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INVERSE PROBLEM FOR INTERIOR SPECTRAL DATA
OF THE HYDROGEN ATOM EQUATION

OBEPHEHA 3AJJAYA JJIS1 BHYTPIIIHIX CIHEKTPAJIBHUX JAHUX
PIBHAHHSA ATOMA BOJIHIO

We consider the inverse problem for second-order differential operators with regular singularity and show that the potential
function can be uniquely determined by the set of values of eigenfunctions at some interior point and parts of two spectra.

PosnsiHyTo 00epHEHy 3aga4y st Au(epeHIialbHUX ONepaTopiB JPYroro HOPsAKY 3 PEryisipHOI0 CHHTYJISPHICTIO Ta IOKa-
3aHO, IO MOTeHNiaNbHa (QYHKISI OJHO3HAYHO BH3HAYAETHCSI MHOKHHOKO 3HAYCHb BIACHUX (DYHKIiH y JesKkiil BHYTpPIlIHIN
TOYIl T YACTHHAMM JIBOX CIICKTPIB.

1. Introduction. The inverse Sturm-— Liouville problem is primarily a model problem. Typically,
in an inverse eigenvalue problem, one measures the frequencies of a vibration system and tries
to infer some physical properties of the system. Inverse problems of spectral analysis involve the
reconstruction of a linear operator from its spectral characteristics [1, 2]. A problem of this kind was
first investigated by Ambarzumyan in 1929 [7]. Later, inverse problems for a regular and singular
Sturm — Liouville operator appeared in various versions [3 —14].

The inverse problem for interior spectral data of the differential operator consists in reconstruction
of this operator from the known eigenvalues and some information on eigenfunctions at some internal
point. The technique employed is similar to those used in [9]. Similar problems for the Sturm-
Liouville operator and Dirac operator were formulated and studied in [10].

The main goal of the present work is to study the inverse problem of reconstructing the singular
Sturm — Liouville operator on the basis of spectral data of a kind: one spectrum and some information
on eigenfunctions at the internal point.

Consider the following singular Sturm — Liouville operator L satisfying

" C+1) 2

Ly=—y" + T—Eﬂ—q(x) y = Ay, O<z<m, (1.1

with boundary conditions,
y(0) =0, (1.2)
y'(m,A) + Hy(m, ) = 0, (1.3)

where g(x) is assumed to be real valued and square integrable, A spectral parameter, ¢ € Ny, and H
finite real number. The operator L is self adjoint on the Lo (0, 7) and (1.2), (1.3) boundary conditions
has a discrete spectrum {\,} .

Let us introduce the second singular Sturm — Liouville operator L satisfying

(e+1) 2

zy:—y"—i— T_E—’_Q(x) y = Ay, 0<az<m, (1.4
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subject to the same boundary conditions (1.2), (1.3), where g(z) is assumed to be real valued and
square integrable. The operator L is self adjoint on the Lo (0, 7) and (1.2), (1.3) boundary conditions
has a discrete spectrum { Xn}

2. Main results. Before giving main results of this article, we mention some known results. We
will consider the equation

C(l+1)

2
R”‘i‘*R/_ 5
T i

2
R+<E+>R:0, 0 <z <o0. (2.1)
x
In quantum mechanics, the study of the energy levels of the hydrogen atom leads to this equation
[16]. The substitution R = J reduces this equation to the form
x

2 L(l+1
Y+ [E+—(2)]y:0. (2.2)
xr X

As known [17—19] the solution of (2.2) is bounded at zero, one has the following asymptotic formula
for A — o0
y(z) = € . cos[ﬁm+ln\f>\w—(£+1)7r+a +o(1),
i\ | VA VA 2
(l+1+—
VA

where

1
azargf(ﬁ—kl—i— i
VA

Eigenvalues of the problem (1.1)—(1.3) are the roots of the (1.3). These spectral characteristics
and eigenfunctions satisfy the following asymptotic expression, respectively [18]:

pnzx/xn=n+§+o<m”>, 23)

n

o (x, A\y) = cos Kn + 5) x — E;] +0 <lnnn)’ (2.4)

go'(ac,)\n):—<n+§> sin |:<n—|—§>l‘—£;:| +O<lnnn>. (2.5)

Next, we present the main results in this article. When b = g, we get the following uniqueness
theorem.
Theorem 2.1. Iffor every n € N we have

2.6)

then

q(z) = q(x) a.e. on the interval (0, ).
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In the case b # g, the uniqueness of ¢(z) can be proved if we require the knowledge of a part

of the second spectrum.
Let m(n) be a sequence of natural numbers with a property

m(n)zg(lﬂn), 0<o<1, & —0. 2.7)

Lemma 2.1. Let m(n) be a sequence of natural numbers satisfying (2.7) and b € (O, g) are

2b
so chosen that 0 > —. If for any n € N
T

then
q(z) = q(x) a.e.on (0,0].

