A € C\R is arbitrary. We conclude directly that D(X*) = D(X), which gives X = X* and
X 1is self-adjoint.

According to the previous lemmas we are ready to formulate the following statement.

Theorem 2.3. Let A and B be symmetric, and let A be strictly positive and compact and B

bounded. There exists symmetric and closed X such that the equation (1.6) is valid on %A. Moreover,
if B(V{") C V§, then X is self-adjoint.

ISSN 1027-3190.  Yxp. mam. ocypu., 2015, m. 67, Ne 2



POSITIVE SOLUTION OF A CERTAIN CLASS OF OPERATOR EQUATIONS 253

It is interesting to give an interpretation of the example given in (2.1). It can be easily seen that
X = ZkeN k(-, er)ex, is actually, spectral resolution of the self-adjoint operator X.

Another obvious interpretation of the result is for the case B = 2. Then, X is the solution of
the equation AX + X A = 2. Due to symmetry of A and ker (A) = {0}, we know that A does not
have residual spectrum. Consequently, the range of A has to be dense in V' and there must exist the
self-adjoint inverse of A.

3. Positive solutions. We denote by 2N and 2N — 1 the sets of even and odd positive integers.
Consider now the linear operators [y : P,fV —s Creng (P ), k € N, defined on some orthonormal
basis Hj, = {ek,l,...,ekyrang(lg]?)}, k e N, by Iyexe = fr, £ = 1,... rang (P,f), k € N, where

{fi,--+, rang (PkA)} is the natural basis of (Crang(PkA), and respective direct sum I = @} _ ;. It is

trivial fact that I} : VOA’” — C4m(%"™) is an isometrical isomorphism.

In what follows we adopt the following definitions:

An operator A is nonnegative, positive, strictly positive if and only if for all x € D(A) we have
(Az,x) >0, (Az,x) > 0 and A # 0, (Az,z) > 0, respectively.

A matrix A is positive definite, positive semidefinite if and only if (Az,x) > 0, (Ax,z) > 0,
respectively.

A function f:R — C is positive definite if and only if for all » € N and any given points xy,
k=1,...,n, the matrix || f(x — x¢)||} ,—;, is positive semidefinite.

Lemma 3.1. If the function x w;,(x), given by

p/2—1 1
Z a, cosh (g — 1/) T+ 3%/2 P € 2N,
v=0

op(x) (p—1)/2
P
. a, cosh (5 V) x, p€2N—1,

V=

is positive definite, then the linear operator Cy, : VOA’" — VOA’n, defined by

n

1 — _
Cnt = Z T(Pl?xv(l(?) 11@)PEA(ISL) 11v> 3.1)
k,ézl qévk
where 1, = (1,1,1,...,1) € Cdim(VOAyn), is positive and the matrix 1}Cy,(I7) ™! is positive semide-

finite.

Proof. 1t is easy to prove that C,, is a symmetric linear operator. For x € VOA’", we have
n

1
(Ch,x) = Z T(Pl?x7 (Ig>_11v>Pé4(Ig)_llv7$ =
k=1 ek

1

= 5 (Pla, (1) ) (PAIY) 1y, 2) =
po—1 1k
"1
= —— (P, (1) 1) (I§) 11y, P'z) =
k=1 qf,k
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3

1. . B
= ) 5 (Plz, (I§)"'1)(Pfz, (I§) ' 1)
k=1 Lok
Accordingly, we note that if matrix D,, = ||1/ qZkHZ L, 1s positive semidefinite, the operator C, is

positive. To prove semidefiniteness of D,, we use the same arguments as in [7]. Since A, k € N, is
a positive sequence, we can represent it as A\, = e, xp € R, k € N. Then we conclude that

1

1
“QP(A?»A/?)

v=0

diag (eP™+/?) =

’ = diag (eP*/?)

= Z|lpp(ze — 1) |27
We recognize that the matrix D,, is congruent with the matrix

E, = H‘P’p(mf - mk)”?

hence, positive semidefiniteness of D,, and E, are equivalent. The matrix Z is simply diagonal
matrix with the positive entries 1/ V/2ePr/ 2 keN. According to the condition of this lemma, the
matrix F,, is positive semidefinite, hence, matrix D,, is positive semidefinite, and C), is positive.

