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ITPO ABOBUMIPHI MOJAEJIBHI 305PA’KEHHSA OJHOI'O KJIACY
KOMYTYIOUHUX OIIEPATOPIB

In the work by Zolotarev V. A. “On triangular models of systems of twice commuting operators” (Dokl. Akad. Nauk
ArmSSR. — 1976. — 63, Ne 3. — P. 136-140 (in Russian)), a triangular model is constructed for the system of twice-
commuting linear bounded completely nonself-adjoint operators {A1, A2} ([A1, A2] = 0, [A], A2] = 0) such that
rank(A1)7(A2)r =1 (2i(Ak)r = Ar — A, k =1, 2) and the spectrum of each operator Ay, k = 1,2, is concentrated at
zero. This triangular model has the form of a system of operators of integration over the independent variable in L% where
the domain Q = [0, a] x [0, ] is a compact set in R? bounded by the lines = = a and y = b and by a decreasing smooth
curve L connecting the points (0,b) and (a, 0).

VY crarri 3omoraproBa B. O. ,,IIpo TpukyTHI Mojeni cucteM nBivi nepectaBuux omneparopis” (Joxia. AH ApmCCP. — 1976.
— 63, No 3. — C. 136-140) ans cucTeMH IBiYi IIEpeCTaBHUX JiHIHHAX OOMEKEHHX ILIKOM HECaMOCIPSDKEHUX OIEepaTopiB
{Al,AQ} ([Al,AQ] = 0, [AI,AQ} = 0) TaKO'l., jii(e] I‘ank(Al)[(Ag)[ =1 (QZ(Ak)I = Ak — AZ, k = 1,2) i CIICKTP
KOXKHOTO i3 oneparopiB Ax, k = 1,2, 30cepemkeHo B HyIl, 00YI0BAHO TPUKYTHY MOJEIb, SIKA € CHCTEMOIO ONepaTopiB
iHTerpyBaHHs 1o HesanexHil 3Mimmiit B Ly, ne Q = [0,a] x [0,b]. B nauili cTarTi ofepaHO y3araJbHEHHS L[HOTO
pesyIBTaTy Ha BHTIA0K, KOH 001acTh ) MOJETLHOTO HPOCTOpPY € KOMIAkToM y R?, oGMeKeHNM IpAMAME & = a, y = b i
CIIaiHOIO [IAAKOI0 KpuBo L, mo 3’exnye Touku (0, b) i (a, 0).

Triangular model [3 - 5] of nonself-adjoint bounded operator constructed first by M. S. LivSic plays
an important role in several problems of spectral analysis for this operator class. In the simplest case,
this model represents the integration operator [3—5] acting in the space L%o,l)' Generalization of
this result by M. S. LivSic for the systems of twice-commuting nonself-adjoint operators {A;, As},
A1Ag = AgAy, AJAy = AyA7 is obtained in work [6]. Namely, it is specified that this class of
operator systems is realized by operators of integration by different variables in L2, where Q0 =
= [0,a] x [0,b] is a rectangle (0 < a < 00, 0 < b < o0). This line of investigation receives its
development in the works [7, 8], where systems of nonself-adjoint operators, the commutators of
which C = [A1, A2] and D = [A], As] are nilpotent (D™ = 0, C" = 0, n, m € Z,), are studied.
In this case, the model operators are again the integrations by different variables in L2, besides, the
domain ) represents the rectangle from which the series of rectangles adjoining the coordinate origin
and point (a,0) are withdrawn. The problem of the construction of many-dimensional triangular
models when the domain {2 of model space is given by the smooth descending curve connecting the
points (0,b) and (a,0) so far remained unsolved.

This paper is devoted to the solution of this problem, besides, we obtain generalization of the
well-known result by M. S. LivSic (see Theorem 5).

I. Consider the continuous curve L in Ri,

L= {(z,a(@)): a(0) = b, a(a) = 0}; (1)

specified by the smooth, monotonously decreasing function «(z) € C[lo g ON [0,a] (0 <a,b< o).

Denote by €27, the compact in R%r bounded by the curve L (1) and the lines x = a, y = b. Define the
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ON TWO-DIMENSIONAL MODEL REPRESENTATIONS OF ONE CLASS OF COMMUTING OPERATORS 109
Hilbert space L%L formed by the quadratically summable functions f(z,y),

3, L5 / (@) Pdedy < 0 b @)
Qr

Specify the commutative system of linear bounded operators in L2, ,
L

b

(Aur) @y =i [ st (Aar) o) =i [ fesds ®

It is easy to see that
“

where a1 (y) is a smooth monotonously decreasing function on [0, b], which is reciprocal to a(x),
and xq, is the characteristic function of the set €2;,. (4) yields