Let I(n) and r(n) be a sequence of natural numbers such that

I(n) = —(1+e1,), 0<o1<1, 1,0, (2.9)
01

r(n) = —(1+e,), 0<02<1, en—0, (2.10)
02

and let u,, be the eigenvalues of the problem (1.1), (1.2 ) and (2.11) and i, be the eigenvalues of the
problem (1.4), (1.2) and (2.11)

y(m,N) + Hiy(m, A) =0, H# H. 2.11)

Using Mochizuki and Trooshin’s method from Lemma 2.1 and Theorem 2.1, we will prove that the
following theorem holds.
Theorem 2.2. Let l(n) and r(n) be a sequence of natural numbers satisfying (2.9) and (2.10),

2b b
andg<b<7raresoch0senthat01>——1,02>2——.Ifforanyn€Nwehave
T 0

~ N Yy () Yry (D)
An = An, Hi(n) = i)~ and 2 _ Tl (2.12)

then
q(z) = q(z) a.e.on (0,m).

3. Proof of the main results. In this section we present the proofs of main results in this paper.
Proof of Theorem 2.1. Before proving the Theorem 2.1, we will mention some results, which
will be needed later. We get the initial value problems

(l+1 2
—y + (x";)_x_i_q(x) Yy = \y, O<z<m, (3.1)

y(0) =0, (3.2)
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and

. Tee+y 2 .
s (C;)_Nq(x)]yzky, 0<a<m (3.3)

7(0) = 0. (3.4)

It can be shown [19] that there exists a kernel K (x,t) ( K (x,t) ) continuous on (0,7) x (0, )
such that by using the transformation operator every solution of equations (3.1), (3.2 ) and (3.3), (3.4)
can be expressed in the form

y(x, \) = cos <n+€>x—£w —l—/K(w,t)cos <n—i—£>t—€7T dt, (3.5)
L L L

y(xz,\) = cos <n+£>xh +/I~((:c,t)cos <n+£>t£7r dt, (3.6)
L L L

respectively, where the kernel K (z,t) (IN( (z, t)) is the solution of the problem

2K (z
81;52,75)_ (2_W+1)+5@)) K (r,t) = = ;

x 2

0K (z,t) (i B f(ft—; 1) +q(t)> K (1)

subject to the boundary conditions

[a—

K (z,z) = 2/ [q(t) — a(t)],
0

K (z,0) =0.
After the transformations

z=§<x+t>2, w{(x—t)?, K (z,t) = (z —w) """ u(z,w),

we obtain the following problem (a =—v+ ;) :

82u_ o @4_ « @_(cj—q)u_ U
020w z—wdz z—wdw  4yzw VZz (z —w)’

u(z,z —9) =0,
5+ e g[ive) —ave)),

for a constant . This problem can be solved by using the Riemann method [20, 21].
Multiplying (3.1) by y («, \) and ( 3.3) by y (x, \), subtracting and integrating from 0 to g, we
obtain
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w/2
// (0(@) = 7@)y (@ N e Nz = [ /@0 — e N7 @] [ @)
0
The functions y (z, A) and § (z, A) satisfy the same initial conditions (3.2) and ( 3.4), i.c.,
7(0, M)y’ (0,A) = »(0, )y’ (0,A) = 0.
Let
Qz) =q(z) —q(z), (3.8)
/2
HO\) = / Q (2)y (2, \) iz, N)da. (3.9)
0

If the properties of y (x, \) and y (z, A) are considered, the function H () is an entire function.
Therefore the condition of the Theorem 2.1 imply

() (50) o (5] 7 (300) =0
and hence
H (M) =0, n € N.
In addition, using (3.5) and (3.9) for 0 < z < 7,

(3.10)

M

where M 1is constant.
Introduce the function

w(A) =y (m,\) + Hy(m, \). (3.11)
By using the asymptotic forms of ¢ and ', we obtain

W) = — <n—|— 5) sin Kn+ 5) _ g;] +0 (mn"> (3.12)

The zeros of w(\) are the eigenvalues of L and hence it has only simple zeros \,, because of the

seperated boundary conditions. It is an entire function of order 5 of A. From this and from the

asymptotics for w(A) and H (), it follows that the function
(3.13)
is an entire function. Asymptotic form of w(\) and with equation (3.13), we get

v\ =0 <\%>
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So, for all )\, from the Liouville theorem,

(N =0,
or
H(M\)=0
It was proved in [19] that there exists absolutely continuous function I:( (x,7) such that, we have
y (@, M)y (z,A) =
:% 1+cos2[<n+§>x—} /Kx70082[<n+§>7—€;]d7 , (3.14)
where

K (z,t)=2 [K(w,x—27)+[~((x,a:—27')} +

T—2T
/ K(x,s)[?(l’,S—QT)dS—i-/K(.CE,S)I?(.’L‘,S—FQT)dS

—x+27

We are now going to show that Q(xz) = 0 a.e. on (O, g] From (3.9), (3.14) we obtain

/2
;/Q(az) 1+0082[<n 5)37—} /K T, T COS2|:(TL+§> 6;7} dr 5 dx = 0.
0

This can be written as

Qx dx—l—ﬂ2c052 n+€ T— — Q(x :er:L' dr =0.
oo Fona[ (o) 5o+ oo

Let A — oo along the real axis, by the Riemann —Lebesgue lemma, we should have
w/2

/ Q(z)dz =0, (3.15)

and

/2 w/2
14
/C082 {<n+2>7—] /Q (z,7)dzx | dr =0. (3.16)
0
Thus from the completeness of the functions cos, it follows that
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w/2

Q) + / Q(ZL‘);} (z,7)dx =0, 0<z< g (3.17)

But this equation is a homogeneous Volterra integral equation and has only the zero solution. Thus
we have obtained

or

almost everywhere on (O, g} .

