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GENERALIZATIONS OF ©-SUPPLEMENTED MODULES
Y3ATAJIBHEHHS ©-10IIOBHIOBAHUX MO/ YJIIB

We introduce ®-radical supplemented modules and strongly @®-radical supplemented modules (briefly, srs®-modules) as
proper generalizations of @-supplemented modules. We prove that (1) a semilocal ring R is left perfect if and only if every
left R-module is an @-radical supplemented module; (2) a commutative ring R is an Artinian principal ideal ring if and
only if every left R-module is a srs®-module; (3) over a local Dedekind domain, every @®-radical supplemented module
is a srs®-module. Moreover, we completely determine the structure of these modules over local Dedekind domains.

BBezeHO MOHATTS B-paduxanbHux 0ONOEHIEAHUX MOLIYIIIB Ta CUTLHO B-PAOUKATLHUX OONOBHIO8AHUX MOIYIIB (CKOPOYECHO
srs®-MomyniB) AK BiIMOBiZHUX y3araiabHeHb (-IOMOBHIOBAHMX Momyiis. Joseneno, mo: (1) HamiBnokaneHe Kinbie R €
JIOCKOHAJIUM 3J1iBa TOJI 1 TUIBKH TOJ1, KOJIK KOXKEH JIBHI R-MOIyIb € b-paJuKaIbHAM JOTIOBHIOBAHHM MOIYJIeM; (2) KoMy-
TaTHBHE Kible 1? € apTiIHOBUM KUTBIIEM TFOJIOBHHUX 171€alIiB TO/ 1 TINBKU TOA1, KOJIU KOKEH JIiBUi R-MOIyIs € S’I'SEB-MOL[yJICM;
(3) HaJ TOKATBHOIO ECKIHIOBOIO 06/IACTIO KOKEH (-paaHKaIbHUI TONOBHIOBAHMI MOAYIb € 5757 -Momynem. TToBHiCTIO
BU3HAYCHO CTPYKTYPY LIMX MOAYIIB HAJl JIOKAJIbHUMH ACICKIHIOBUMH OONACTIAMH.

1. Introduction. Throughout the whole text, all rings are to be associative, unit and all modules are
left unitary. Let M be such a module. We shall write N < M (N <« M) if N is a submodule of M
(small in M). By Rad(M) we denote the radical of M. Let U, V' < M. V is called a supplement of
U in M if it is minimal with respect to M = U + V. V is a supplement of U in M if and only if
M=U+VadUNV <V (see[12]). A module M is called supplemented (weakly supplemented
in [10]) if every submodule of M has a supplement in M, and it is called ®-supplemented if every
submodule of M has a supplement that is a direct summand of M. Clearly &-supplemented modules
are supplemented.

In [13], Zoschinger introduced a notion of modules whose radical has supplements called radical
supplemented. The author determined in the same paper and in [15] the structure of radical sup-
plemented modules. Motivated by this, Biiyilikagik and Tiirkmen call a module M strongly radical
suplemented (or briefly a srs-module) if every submodule containing radical has a supplement [2]. So
it is natural to introduce another notion that we called ®-radical supplemented. A module M is called
@-radical supplemented if Rad(M) has a supplement that is a direct summand of M. We call also
a module M strongly ®-radical supplemented (or briefly srs®-module) provided every submodule
containing radical has a supplement that is a direct summand of M.

In this paper, we obtain various properties of @®-radical supplemented and srs®-modules as a
proper generalization of @®-supplemented modules. We show that the class of srs®-modules and
@-radical supplemented modules are closed under finite direct sums. A semilocal ring R is left
perfect if and only if every left R-module is é-radical supplemented, and a commutative ring R is
an Artinian principal ideal ring if and only if every left R-module is a srs®-module. We prove also
that a non-zero projective module M with cofinite radical is G-supplemented if and only if it is a
srs®-module if and only if it is @-cofinitely supplemented. Over a local Dedekind domain every
@®-radical supplemented module is a srs®-module, and over a local Dedekind domain the structure
of these modules is completely determined.
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2. Modules over any rings. Recall that a module M is called radical if M has no maximal
submodules, that is, Rad(M) = M. For a module M, P(M) will indicate the sum of all radical
submodules of M. if P(M) = 0, M is called reduced. Note that P(M) is the largest radical
submodule of M.