Positive semidefiniteness of the matrix I;'C,, (I3)~*

. . An
C,, since, for z € Cdim(Vg ), we get

is a consequence of a positivity of the operator

(I Cn(18) ", x) = (Cu(I§) ™ har, (I5) ') = (Cu((I5) '), (I5) ).
Lemma 3.2. Let B be positive operator and
n m
B,=> > P'BP!, neN.
=1 k=1

Then { By} is a sequence of the nonnegative linear operators, B = lim B,,, and there exists ny € N
such that for all n > ng the operator B,, is positive.

Proof. According to Lemma 2.1 and continuity of B, a sequence of the linear operators
n n n n
B,=Y Y P’BP!= (pr)B(ZP,?), n €N,
=1 k=1 =1 k=1

converges to B. Even more, we see that B,,, n € N, is the sequence of nonnegative operators, since
An
for every x € V;, we have

s (o) ) o) ()

Since 0 # B = lim B,, it follows that there exists ng € N such that B,, # 0 for all n > ny.
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Theorem 3.1. Let us assume that operator B is positive and that the function x — pp(z), given

by
p/2-1

D 1
3 h <f . ) Za,9, pe 2N,
. 2 a, cos 9 v)x+ 2%/2 P

op(x) ) -1)/2
a, cosh (g—y> x, pe2N-—1,
0

is positive definite. The solution of the operator equation (1.6), described in Theorem 2.3, is positive.
Proof. Let X be a solution of (1.6). Then we have strong convergence of the sequence
_\" " pAypA A

X, = Zk:l . PAXPE asn— oo, on Vit
Let C,, be an operator defined in (3.1). The linear operators I B, (I})~t, I3C,(I3)~" and

H A7n . . . . . .
DX, (IF)~! on C4m V5" can be represented using matrix multiplication as matrices. Even more,
the matrix 17X, (15)~" is a Schur product of the matrices I7C,, (I5') ™! and I} B, (1) ~!. However,
for n > ng the matrix 1§ B,,(I})~! is positive semidefinite, due to positivity of By, and

(I"Bo(IM) Ya,a) = (Bp(IM)La, (1) La) > 0, a e Cam(G™™),

The matrix I7C,, (If) ! is positive semidefinite according to Lemma 3.1. Accordingly, for all n > ng
the operator X, is positive, since

0 < (10X, (I ta,a) = (Xn(IP)ta, 1) ta), a e CEMG™™),

Using this observations, we simply derive that for every = € VOA we have

n

1
(Xz,z) = lim (Xpz,z)= lim Z - (P X Prx,x) =

S 5F
n (] n <>ok7€:1 q&k
"1 "1
= lim —— (X P.x, Ppx) = lim —— (X Pympx, Pymrpx) =
n—>+OOquk( kL, Ly ) TL—>+OOZq§k( kETind, L97tn )
kf=1 "% kt=1 "%
GO |
= lim —— (P X Pympx, mpx) =
n—-+oo qe k
k=1 "%
1
= lim | Y 5 PXPma,ma | = lim (X,mp, maz) > 0,
n—-+4o0o o1 QK k n—-+o0o

and X # 0, where we used the fact that P.w,, = Py, k = 1,...,n, for m, = Zn

orthogonal projection onto VOA’n.

. P, which is

For every z € D(X) there exists a sequence x,, € VbA, such that z,, — z, Xz, — Xz as
n — 4o00. Therefore, since (Xxy,, x,) > 0, we have (Xx,z) = im(Xz,, z,) > 0.
As in [7] we can define a characteristic polynomial for the equation (1.6).
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Definition 3.1. For even p we define the characteristic polynomial QP for the equation (1.6) to
be QP(cosht) = 1/py(t), and for odd p we define the corresponding characteristic polynomial to be
QP (cosht) = 1/(cosh (t/2)pp(t)).

Now, we can use this characteristic polynomial to give the following statement.

Theorem 3.2. Suppose we are given the equation (1.6), with a strictly positive and compact
operator A, with the characteristic polynomial QP which has ki real zeros contained in the interval
[—1,1) and ky zeros smaller than —1, with k1 > ks, for even p, and k1 + 1 > ko, for odd p, where
k1 + ko = [p/2]. Then the corresponding function o, is positive definite, i.e., the equation (1.6) has
a positive symmetric and closed solution, provided B is positive.

Proof. 1t is proved in [7] that under this condition function ¢, is positive definite. According to
Theorem 3.1, in this case we have a symmetric and closed solution.

We give now an example with integral operators acting on the space L?(0, 1). Denote by C?[0, 1]
the space of twice continuously-differentiable functions on [0, 1] and by H?[0, 1] the corresponding
space of twice differentiable functions with the second derivative being an element of L?(0,1). In
addition, let C3[0, 1] and HZ[0, 1] be their subspaces, with the additional conditions

FO)+f(1)=0 and f/(1)=f(0)+ (1), (3.2)

respectively.