I (Al)IL?)L = {f(W)xa, € L3, },

(%)
df 77N 79
Lo = (AQ)IL%ZL = {9(=)xa, € L?ZL} .
It is obvious that
dimLo=1, Lo 1, L, (6)
and, besides, (3) yields that
ALy C Lo, ALy C Ly. (7
Specify smooth monotonously increasing functions
df _ df
My)Sa-al(y),  ule)=b—al@). ®)

The equalities

[ 17w, ? dody - /b F@)PA®)dy,

Q. 0
[ [ 19t@xa ? sy = / 19(2) Pu(z)dz
Qr, 0

ISSN 1027-3190. Yxp. mam. scyph., 2014, m. 66, Ne 1



110 R. HATAMLEH, V. A. ZOLOTAREV

imply that the subspaces L1, Lo (5) are isomorphic to the weighted spaces

12, (\(y)dy) & / F)PAW)dy < 0o b |
)
12, ) (u(2)da) & / 19(2) Pu(a)da < oo

The biunique correspondences between subspaces (5) and spaces (9) are realized by the mappings
fWxa, — f(y) and g(x)xq, — ¢(z). Taking into account (4), we obtain that the operators
2(A1) T 2(A2) ; after this mapping act in the spaces (9) via the multiplication by the functions (8),

2((A4),F) ) = o) f ) (f € LdyOway),

(10)
2((A2)y9) (@) = ul@)g(@) (g€ L (u(@)dz))
It is easy to show that the commutator C = [1212, flﬂ and its adjoint C* are given by
:By /ds/dtfts /dt/dsfts
a~1(s)
(1)
a ofz) a(z) a
(é*f) (z,y) = /dt / dsf(t,s) = / ds / dtf(t,s).
x a(t) 0 a~1(s)

Theorem 1. The operator C is completely continuous, belongs to the Hilbert — Schmidt class
and its spectrum is concentrated at zero, a( ) = {0}. Moreover, the equalities

CLy =1L, C*L = Ly, (12)

are true, where Ly and Ly are given by (5).
Proof. The operator C' (11) is an integral operator,

C’f)(:n,y)z/ K(z,y,t,s)f(t,s)dtds,

the kernel of which is equal K (z,y,t, s) = xq, ,(t, s), where xq, , (¢, 5) is the characteristic function
of the set Qg = {(t,5) €Qr: 0<t¢t<a '(y)}. The quadratic summability of K (z,y,t,s) in
Lg, x Lg, implies [1] the complete continuity of C and the Hilbert — Schmidt class membership
of C.

To prove that CN'L%L = L, it is sufficient to ascertain that Ker C* = Ker (fll) ;- (4) implies that
Ker ([11) ; consists of such functions f(z,y) € L522L that
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ON TWO-DIMENSIONAL MODEL REPRESENTATIONS OF ONE CLASS OF COMMUTING OPERATORS 111
a
/ fty)dt =0 (Y € [0,5)). (13)

If f(z,y) € Ker C*, then

a

o)
/ds / dtf(t,s) =0 (Vz €[0,a)), (14)
0

a~!(s)

in view of (11). Since (13) implies (14), then Ker (/11)1 C Ker (C’*) To prove the truth of the
inverse inclusion Ker C* C Ker (/11), differentiate equality (14), then

(@) [ #ta(w)it =

Taking into account o/(x) < 0 as € [0,a), we obtain relation (13) after the substitution = =
=o' (y).

To show that O‘( ) = {0}, it is necessary to establish that the function (I zC) Yis holomorphic
for all z € C. Let ( — ZC') ! g = f, then f(z,y) is the solution of the integral equation

b al(y)
xy—z/ds / dtf(t,s) = g(z,y). (15)
y

a~1(s)
Since C'f depends only on y (in view of (11)), then

f(z,y) = g(z,y) + ¥ (y)xay,

where ¢(y) € L?O b)()\(y)dy). (15) yields that ¢ (y) satisfies the equation

b b a"l(y
P(y) — 2 / (a7 (y) — ™ (s))(s) ds = 2 / s / dtg(t, s)
y Y a~1(s)

The function

b
—f/ds / dtgts)
y

is continuous and is expressed via the known function g(a:, y). Thus we obtain the integral equation

Y(y) — 2KY(y) = 2¢(y, (16)

where the operator K is given by
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112 R. HATAMLEH, V. A. ZOLOTAREV

b b
(Kf)w) = / (a7 (y) — a\(s))f(s) ds = / (A(s) — A())f(s) ds. (17)

(16) implies that

Y=z20+22Ko+ ...+ 2" K"+ ... (18)
Show that this series converges for all z € C. Since A(y) is a monotonously increasing function, then
it is obvious that

b
[(Ke)(y)] < //\(S)IW(S)IdS < [ AG)le(s)lds < dllellLz | awyay-
Y

o — .

where
b

d? = / A(s) ds.
0

Taking into account this estimation and that |~ (y) — a™1(s)| < a (Vy, s € [0,b]), we obtain

b
(%) ()] < /(al(y) — a7l (s)(Kp)(s) ds| < adlle]|(b - y).
Y

Repeating this procedure n times, we obtain

n—1

(b—y)

[(K"™¢) ()] < a”_ld!\wllﬁ (Vn € N).