To prove that ¢ (z) = 0 on [g, 77) almost everywhere, we should repeat the above arguments for
the supplementary problem
C(l+1) 2

5 — +qlr—x)|y, O0<azx<m,
T—

L :7//
v y*[m—mm

subject to the boundary conditions

y'(0,\) + Hy(0,\) =0,

where

wi@)= )24,

Consequently
q(z) = q(x) a.e. on the interval (0, 7).

Therefore, Theorem 2.1 is proved.
Next, we show that Lemma 2.1 holds.
Proof of Lemma 2.1. As in the proof of Theorem 2.1 we can show that

b
G(p) = /Q(x)y (l’, )‘) y(z, )‘)d'r = |:§(1‘, /\)y/(.%', )‘) - y(a:, A)g’(l', )‘)} ’x:b’ (3.18)
0
where p = VA =re? and Q (z) = ¢ () — ¢ () . From the assumption

L ®) T ®)
(

together with the initial condition at O it follows that,

Y
Y

G(pm(n)) =0, n € N.
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Next, we will show that G(p) = 0 on the whole p plane. The asymptotics (2.4), (2.5) imply that the
entire function G(p) is a function of exponential type < 2b.
Define the indicator of function G(p) by;

Inl@ 0
h(0) = lgn supM. (3.19)
Since [Imv/A| =7 [sin 6|, § = arg v/ from (2.4) and (2.5) it follows that
h(0) < 2b|sind)|. (3.20)

Let us denote by n(r) the number of zeros of G(p) in the disk {|p| < r}. According to the [15] set
of zeros of every entire function of the exponential type, not identically zero, satisfies the inequality

2
1
fim inf 2 < L / h(0)do, (3.21)
r—00 r 2
0

where n(r) is the number of zeros of G(p) in the disk |p| < r. By (3.20),

27 27
1 b 4b
/h(9)d9 < /|Sin9|d0 = —.
27 s s
0 0

From the assumption and the known asymptotic expression (2.3) of the eigenvalues 1/\,, we obtain

n(r) > 2 Z 1=20r(1+0(1)), T — 00.

1l1o(ln)) <,
2
For the case o0 > —,
T

27 2T
4 1
im ) 5 95 5 40 2b/ Isin 6] d6 > 2/h(e)de. (3.22)
s Y
0 0

r—oo T

The inequalities (3.21) and (3.22) imply that G(p) = 0 on the whole p plane.
Similar to the proof of the Theorem 2.1, we have

q(x) = q(x) a.e. on the interval (0, b].

Lemma 2.1 is proved.
Now we prove that Theorem 2.2 is valid.
Proof of Theorem 2.2. From
~ y;(n)(b) g;(n)(b)

Ar(n) = Ar(n)s == )

2b
where r(n) satisfies (2.10) and o9 > 2 — — according to Lemma 2.1, we get
T
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q(x) = q(z) a.e.on [b,7). (3.23)

Thus, it needs to be proved that ¢(z) = ¢(z) a.e. on (0,b]. The eigenfunctions y,(z, A,) and
Un(x, Ay) satisfy the same boundary condition at 7. It means that

yn(x7 )‘n) = fngn(x7 )\n) (3.24)

on [b, ) for any n € N where &, are constants.
From (3.18) and (3.24) we obtain that,

G(p) =0, for p? = \p, n €N,
and
G(p) =0, for :02 = Hi(n)> n e N.

W are going to show that inequality (3.21) fails and consequently, the entire function of expo-
nential type G(p) vanishes on the whole p-plane. Let p,, = VA, , S = /Iin- The p,, and s,, have
the same asymptotics (2.3). Counting the number of p,, and s,, located inside the disc of radius r, we

have
14 2r [1 +O<lnn)]

n
of pn’s and

|

14 2roy [1 + O<nn>]
n

of s,,’s.

This means that

Inn

) =2+2ror 4 0+ 0(22)]
and
n(r)

lim
r—00 T

=2(o1 +1).
- S .. 2b
Repeating the last part of the proof of Lemma 2.1, and considering the condition 07 > — — 1, we
T
can show that G(p) = 0 identically on the whole p-plane which implies that
q(x) = q(x) a.e.on (0,b]
and consequently
q(z) = q(z) a.e.on (0,7).

Theorem 2.2 is proved.
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