We need also C*[0, 1] as the space of four times continuously-differentiable functions on [0, 1] and
H*[0, 1] as the space of four times differentiable functions with fourth derivative being an element of
L%(0,1). With C3[0,1] and HZ[0, 1] we denote their subspaces, with the additional conditions (3.2)
and

f70)+ f"(1) =0 and (1) = f"(0) + f"(1), (3.3)

respectively.
Lemma 3.3. Let an integral operator C : L*(0,1) — L?(0, 1) be defined by

1

(Cf)(z) =/|x—t\f(t) dt, =z €]0,1].

0

Then ker (C) = {0}, rang (C) = HZ[0,1], rang (C') = L*(0,1), C is compact and self-adjoint and
D2C = CD? = 2, where D*: Cg[0,1] — L*(0,1) is the second derivative and C2[0,1] = L?(0, 1).

Operator A = C? is strictly positive, self-adjoint, with ker (A) = {0}, rang (A) = H[0,1],
rang (A) = L?(0,1) and D*A = AD* = 4, where D*: C}[0,1] — L*(0,1) is the forth derivative
and C§[0,1] = L*(0, 1).

Proof. For every = € [0,1] we have |z — t| € L?(0,1), so that C' is defined everywhere on
L?(0,1). We know that C' is compact and self-adjoint since its kernel |z — ¢| is continuous and
symmetric (see [14, 21]). Let &, be a sequence of real numbers converging to zero. For a fixed
x € [0, 1], consider the sequence of functions

|z ten —t| |z —1
= - ’

gn(t) n € N.

We have an integrable and uniform bound
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|z +e, —t—a+t

€n

|x+sn—t|—|x—tr’ .
as well as the pointwise convergence

=1¢e L%0,1),
2] (0,1)

1 T >t
li t)y=3" " =g(t) € L*(0,1).
ol 9n () {—1, e <p, SWEFOL
Using the Lebesgue theorem on dominated convergence (see [6]), we get

i 0/1 gn(t) f(t) dt = /1

Jm gn(8)f(2) dt =
0

1
= /sgn (x—t)f(t)dt = (Cf)(x).
0

Let e,, n € N, be again a sequence of real numbers converging to zero. Then
1

lim —
n—+o00 £y

0

/ (sgn (2 + 2 — 1) — sgn (z — ) (£) dt

1
2 1m [ ftd=2f()
]

[x,z+en

for a.e. € [0,1], according to the Lebesgue differentiation theorem (see [6]). Since

1 1
(Ch)(0) = / fydt, (CFY(1) = / £(t)dt.
0 0

1
©h©)+CnHu = [ faat
0
we see that C'f satisfies the conditions (3.2). Hence, for every f € L?(0,1) we have C'f € H2[0,1]
and 2f(z) = (Cf)"(z), for a.e. € [0,1]. Therefore, D*C = 2.

On the other hand, using an integration by parts, for f € CZ2[0, 1] we get
1

(CD*f)(x) = / |z =t f"(t) dt = 2f (2) +x(f'(0) = f'(1) + f'(1) = (f(0) + f(1)),
0
and, due to the conditions (3.2), we find CD? = 2.

If f € ker(C), we have f(z) = 1/2(Cf)"(x) = 1/2(0)"(x) = 0, for a.e. = € [0,1]. We
conclude that ker (C') = {0}. Finally, it is a trivial fact that C2[0, 1] = HZ[0,1] = L?(0, 1), where
the closure is taken in L2-norm.

The statement for the operator A can be obtained in the same fashion.
ISSN 1027-3190.
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Lemma 3.4. The eigenvalues of the operator A given in Lemma 3.3 are given by A\, = Xz,
k € No, where o = 2/a3, Xk = 72/V,%, k € N, «aqg is the unique solution of the equation
d+e 24+ a)+e*(2—a) =0and v, k € N, are positive solutions of the equation 2 + 2 cosv +
+ vsinv = 0. The corresponding eigenvectors are

_ 14+ e @0

1+ cosyy
fola) = T = ¢

eN0F 47T fi(x) osvr +sinvpx, ke N.

sin v,

Proof. We first find eigenvalues of the operator C'. Starting with the equation (C'f)(z) = Af(z),
by differentiating we get the following differential equation:

M (x) = 2f(x) =0, 3.4

with the boundary conditions (3.2). It is obvious that A = 0 is not an eigenvalue.