Therefore, for ¢(y) (18), we have

@) < lele@)] + [=lPdllell + [zPadloll(b - y) + ...

(b—y"!
(n—1)!

Since the series in the right-hand side converges uniformly for all z € C, the function (I — zC’) s
holomorphic in the plane C.

Theorem 1 is proved.

Note that (12) implies that

|2 a e +..=[zlle()] + [zPd] el expla - |2](b - y)}.

CLy = Ly, C*Ly = Lo, (19)

besides,

(20)

C*fxe, =xa, [ SEAE)ds,
0
in view of (11).
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ON TWO-DIMENSIONAL MODEL REPRESENTATIONS OF ONE CLASS OF COMMUTING OPERATORS 113

Denote by Ei a E)l\( ) and E2 dt EQ( " the resolutions of identity of the self-adjoint operators
Q(Al)I‘L and 2(A2)I’L . Then, in view of (4), (10),
1 2

Bl f(y)xa, = X9 W) fWxa, (s €[0,8]),

(21)
Efg(z)xa, = Xjpq(®)9(z)xa,  (t€[0,d]),
where (o (&) is the characteristic function of the set [0, c]. It is easy to see that
E{L LE} Ly (Vs €[0,b)). (22)

Obviously, the subspaces L1 (s) d ElL; and Lo(t) d:f E? Ly form the maximal chains of invariant
and A correspondingly,

subspaces Aj
Ly L1

ALy(s) C Li(s) (Vse€[0,b]),  AsL(t) C Li(t) (Vte][0,a]). (23)

Note that the commutator C' has the property

C (I, — EF) Ly = ELyy L" (vt € [0,d)). (24)
Equality (24) can be written in the following form:
(IL1 - E;(t)> C (I, —E}) =0 (vtel0,a)). 25)

Remark 1. The orthogonality condition (22), as well as equality (25), can be taken as a definition
of the function a~!(y) (and so of a(x)) specifying the domain €.

Denote by Pr, the orthoprojection on Ly (5) in L, ,

(Puuf) () & 2 / (26)
L(y)

and specify the self-adjoint operator o; in Ly,

o1 f(y)xa, & / FW)xa,dt = XNy) f(y)xa,- (27)
a=l(y)

(4) implies that 2(211) ; = Pr,01Pr,, and so the family
Ay = (fll;L?zL;PLl;Ll;m) (28)

is a colligation [4, 5], where the operators Ay, Pr,, o1 are given by (3), (26), (27), and the spaces
L%ZL and L are equal to (2), (5) correspondingly.
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114 R. HATAMLEH, V. A. ZOLOTAREV

Theorem 2. The characteristic function S A, (2) (7) of the colligation Ay (28) is a scalar oper-

ator in L, A
iy
SAI(Z) =€ = IL17 (29)

where \(y) equals (8).
Proof. The function f(z,y) = (/11 — ZI)illeo'lf(y)XQL satisfies the integral equation

; / F(t )t — 2f (2, 5) = M) (@)xo, (30)

which is equivalent to the Cauchy problem

() + 2 f(ay) =0,

B)
fla,y) = —AS/)f(y)
This implies o
flz,y) = —/\(wa(y)ez Xay,
Therefore
Sa, () f(y)xa, — Z;CZ; | F(t,y)dt =
1 20
{100 = 5 A0+ AT ey == Fna,

in view of equation (30).
Theorem 2 is proved.
Remark 2. The operator-function S A, (2) (29) commutes with the operator o (27) for all z € C,

z # 0.
Remark 3. Consider the restriction of the operator Ay (3) on the invariant (7) subspace L (5).
In spite of the fact that Ly (6) is one-dimensional, nevertheless, the closure of the operator image

PL12(/~12) I‘Ll coincides with the whole of L;. Really, since

Yy
A3 (y)xa, = —i / F(s)xa, ds,

a(x)

then, taking into account the form of the orthoprojection Pr,, (26), it is easy to show that

P, A5 f(y)xa, = —i ;‘é’y) / f(s)A(s) ds.
0
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ON TWO-DIMENSIONAL MODEL REPRESENTATIONS OF ONE CLASS OF COMMUTING OPERATORS 115

Therefore
1

b
Pr,2(A2), f(y)xe, = xa, /f(s) dot Ay)
Y

y
/f(s))\(s) ds
0

Let f(y)xq, € Ker PL12(/~12)

, then
L1

Differentiating we obtain

and since X' (y) # 0, this implies f(y) = 0. Thus Ker PL12([12)I’ = 0 and so PL12(A2)1L1 =L.