Now we have the following simple fact, which plays a key role in our working.

Lemma 2.1. P(M) is a srs®-module for every R-module M.

Proof. Let M be any R-module. We know that Rad(P(M)) = P(M). So P(M) has trivial
supplement 0 in P(M). Consequently, P(M) is a srs®-module.

We begin by giving some examples of module to seperate &-supplemented, srs®-module, @-
radical supplemented and radical supplemented.

Example 2.1. Let R be a non-local Dedekind domain with quotient field K. Consider the
R-module M = KM, Since P(M) = M, M is a srs®-module by Lemma 2.1. If K& is @-
supplemented, K is supplemented as a factor module of M and so, by [14], R is a local ring. This
contradicts the assumption. Hence M is not ¢-supplemented.

Note that every ®-supplemented with zero radical is semisimple.

Example 2.2. (1) Consider the non-Noetherian ring R which is the direct product Hj; F;,

where F; = F is any field. Clearly Rad(R) = 0 and so the left R-module R is @®-radical supple-
mented. On the other hand, the left R-module R is not a srs®-module since it is not semisimple.
(2) Let M =z 7Z, where Z is the ring of integers. It is well known that M is not semisimple and
Rad(M) = 0. Hence M is @-radical supplemented, but it is not a srs®-module.
Example 2.3. Let R = 7Z and I be a collection of distinct maximal ideal of Z. Consider the

Z
left Z-module M = H o <2> Then M is radical supplemented. However, it is not ¢-radical
p p

supplemented (see [13]).

Now we shall show that in general srs-modules need not be a srs®-module. To see this, we need
to the following lemma.

Lemma 2.2. Let M be a module. Suppose that Rad(M) is small in M. Then M is a srs®-
module if and only if it is ®-supplemented.

Proof. (=) Let N be any submodule of M. Then Rad(M) C Rad(M)+ N C M. Since M
is a srs®-module, we have M = Rad(M)+ N + L, (Rad(M)+ N)NL < Land M = L& L' for
two submodules L, L’ < M. Since Rad(M) < M, we get M = N+ Land NNL < L. So L is
a supplement of N in M such that L is a direct summand of M. Therefore M is a ®-supplemented
module.

(«<=) Clear.

Example 2.4 (see [9], Corollary 2.4). Let F be any field and R = F[[X, Y]], the ring of formal
power series over F' indeterminates X, Y. Then R is a local commutative Noetherian domain. Now
suppose that M =g Rad(R). So M = RX + RY. Since R is local, by [12] (42.6), M is supple-
mented and so it is a srs-module. It follows from [9] (Corollary 2.4) that M is not G&-supplemented.
Therefore, by Lemma 2.2, M is not a srs®-module.

Recall from [3] that a ring R is a left Bass ring if every non-zero left R-module has a maximal
submodule. It is known that the ring R is left Bass if and only if Rad(M) is small in M for every
non-zero left R-module M. By using Lemma 2.2, we obtain the following important corollary.
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Corollary 2.1. Every srs®-module over a left Bass ring is ®-supplemented.

A module M is called coatomic if every proper submodule of M is contained in a maximal
submodule of M. Note that coatomic modules have a small radical and so every coatomic module is
@-radical supplemented.

Corollary 2.2. Let M be a coatomic module. Then M is a srs®-module if and only if it is
@®-supplemented.

Proof. 1t follows from Lemma 2.2.

Now we shall prove that the class of srs®-modules and @®-radical supplemented modules are
closed under finite direct sums.

Theorem 2.1. Let M;, i =1,2,...,n, be any finitely collection of modules and M = My &
OMyD...PD M,. Then:

(1) M is @-radical supplemented if M; is B-radical supplemented for each 1 <1 < n;

(2) M is a srs®-module if M; is a srs®-module for each 1 < i < n.