For A > 0, the solution of the differential equation (3.4) is given by f(z) = C1e®* + Coe™ %,
C1,Cy € R, where o = \/m Using the boundary conditions (3.2), for C; and Cs, we get the
system of linear equations

Ci—Cy+ Cre* — Coe™* =0,

Ci1+ Cy + Cre® + Coe™ = aCre® — aCre™“,

which determinant is given by

A = 4cosh (2(}05hg — arsinh g) .

2 2 2
The equation A = 0 has the unique solution a = ap > 0. Thus, the operator C' has one eigenvalue

Ao = 2/ad greater than zero, and the corresponding eigenvector is
14e7@
o) =5
For A < 0, the solution of differential equation (3.4) is given by f(x) = C} cosvx 4+ Cysinvz,

C1,Cy € R, where v = /—2/A. Using the boundary conditions (3.2) we get the following system
of linear equations for C', Co:

o + o0

Cy — Cysinv + Cycosv =0,

C1+ Cicosv + Cysiny = —vCy sinv + vCy cos v.

Therefore, C1 = Ca(1 + cosv)/sinv and, since Cy # 0 (because we are looking for nontrivial
solutions), we get 2cosv/2(cosv/2 + vsinv/2) = 0. It is easy to see that if cosv/2 = 0, then
C1 = Cy = 0, and the values for v are not eigenvalues of the operator C'. Let us denote by vy,
k € N, the positive solutions of the previous equations (one solution in each of intervals of the form
[k, (k+ 1)), k € Ng). Then, \;, = —2/1/,3, k € N, are eigenvalues of the operator C, and
1
fr(x) = 7+ COSVk cos vpr +sinvgx, keN,
sin v,

are the corresponding eigenvectors. N

It is easy to see that the eigenvalues of the operator A = C? are given by A\, = A2, k € Ny, and

that fi, k € Np, are the corresponding eigenvectors (\x fr = Xkak = C(A\efx) = C?fr).
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Example 3.1. Consider the equation
P
doARX, AR =1, p=1, (3.5)
k=0

where A is an operator given in Lemma 3.3. Since VOA = 1(V0A), according to Lemma 2.6, the
solution X of the equation (3.5) is self-adjoint.

Let us denote by {ey}ren, the orthonormal set of eigenvectors of the operator A. Then A =
= Zk:o APy, , where Py, k € N, is a projection onto the eigenspace which correspond to the
eigenvector \;. Since Py, = (-, ex)ex, k € Np, we get

Af = Mlfren)er, feL?(0,1).

k=0

The solution of the equation (3.5) can be easily found as X; = 1/8D*.
For p = 1 we get Q'(t) = 1, and the solution X is positive, according to Theorem 3.2. For
f € C§[0,1], a direct computation gives

1
(D*f, f) (D) () f () dt =
-/

1
— (D*NWI)], - (PNO@N], + [0
0

Using the boundary conditions (3.2) and (3.3) we get
(D°F) W) F(1) = (D*)(0)£(0) — (D> /)W)Df)(L) + (D*F)(0)(DS)(0) =
= (D’ NW)D)(L) = f(0)) = (D*F)(0)f(0)—
—(D*f)A)(DF)(L) = (D)) (0)(Df)(1) =
= (D*F)(W)(DF)(L) = FO)((D*f) (1) + (D*£)(0))~
~(DHDW)(D*f)(Q) + (D*)(0)) = 0.

Therefore,
1
(D*f, f) / Zdt > 0.
0
Example 3.2. Consider the equation
P
S oAFX, AR =1, p=2, (3.6)
k=0
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where A is an operator given in Lemma 3.3. In the same way as in Example 3.1, we conclude that the
solution X5 = 1/48D?% of the equation (3.6) is self-adjoint. Since for p = 2 we have Q?(t) = t+1/2,
the solution X5 is positive, according to Theorem 3.2.

f(5)

10.
11.

12.
13.

14.
15.

16.
17.
18.
19.

20.
21.

Similarly as in Example 3.1, for f € C§[0,1]

{f € C*0,1] | fO1) = fD(0) + fH(1),
7

(0) + fO(1) =0, fD(1) = fO(0) + f(6)(1),:f @(0)+ FD(1) = 0} we get

1
(D%f, f) = f(t)dt =
S

1 1
= W], - O NOEN], + [(DN©Rd = [(D)©)Pd =0
0 0
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