II. Consider a bounded self-adjoint operator in a Hilbert space H with the simple spectrum in
the segment [0, a]. Then [1] the operator B is unitary equivalent to the operator of multiplication by
an independent variable

(BN = MO () € L3 (o (V) 31)

where o(\) = (E)\u,u) is nondecreasing on [0, a]; E) is the resolution of identity of B; and u € H
is the generating vector of the operator B. This unitary equivalence is given by the map U [1],

Ui =f 1 / F(\)dExu, (32)
0

besides, f(\) € L%D a)(do()\)) and f € H. Suppose that the measure do(\) is absolutely continuous
by the Lebesgue measure,

do(\) =m\)dx  (m(A) =o' (N) > 0). 33)

Definition 1. An absolutely continuous measure do(\) (33) is said to have the ACy-property if

A
/ do®) _ o (34)
0

t

Sorall X € [0, al.
Requirement (34), per se, is conditioned by the convergence of the given improper integral at
zero. Define the smooth monotonously increasing function y(\),

A
y(n) & / dot) (35)
0
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116 R. HATAMLEH, V. A. ZOLOTAREV

Remark 4. “A priori’ we can suppose that the function y(\) maps [0,a] onto [0,b], where
b is a preset finite positive number. If y(\): [0,a] — [0,b] (d > 0), then setting the measure

b d
doi(t) = gda(t) (b > 0) and realizing the substitution f(\) — f(A)4/+ in LY, 4y (do(N)) we
obtain the Hilbert space L( )(dal()\)) isomorphic to L2 (d (N), be51des the function y;(\)
constructed by doq(A) (35) already possesses the values on [ b] This procedure signifies renormal-

o . b .
ization of the generating vector v — U since o(A) = (E\u,u) .

Denote by A~!(y) the function reciprocal to () (35). Since do(A\) = Ady(A), then the change
of variable A — A(y) translates the space L ( o())) into L2 )()\(y)dy) where the operator B

(31) acts as a multiplication by the function /\( )

(BH@) =)W () € Ly Mw)dy)) - (36)

Theorem 3. Let B be a bounded self-adjoint operator with the simple spectrum in H, besides,
the spectrum of B belongs to the segment [0, al. If the spectral measure o(\) of the operator B is
absolutely continuous (33) and has the ACy-property (34), then the operator B is unitary equivalent
to the operator of multiplication B (36) by the smooth monotonously increasing function \(y) (recip-
rocal to y(\) (35)) in L%O’b)()\(y)dy), besides, the finite positive number b can be chosen arbitrarily.

The following statement gives the description of the commutant of the operator B (3.

Theorem 4. An arbitrary linear bounded operator A in L%O,a) (do (X)) commuting with B (31)
is the operator of multiplication,

(Ar) ) =af)  (f € Ll ydo(n), (37)

where a(\) is a complex-valued function from L?Oﬂ)(da(/\)), besides, || A| = [la(A )HL?O INCIENE

Proof. Let A be a linear bounded operator in H commuting with B where B is a self-adjoint
operator with the simple spectrum and o(B) C [0, a]. The permutability of A and B implies [1] that
[A, Ex\] =0 (VA € [0,a]) where E is the resolution of identity of the operator B. (32) yields that

Af = | f(\)dEyAu.
/

To the vector Au from H in view of the mapping U (32) there corresponds such function a(\) €

€ L2 .y (do(N)) that

a

Au = /a()\)dEAu,

0

and so R
(ExAu,u) = /a(t)da(t).
0

This implies that
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ON TWO-DIMENSIONAL MODEL REPRESENTATIONS OF ONE CLASS OF COMMUTING OPERATORS 117

A
(Au, Exu) = [ f(t)a(t) f(t)d (Byu, Exu) = < f(t)a(t)dEu, E>\u>
o | Jron

And since the linear manifold of the vectors E\u is dense in H, we obtain that
Af = /f()\)a()\)dEAu.
0

Thus AU = UA where A is given by (37), and U is given by formula (32).

Theorem 4 is proved.

So, the commutant B’ coincides with the set of the operators given by (37) and is isomorphic to
the space L%Oﬂ)(da()\)).

The following generalization of the M. S. LivSic Theorem is true.

Theorem 5. Let a linear bounded dissipative completely nonself-adjoint operator with the spec-
trum at zero, o(A) = {0}, be given in a Hilbert space H, and the following conditions be met:

1) operator 2Ay restricted on Hy = A;H has a simple spectrum filling the finite segment
[0,a], 0 < a < oo, and its spectral function o(\) is absolutely continuous (33) and has the ACy-
property (34);

2) forall z € C (z # 0), [Py, (A— zI)"'Py,, A;] = 0 takes place, where Py, is the ortho-
projection on Hy.

Then the operator A is unitary equivalent to the integration operator,

() @) =i [ st (38)

in the space L%L (2), besides, the curve L (1) is given by the function a~*(y) = a — X~ (y), where
A~Y(y) is the reciprocal to y(\) (35) function.
Proof. Theorem 3 implies that there exists a unitary operator U: H; — L%o,b) (AM(y)dy) such that

U2A; = BU, where B is given by (36). Construct a colligation
A= (A; H; U Pry; Ly (Ay)dy); B).