Proof. (1) The proof can be made similar to (2).

(2) Let M; be a srs®-module for each 1 < i < n. To prove that M is a srs®-module, it is
sufficient by induction on n to prove this is the case when n = 2. Hence suppose n = 2. Let U
be any submodule of M with Rad(M) C U. Then M = M; + My + U so that My + My + U
has a supplement 0 in M. Since M = M; @ M,, then Rad(My) C U + M. It follows that
Rad(Msy) € Ms N (U + M) has a supplement H in My such that H is a direct summand of M.
By [5] (Lemma 1.3), H is a supplement of M; + U in M. Moreover Rad(M;) C U + H. Since M;
is a srs®-module, My N (U + H) has a supplement K in M; such that K is a direct summand of
M. Again applying [5] (Lemma 1.3), we have that H + K is a supplement of U in M. It is clear
that H + K is a direct summand of M. Therefore M is a srs®-module.

Now we shall give another example of a non-radical module which is a srs®-module but not
@-supplemented.

Example 2.5. Consider the left Z-module M = Q © Z,, where p is a prime integer. Note that
M has a unique maximal submodule, which means that Rad (M) # M. According to Lemma 2.1,
the left Z-module Q is a srs®-module. By Theorem 2.1 (2), M is a srs®-module as a direct sum of
two srs®-modules. On the other hand, M is not ®-supplemented because it is not torsion.

Proposition 2.1. Let M be a non-radical module. If M is a ®-radical supplemented, then M
contains a radical direct summand. In particular, if P(M) = 0, then Rad(M) < M.

Proof. Suppose that Rad(M) # M. By the hypothesis, there exist submodules V, V' of M such
that M = Rad(M) +V, Rad(V) = VN Rad(M) <« Vand M =V & V'. It follows from [12]
(21.6 (5)) that Rad(M) = Rad(V) @ Rad(V’). So M = Rad(M) + V = Rad(V’) @ V. Therefore
by modularity, V' = Rad(V’) @ (V N V') = Rad(V’), that is, V' is radical.

Suppose that P(M) = 0. Then V' = 0, which shows that V' = M. Hence Rad(M) < M.

Recall that a subset X of a ring R is called right t-nilpotent if, for every sequence x1,x2, ... of
elements in X, there exists a £ € N with x125...2; = 0. A ring R is called left perfect if R is
semilocal and Rad(R) is right ¢-nilpotent [12] (43.9).

Theorem 2.2. Let R be any ring. Then Rad(R) is right t-nilpotent if and only if every projec-
tive left R-module is ®-radical supplemented.

ISSN 1027-3190. Yxp. mam. xcypnu., 2013, m. 65, Ne 4



558 B. N. TURKMEN, A. PANCAR

Proof. (=) Let M be any projective left R-module. By [8] (9.2.1), Rad(M) = Rad(R)M
and so, by [12] (43.5), Rad(M) < M as required.

(«<=) Let M = R™). Again applying [8] (9.2.1), we have Rad(M) = Rad(R)M. Since M is
@®-radical supplemented, there exist submodules V, V' of M such that M = Rad(M)+V, Rad(V) =
=VNRad(M) < Vand V&V’ = M. So V' is radical. It follows from [12] (22.3 (2)) that V' = 0,
which means that V' = M. Hence Rad(M) is small in M and, by [12] (43.5), Rad(R) is right
t-nilpotent.

Corollary 2.3. A semilocal ring R is left perfect if and only if every left R-module is ®-radical
supplemented.

Proof. 1t follows from Theorem 2.2 and [12] (49.9).
Note that the condition “semilocal” in the above corollary is necessary. We see, for example, the
left Bass rings which are not left perfect.

Proposition 2.2. A4 non-zero projective srs®-module is ®-supplemented.

Proof. Let M be any non-zero projective srs®-module. Therefore, it is ®-radical supplemented.
Then there exist submodules V, V'’ of M such that M = Rad(M) + V, Rad(V) < V and M =
=V @& V'. So V' is radical. By [12] (22.3(2)), V' = 0 . It follows that Rad(M) < M. Hence M is
@-supplemented by Lemma 2.2.

It is well known that a ring R is semiperfect if and only if every finitely generated free R-
module is @-supplemented. By Lemma 2.2, we know that every finitely generated srs®-module is
&-supplemented. Using these facts we obtain the following corollary.

Corollary 2.4. For any ring R with identity element, R is semiperfect if and only if every finitely
generated free R-module is a srs®-module.

Proof. Let F' = R be any free R-module for some finite set I. Since R is semiperfect, by [9]
(Theorem 2.1), the left R-module R is ®-supplemented and so the module is a srs®-module. Hence
F is a srs®-module by Theorem 2.1 (2). Conversely, suppose that every finitely generated free
R-module is a srs®-module. Then the left R-module R is a srs®-module. By Lemma 2.2, R is
semiperfect.

Let R be any ring. R is called FGC ring if every finitely generated R-module decomposes into a
direct sum of cyclic submodules. If R is a local FGC' ring, then R is an almost maximal valuation
ring [1] (Theorem 4.4). It is proved [6] (Proposition 1.3) that a commutative local ring R is an almost
maximal valuation ring if and only if every finitely generated R-module is @-supplemented. Now we
have the following corollary.

Corollary 2.5. For a commutative ring R, R is a finitely product of almost maximal valuation
rings if and only if every finitely generated R-module is a srs®-module.

Lemma 2.3. Let M be an indecomposable module. If M is a srs®-module, then M is radical

or M is local.

Proof. Suppose that Rad(M) # M. Then M contains a maximal submodule K. By the hypoth-
esis, there exists a direct summand V' of M such that M = K +V and K NV « V. It follows

from [12] (41.1(3)) that V' is local. Since M is an indecomposable module and K is a maximal
submodule of M, we get V = M. Thus M is local.
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Theorem 2.3. Let R be a local commutative ring and M be a uniform R-module. Then every
submodule of M is a srs®-module if and only if M is uniserial.

Proof- (=) By [11] (Lemma 6.2), it sufficies to show that every finitely generated submodule of
M is local. Let N be any finitely generated submodule of M. By assumption, N is indecomposable.
So, by Lemma 2.3, N is local.

(«<=) Since M is uniserial, every submodule of M is hollow by [3] (2.17). Therefore every
submodule of M is a srs®-module.

Corollary 2.6. Let R be a local commutative ring. Suppose that every submodule of

FE (Ra(]i%(R)) is a srs®-module, where E (

me(R)' Then R is a uniserial ring.

Proof. Since E

Raf(R)) is the injective hull of the simple module

R
is uniform, the hypothesis implies that £ <> is uniserial

R
Rad(R) Rad(R)

by Theorem 2.3. It follows from [11] (Lemma 6.2) that R is a uniserial ring.

It is shown [6] (Theorem 1.1) that a commutative ring R is an artinian principal ring if and only
if every left R-module is ®-supplemented. Now we generalize this fact.

Theorem 2.4. A commutative ring R is an artinian principal ideal ring if and only if every left
R-module is a srs®-module.

Proof. Suppose that every left R-module is a srs®-module. Then, by Lemma 2.2, the left R-
module R is ®-supplemented and so R is semiperfect. By [12] (42.6), R is semilocal. It follows
from Corollary 2.3 that R is left perfect. Since R is semiperfect, we can write, [12] (42.6), R =
= Re; ® Res @ ... @ Re,, such that ¢; is local orthogonal idempotent for 1 < ¢ < n with n € N.
For all 1 <14 < n, Re; is commutative and it is not difficult to see that every Re;-module is a srs®-
module by assumption. Now Corollary 2.6 implies that Re; is an uniserial ring for every 1 <1 < n.
By [11] (Lemma 6.3), Re; is a principal ideal ring, which shows that R is an artinian principal ideal
ring.

Proposition 2.3. Let R be a ring and M be a ®-radical supplemented R-module with
Rad(M) # M. If its ring of endomorphism is quasi local, then M is local.