Condition 2 of the Theorem implies that the characteristic function Sa(2) of this colligation com-
mutes with B. Using Theorem 4, we obtain that Sa(z) is an operator of multiplication by the
function exp {iz"'c(y)} in the space L%Ovb)()\(y)dy), in view of the standard type of the character-

istic function, if one takes into account that o(A) = {0} and B > 0. Note that c(y) = A(y) since
lim, o0 iz (I — Sa(2)) = B.

Knowing A(y), from formula (8) we find the smooth decreasing function a~!(y) specifying the
curve L (1) and so the domain €2y, also, for the functions from the space L%L. After this we construct
the colligation A; (28) and observe that the characteristic functions of the colligations A; and A
coincide in view of Theorem 2. Application of the Theorem on unitary equivalence [4] concludes the
proof.

Note that condition 2 in the M. S. LivSic Theorem is met automatically since rank A; = 1.
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118 R. HATAMLEH, V. A. ZOLOTAREV

III. Consider two absolutely continuous measures
do(A) =m(X)dA,  dw(p) =n(p)du (39)

defined on the finite segments, A\ € [0,a], u € [0,b], where m(A) > 0 and n(u) > 0. Supposing
that do(\) and dw(\) has the ACy-property (34) and taking into account (35), we define the positive

increasing functions
A H

O (40)
0

t s
0

Remark 4 yields that we can suppose that y(\): [0,a] — [0,b] and z(p): [0,b] — [0, a]. Denote
by A71(y) and ! (x) the functions reciprocal to y()\) and z(u) (40). Differentiating (40), we obtain
that

mA) =Xy’ (N, n(p) = pa'(p). (41)
Suppose that the functions A(y) and u(z) are given by (8), then taking into account that a~!(y) is
the function reciprocal to «(x), we have

v =a— b ulx),
and after the substitution z = x(u) we obtain that
a—z(p) = Ab— p). (42)
This implies
() =N - p),
or, using (41), we obtain the equality

N(b—p) = ”(:) (43)

Since y = y(A~!(y)), then

in view of (41) and (43). Thus

n()mAH (b — p)) = pA(b — p)  (Vu € [0,0]). (44)

Lemma 1. Let two absolutely continuous measures do(\) and dw(p) (39) have the ACy-
property (34). Then in order that (42) take place, where \~1(y) is the function reciprocal to y(\)
(40) and = () is given by (40), it is necessary and sufficient that the fitting condition (44) is met.

Remark 5. The fitting condition (44) for the measures do(\) and dw(1) (39) provides realization
of the functions A\™*(y) and 1~ *(z) in the form of (8) where a(x) and a~'(y) are mutually reciprocal
functions. Since \(y) is explicitly constructed by m(A) in view of (40), then (44) implies that n(u)
is uniquely defined by the function m(\). Finally, the truth of the ACy-property for dw(y) in this

case signifies that
“w

W
n(s) , A(b—s)
/)s“—!mxm_w“<m

0

for all 4 € [0, b].
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ON TWO-DIMENSIONAL MODEL REPRESENTATIONS OF ONE CLASS OF COMMUTING OPERATORS 119

IV. Consider a commutative system of linear bounded operators { A, A>} in a Hilbert space H.
Denote by H; and H, two subspaces in H,

Sy H, HEA,)H (45)

Theorem 6. Let two self-adjoint bounded nonnegative operators 2(A1)r and 2(Az)r be given
in a Hilbert space H such that:

1) the restrictions 2(A)1|y, on the subspaces Hy, k = 1,2, (45) are operators with simple
absolutely continuous spectrum, besides, o (2(A1)1|H1) = [0,a] and o (2(A2)1|H2) = [0,b];

2) the spectrum measures o(\) and w(u) corresponding to 2(A1)r|y, and 2(A2)r|y, respec-
tively are absolutely continuous (39), have the ACqy-property (34), and (44) takes place, where X\~ (y)
is the function reciprocal to y(\) (40).

Then there exist the Hilbert space L?ZL (2) and the isometric operator U : Hi+Ho — L1+ Lo (L
are given by (5), k = 1, 2) realizing unitary equivalence between the operators P, +11,2(Ax)1| g, 1 1,
and PL1+L22(1‘~1k)I , k =1,2, besides,

L1+Lo

a

(2(41),f) (@.9) = / gyt (2((A2),f) (,y) =

~(y) a

where f(z,y) = [f(y) + 9(z)] xa, € L1 + Lo.

Proof. The conditions 1, 2, and Theorem 3 imply that the operator 2(A;)| p, restricted on Hi
is unitary equivalent to the operator of multiplication by the function A\(y) in the function space
L(20 ) (A L(y)dy). Similarly, 2(As);]| 1, On Hy is unitary equivalent to the operator of multiplication
by the function p(z) in the space L%07a)(ﬂ_1(x)d:c). The functions A~1(y): [0,b] — [0,a] and
p=(z): [0,a] — [0,b] are the reciprocal to y(\) and x(u) (40). The fitting condition (44) implies
that A1 (y) and ! (z) are given by (8), where a~!(y) and a(z) are mutually reciprocal functions.

Knowing «(z), we construct the curve L (1) and define the Hilbert space L%L (2) of the functions
f(z,y) in the domain Q. As was noted before (see Section I), the mappings f(y) — f(y)xq,,
g(x) = g(x)xq, set an isomorphism between the spaces

—

f(zx,s)ds, (46)

—~

2)

Liy A (W)dy) < Ly, Ly 0 (p ' (2)de) > Lo,

where L1, Lo are given by (5). Besides, the operator of multiplication by A(y) in L%(]’b)(/\*l(y)dy)
a
transforms into the operator 2 (Al) = / .dt on L1, and the operator of multiplication by u(x) in
a~l(y)
b

L%O a) (u~!(z)dz) transforms correspondingly into the operator 2(;12) I / .ds on Ly. So, each
’ o(x)
subspace Hj. (45) from H is isomorphic to Ly (5) in L2L, k = 1,2, and the operators 2(Ay)r|p,

appear to be unitary equivalent to 2(A;) I‘L Jk=1,2,
k

a

b
2(A1), f(y)xa, = / F@xaydt,  2(A2)9(x)xa, = / 9(z)xa,ds, (47)

a~l(y) a(z)

where f(y)xq, € L1 and g(z)xq, € Lo.
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Show that knowing these mappings Hy — L, k = 1,2, one can realize the unitary equivalence
between Hy + Hs from H and L; + Lo from L?)L. To do this, consider

(h1,h2) = (h1, Pg, ha),

where hy, € Hi, k =1,2. Let by — f(y)xq, € L1 and ha — g(z)xq, € Lo, then

a

b b
U)o gy = [d [ deiws@ = [aurt) [ G
0 0

a=l(y) a~l(y)

a

Since operator (26)

(PL1f> ([IJ,y) = ;C(S;L / f(t7y)dt

~—

is the orthoprojection on L; in L%L,

<f(y)XQL,g($)XQL>L%L = <f(y)’)\(1y) / g(w)dx> =
a~(y)

L, 5y (A M (w)dy)

= <f(y)XQL7PngXQL>L%L

Thus
<hla h2>H = <f(y)XQLag(x)XQL>L?2L )

and so the correspondence hq + ho — [f(y) + g(2)]xq, is a unitary isomorphism between H; + H>
and Ly + Lo.

To complete the proof of the theorem, it is left for us to ascertain that the formulas (46) are true.
For 2(%11) ; (for example) formula (46) on functions of the type f (y)xq, is already proved (47). It
is left to ascertain the truth of (46) on the functions g(z)xq, . Really, since

2(A1)[h2 = Q(Al)Pthg, hg c H,

then u u
Q(AI)IPng(.fL')XQL = 2(1211)1 ;\((Q;) / g(t)dt = g(t)xa, dt,
a~y) a~l(y)

in view of (47), where ha — g(x)xq, -

Theorem 6 is proved.

Define now the class of linear operators K, which in some sense is close to the class K, [6]
when n = oo, but cannot be obtained from K, as n — oc.

The class K. 4 system of linear bounded operators { Ay, As} in a Hilbert space H is said to
belong to the class K if

1) [A1, Ag) = 0; (48)

2) CH = Hy, C*H = Hsy, where C = [A, A}], and Hy, k = 1,2, are given by (45);
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3) the operator C' is completely continuous and belongs to the Hilbert—Schmidt class, and its
spectrum lies at zero, o(C) = {0}.

Theorem 1 implies that the operator system { A1, A5} (3) in L3, (2) belongs to the class K.

Theorem 7. Suppose that the operator system {Ay, A} belongs to the class K, (48) and
conditions 1, 2 of Theorem 6 are met. Let

1o, = 1By | € [T = E2agy] =0 (49)

takes place for all t, where E}\ and Eﬁ are the resolutions of identity of the operators 2(A1)| o, and
2(A2)|y, » the functions = (x) and X~ (y) are reciprocal to x(u) and y(X) (40) correspondingly.
Then the operator C' is unitary equivalent to the operator C:Ly— Ly,

a™(y)

b ay)
Cy(z)xa, = xa, / dtg(t)u(t) = xa, / ds / dtg(t), (50)
Y a~1(s)

0

Sor all g(x)xw, € Lo.