Proof. By the hypothesis, there exist submodules U, U’ of M such that M = Rad(M) + U,
Rad(M)NU <« U and M = U @ U’. By [11] (Proposition 3.11), M is an indecomposable module.
So U" =0, that is, U = M. Thus Rad(M) < M. By Lemma 2.2, M is &-supplemented. Let N be
any proper submodule of M. It follows that M = N+ T, NNT < T and M =T @& T’ for some
submodules T, 7" C M. Since M is an indecomposable module, M = T. Then N < M. Therefore
M is hollow. By [12] (41.4), M is local.

Example 2.6 (see [7], Example 2.3). Let R be a commutative local ring which is not a valuation
ring. Let  and y be elements of R, neither of them divides the other. By taking a suitable quotient
ring, we may assume that (z) N (y) = 0 and zP = yP = 0, where P is the unique maximal ideal
of R. Let F' be a free module with generators ai, as, as. Let N be the submodule generated by

F
xra; — yas and let M = N By Theorem 2.1 (2), F is a srs®-module. Suppose that M is a srs®-

module. It is clear that M is finitely generated and it follows that Rad(M) < M. By Lemma 2.2,
M is é-supplemented. This is a contradiction.
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Now we give some properties of factor modules of srs®-modules. Recall from [12] that a sub-
module U of an R-module M is called fully invariant if f(U) is contained in U for every R-
endomorphism f of M. Let M be an R-module and 7 be a preradical for the category of R-modules.
Then 7(M) is a fully invariant submodule of M. We prove the following proposition which is a
modified form of [7] (Proposition 2.5).

M
Proposition 2.4. If M is a srs®-module, then T is a srs®-module for every fully invariant
submodule U of M.

Vv M
Proof. Let U be any fully invariant submodule of M and let i be any submodule of T with
M

d(M M
Rad <U> C g Since Ra(U)—i-U C Rad (U)’ we have Rad(M) C V. By the hypothesis,

wehave M =V +T,VNT < T and M =T & T’ for some submodules T, 77 of M. Then by [14]

T+U) . V. M _. . . .
(Lemma 1.2(d)), HU) is a supplement of i in T Since U is a fully invariant submodule of
M, wehave U = (T'NU) + (T"NU) by [7] (Lemma 2.4). Note that

M _(T+U)  (I'+0)

U U U
and
(T+U) (T'+0U)
N =0
U U ’
T+U M M
ie., (+U) is a direct summand of T Hence T is a srs®-module.

Proposition 2.5. Let M be a &-radical supplemented module. Then has a small radi-

M
P(M)
cal.

Proof. Since P(M) is a fully invariant submodule of M, by Proposition 2.4, the factor module

is @-radical supplemented. Note that is reduced. It follows from Proposition 2.1 that

M
P(M) P(M)
m has a small radical.

Proposition 2.6. Let M be a srs®-module. Suppose that is projective. Then Rad(M)

M
Rad(M)
is ©-supplemented if and only if M is ®-supplemented.

Proof. (=) Let Rad(M) be a @®-supplemented module. By the hypothesis, we have M =

= Rad(M) & N for some submodule N of M. Since M is a srs®-module, by Proposition 2.4,
M
W is semisimple and so N is semisimple. Therefore N is @-supplemented. By [5] (Theo-
a
rem 1.4), M is ®-supplemented.

(«<=) Since Rad(M) is a fully invariant submodule of M and M is @-supplemented, Rad(M)
is @-supplemented by [7] (Proposition 2.5).

M
A submodule N of M is said to be cofinite if N is finitely generated.

Proposition 2.7. Let M be a srs®-module. Suppose that a cofinite fully invariant submodule
K of M is a direct summand of M. Then K is a srs®-module.
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Proof. Let U be any submodule of K with Rad(K) C N. By the hypothesis, we have M =
= K @ L for some finitely generated submodule L of M. Then Rad(L) <« L. Clearly Rad(M) C
C U + Rad(L). And so there exist submodules V, V' of M such that M = U + Rad(L) + V,
(U4+Rad(L))NV <« Vand M =V @V’ Since Rad(L) < L,wehave M =U+V, UNV <V
and M =V @ V'. 1t follows that K = U + (K NV)and UN (K NV) < M. Since K is a fully
invariant submodule of M, then K = (KNV)® (KNV'). Notethat UN(KNV) < KNV.
Therefore K is a srs®-module.