Proof. The isometric mapping H; + Hs on L; + Lo constructed in the proof of Theorem 6
transforms the operator C' into the operator C' mapping surjectively Ly onto L;. The Hilbert — Schmidt
operator C always can be represented as

o
Z r)xay) Yr(W)XxaL, Sk >0,
k=1
besides, the series converges by the norm of the space L%L X L?ly the functions ¢y (z)xq, form

the complete orthonormal system in Lo of the eigenvectors of the operator v/ C*C', and 1y, (y)xa, =
= Uwpp(x)xq, is the orthonormal basis in L;, where U is a unitary operator from Lo onto L;

corresponding to the polar decomposition C' = U/ C*C'. The last formula implies that

a

Cy(z)xa, = / K(t,y)g(t)xa,dtds = xa, / dtK(t,y)g(t)u(t), (51
0

besides, the kernel K (¢,y) is given by

K(tv y) = Z SkQDk(t)XQL (tv 5)% (y)XQL (l‘, y)

k=1

Since the condition of theorem (49) can be represented as (25) where the spectral projectors £} and
E? are equal to (21), (49) implies that the operator C (51) equals

a™(y) aly) b
CN’ngQL = Xq, / dtK (t,y)g(t)u(t) = / dt / dsK(t,y)g(t), (52)
0 0 a(t)

and so
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a(z) a(z) a
C o, =xa, [ K@) = [ ds [ atR@sis). (53)
0 0 al(s)
Use the following formula:
4 (A1), (Az),| = C" = C. (54)

It is obvious that
a(x)

K(JZ, S)f(s))‘(s) - épsz(@/)XQL

C*f(y)xa, — CfW)xa, = xa, / ds
0

a”(y) b

a(x)
= xq, dsK(x,s)f(s)A(s) — xa, / dtK (t,y) / dsf(s),
0 a(t)

0

in view of (52), (53) and the fact that

b
Pr, f(y)xa, = 1(z) (/)

Since
X0, / dtg(t),
it is easy to see that

4(Ar),(As), Pry f(y)xe, —2(A2) AW) f (y)xa, =

b b
= 2(A1),Prixe, [ dsfe) = 2(A) X% [ asrre) -
(z) o(z)

67

=

= xq, /“ dt/def(S)—XQL /def(S)/\(S)-
a(z)

a"l(y) at)

Using equality (54), we obtain that
b

a(z)

/dsK(m,s)f(s))\(s)+ / dsf(s)\(s) =

0 a=l(y)
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a b a”(y) b
= / dt / dsf(s)+ / dtK(t,y) / dsf(s).
a”l(y) o) 0 a(t)

In connection with the fact that the left-hand side of this equality does not depend on y, then
supposing that 4 = b and taking into account that o~ *(b) = 0, we obtain the relation

a(z) b

[ s {K5) — xion)} 1626 + [ dss&rs) =

[e=]
[e=]

So,

[ s {RG@s) = xoa(s)} 7oA ) =0
0
for all f(y)xq, € L1 and all z € [0, a]. This easily implies that K (x,y) = xq,, this concludes the
proof of the theorem.
(50) and (53) imply that

a(x) a(x)
C* F(y)xa, = xa / ds F()A(5) = xar, / dsf(s). (55)
0 o(t)

where f(y)xq, € L1.
Formulate the main theorem.

Theorem 8. Suppose that the operator system { A1, A2} belongs to the class K, (48), besides,
each operator Ay, is completely nonself-adjoint, dissipative, and the spectrum o(Ay) = {0}, k = 1,2,
and let the operator system { A1, Aa} be such that

1) the subspace Hy = H1 N Hy is one-dimensional, where Hy, k = 1,2, are given by (45);
2) restrictions 2(Ax)g| g, on the subspaces Hy, k = 1,2, (45) are operators with the simple
completely continuous spectrum, and o ( P, 2(A1)|y, ) = [0,a], 0 (Pry2(A2)1|y,) = [0,b];

3) the spectral measures o(\) and w(\) corresponding to Pp,2(A1)r|y, and Py, 2(A2)1|g,
are absolutely continuous (39) and have the ACy-property (34), besides, (44) takes place, where
A"Y(y) is the function reciprocal to y(\) (40);

4) for all t € |0, a] condition (49) takes place where Ei and EZ are the resolutions of identity of
the operators 2(A1)1|y, and 2(A2)1ly, , the functions Y (x) and X\~ (y) are reciprocal to x(p)
and y(\) (40).

Then the operator system {Ay, Ao} in H is unitary equivalent to the system {fll, 1212} (3) in the
function space L%L 2).
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Proof. First of all, the equality
iC = A22(A1); — 2(A1)1 A (56)

implies that AsHy C Hy, in view of 2 (48). And similarly A1 Hy C Hs. Denote by 1212 and fh
the operators restricted on L; and Lo (5) correspondingly, which are unitary equivalent to Aj| H
and A Hy o besides, this equivalence specifies the isometric mapping from H; + Ho onto Ly + Lo
constructed in the proof of Theorem 6. Theorem 7 implies that this correspondence transforms the
commutator C' into the operator C' (50), therefore

a~(y) b
iCf(y)xar = iCPL (W)xa, = ixa, / dt / dsf(s) =

0 o(t)
b a~l(y) b
~ixa, / dsf(s) /( | dt = ixa, / ds () A(s) — A(y)].
Y a—1(s Y

in view of (8). Equality (56) for C, Ay and 2([11)1 is

b
i / ds f(5)Ms) — AW)] = Ao f()Aw) — 2(Ay), Aaf (9).