Corollary 2.7. Let M be a srs®-module and let T(M) be a cofinite direct summand of M, then
T(M) is a srs®-module.

Lemma 2.4. Let M be an R-module and Rad(M) C N. If N is a direct summand of M, then
Rad(M) = Rad(N). In particular, if Rad(M) is a direct summand of M, Rad(M) = P(M).

Proof. By the hypothesis, we have M = N@ N’ for some submodule N’ of M. Then Rad(M) =
= Rad(N) @ Rad(N') by [8] (9.1.5). Since Rad(M) C N, Rad(M) = Rad(N) & (N NRad(N")).
Note that N N Rad(N’) € N N N’ = 0. Hence Rad(M) = Rad(NN). Now we take N = Rad(M)
under the similar condition. So M = Rad(M) & X for some submodule X of M. It follows that
Rad(M) = Rad(Rad(M)) & Rad(X). Since Rad(M) N X = 0, we have Rad(X) = 0 and so
Rad(M) = Rad(Rad(M)), i.e., Rad(M) is radical. Consequently, Rad(M) = P(M).

Let R be a ring and let M be an R-module. We consider the following condition.

(D3) If My and My are direct summands of M with M = M; + My, then M; N M, is also a
direct summand of M.

Proposition 2.8. Let M be a srs®-module with (D3) and let N be a submodule with Rad(M) C
C N. If N is a direct summand of M, N is a srs®-module.

Proof. Let U be a submodule of N such that Rad(N) C U. By Lemma 2.4, Rad(M) =
= Rad(N). Since M is a srs®-module, there exist submodules V, V' of M such that M = U + V,
UNV«Vand M =Va&V'. Then N=U+ (NNV). Since M satisfies (D3), N NV is a direct
summand of M. Then there exists a submodule X of M such that M = (NN V) & X. It follows
that UN(NNV) < NNV and N = (NNV)& (NN X). Therefore N is a srs®-module.

Corollary 2.8. Let M be a UC-extending module. If M is a srs®-module, then every direct
summand of M containing Rad(M) is a srs®-module.

Recall that an R-module M has summand sum property (SSP) if the sum of two direct sum-
mands of M is again a direct summand of M. In [4], a module M is called G-cofinitely supple-
mented if every cofinite submodule of M has a supplement that is a direct summand of M. It is well
known [4] (Theorem 2.3) that a module M with (SSP) is @-cofinitely supplemented if and only if
every maximal submodule of M has a supplement that is a direct summand of M. We don’t know
whether srs®-modules are ®-cofinitely supplemented, but we have the following fact.

Theorem 2.5. Let M be a srs®-module with (SSP). Then M is ®-cofinitely supplemented.

Proof. Let U be any maximal submodule of M. Then Rad(M) C U. By the hypothesis, U has a
supplement that is a direct summand of M. By [4] (Theorem 2.3), M is ¢-cofinitely supplemented.

The following example shows that a @-cofinitely supplemented module is not a srs®-module.

Example 2.7. Consider that the ring Z, consisting all rational numbers of the form %7 where

p 1 b. Then Z, is a local ring, which is not left perfect. So, by [4] (Theorem 2.9), every left free
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Z,-module is @-cofinitely supplemented. Since 7Z,, is not left perfect, there exists an infinite index
set I such that ZI(,I) is not ¢-supplemented. By Proposition 2.2, ZI()I) is not a srs®-module.

Proposition 2.9. Let M be a module and Rad(M) be cofinite. If M is ®-cofinitely supple-
mented, then M is a srs®-module.

Proof. Let N be any submodule of M with Rad(M) C N. Note that

(raatn) L s
(raaom)

M
Since m is finitely generated, N is a cofinite submodule of M. By the hypothesis, N has a
al

supplement that is a direct summand of M. Therefore M is a srs®-module.

Theorem 2.6. Let M be a non-zero projective module with cofinite radical. Then the following
Statements are equivalent:

(1) M is a ®-supplemented module;

(2) M is a ®-cofinitely supplemented module;

(3) M is a srs®-module.

Proof. (1) = (2) Obvious.

(2) = (3) This implication follows from Proposition 2.9.

(3) = (1) By Proposition 2.2.

3. Modules over Dedekind domains. Throughout this section R will denote a Dedekind domain
unless otherwise specified.

Proposition 3.1. Let M be an R-module. Then M is @-radical supplemented if and only if

PEWJW) has a small radical.

Proof. (=) By Proposition 2.5.

(«<=) Since R is Dedekind domain, P(M) is injective and so there exists a submodule N of M
such that M = P(M) @ N. By the hypothesis, N is @-radical supplemented. Thus, by Lemma 2.1
and Theorem 2.1 (1), M is ¢-radical supplemented.

Note that from [14] (Lemma 2.1), over a local Dedekind domain module with small radical is
coatomic. By using this fact and Proposition 3.1, we obtain the following corollary.

Corollary 3.1. Let R be a local Dedekind domain and M be a module over such a ring R.

M
Then M is ®-radical supplemented if and only if W is coatomic.

Proposition 3.2. Let M be an R-module. Then M is srs® if and only if

M ®
is a srs®-
P(M)
module.

Proof. We know that P(M) is a fully invariant submodule of M. So, by Proposition 2.4, m

is a srs?P-module. Since R is a Dedekind domain,

M
is a srs¥-module. Conversely, suppose that POM)
we have M = P(M) @ N for some submodule N of M. By the hypothesis, N is a srs®-module.
Hence M is a srs®-module by Theorem 2.1 (2) and Lemma 2.1.
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Corollary 3.2. Let R be a local Dedekind domain and M be an R-module. Then M is ®-radical
supplemented if and only if it is a srs¥-module.

M
Proof. Suppose that M is @-radical supplemented. By Corollary 3.1, m is coatomic and

so, by [14] (Lemma 2.1) is a srs¥-module. By

is -supplemented, which shows that

M
P(M)
Proposition 3.2, M is a srs®-module.

Theorem 3.1. Let R be a local Dedekind domain and M be an R-module. Then the following
Statements are equivalent:

P(M)

(1) M is ®-radical supplemented,
(2) M is a srs®-module;

K\
3) M=KD g (R> ® R™ & N, where K is the quotient field of R, I and J denote any

index sets, n is a non-negative integer and N is a bounded R-module.
Proof. (1) <= (2) It is clear from Corollary 3.2.

K\ K\
(3) = (2) The module KD @ <R> is radical and so, by Lemma 2.1, K(O) @ <R> is
a srs®-module. By [14] (Lemma 2.1), R™ & N is &-supplemented. Hence the direct sum K (D) &

K J
@ <R) @® R™ @ N is a srs®-module by Theorem 2.1 (2).

M M

(2) = (3) By Corollary 3.1, PO is coatomic. Then by [14] (Lemma 2.1), we have i

=~ R(™ @ N, where n is non-negative integer and N is bounded. Since P(M) is radical, P(M) =
K\ K\

~ K g () for some index sets I and J. Thus M = K(D) @ <R> ®RM™ @ N.

12

e

R
We know that every @-radical supplemented module is radical supplemented. In Example 2.3,

we showed that a radical supplemented module need not be @-radical supplemented. Now we shall
prove that the converse of this fact is true for torsion modules over local Dedekind domains.

Proposition 3.3. Let R be a local Dedekind domain and M be a torsion R-module. Then M
is radical supplemented if and only if it is ©-radical supplemented.

M
Proof. Suppose that M is radical supplemented. By [13] (Proposition 3.1), m is bounded
since M is torsion. Hence M is @-radical supplemented by Theorem 2.1 (1).
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