Y

Taking into account that Ao f (y) € L and that the operator 2([11) ; on Ly acts as a multiplication
by A(y), we obtain that

b b

Aw) 4 Aofly) — i / dsf(s) $ = Aaf(y)Ay) — i / ds(s)A(s).

Yy Y

Thus the operator
b

Bof(y) & Anf(y) — i / dsf(s) (F)xas € L)
Yy

maps L; onto L; and commutes with the operator of multiplication by A(y). Theorem 4 implies that
the operator By is the operator of multiplication by the function By f(y) = ®(A(y)) f(y), therefore

b

Aof(y) =i / dsf(s) + o(u) [ (),

y
where ¢(y) = ®(A(y)). Elementary calculations show that

b
i -1 _ f() _ 1 3& exp ¢ L
<A2 ILl) f(y) QO(Z/) _ @(y) . Jd (P(S) -z p / zZ — (P(g)

Y
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Thu~s spectrum of the operator Ay consists of the range of values of the function ¢(y) and since
o(As) = {0}, then p(y) = 0, and we finally obtain that

b

Aaf(o) =i [ dsr(o) (57)
Yy
Similarly,
Augla) =i [ dg(e). (58)

xT

So the restrictions As|y, and Aj[y, are unitary equivalent to the integration operators: Ay (57), on
L4, and fll (58), correspondingly, on L.

The one-dimensional subspace Ly = L1 N Lo isomorphic to Hy = H; N Hy is formed by the
constant functions from L?)L. The form of the operator Ay (57) obviously implies that the linear

span of the vectors Ag fo (n € Zy, fo € Lp) is dense in Ly (5). And since H; and L are unitary

isomorphic and the operators As| g, and flg’ are unitary equivalent, then
Ly

Hy, =span{A5ho: n € Zy;hg € Hp}, (59)

and the equalities
(ABho, AT ho) = (AL fo, AT fo)  (¥n,m € Z.) (60)

take place, where fj is the image of hy under the correspondence H; — L. Similar considerations

for Hs and Lo, and the operators Ay ‘H and A, ‘L (58) give to us
2 2

Hy =span {AThg : n € Zy;ho € Ho}, (61)
besides,
(ATho, AT'ho) = (A7 fo, AT fo)  (vn,m € Zy). (62)
Moreover, the equalities
(ATho, ATho) = (AT fo, A5 fo)  (vn.m € Zy) (63)

are true in view of unitary isomorphism (Theorem 6) between the subspaces H; + H and L; + Lo.
Taking into account complete nonself-adjointness of the operator Ay,

H =span{AThi:n € Zy; hy € Hi},
and form of H; (59), we obtain that
H = span {ATAS'hg: n,m € Zy; ho € Hp}. (64)
Continue the operators Ay (57) and A; (58) on the whole L%L (2) using the formulas
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b

(A f) () =i / Fy)dt,  (Aof)(wny) =i / f(x,5) ds. 65)

Y

It is obvious that operators (65) commute and
L?ZL = span{fl?jlglfof n,m € Zy; fo € LO} . (66)
To conclude the proof of the theorem it is necessary to ascertain that
(A7 AS'ho, A AZho) = (AT AY fo, BRALfy)  (Vn,m,p,q € Zy). (67)
Really, if (67) takes place, we can specify unitary in view of (67) operator U,
UATATho = ATAS fo (n,m € Zy),

mapping the whole H (64) onto L%L (66), besides, it is obvious that UA, = A U, k = 1,2.
Proof of the relations (67) can be realized in several stages. Show first that the equalities (60),
(62), and (63) imply that

(AT AT h, APhg) = <2v;21§” fo, A? f0> (Vn,m,p € Z) (68)

take place. Use the method of induction by the parameter n € Z, for all m, p € Z,. When n = 0,
equality (68) follows from (63). Let n = 1, then

(A1 AT ho, AVho) = ((AT + 2i(A1) 1) AT ho, AVhg) =
= <A§nh0, A€+1h0> + 2 <(A1)]A72nh0, Azl)h0> .

Since for the first summand (63) is true, then one ought to consider the second summand, which can
be written in the form
i (2(A1)1 A5 ho, P, AV o)

Note that (P, AVho,h) = <PL1f~1’1’f0,f1> in view of (63) and (59), where hy € Hip, and f;
is the image of hy under the correspondence H; — L; and f; € Lj. And in accordance with
2(A1)Ahy € Hy, the equality 2((Ay)r, AThg, hy) = <2(Al)lfxgl fo, f1> also holds in view of
Theorem 6 and formulas (46), (65). Thus

H2(A0) 1A ho, Ahe) = i {2(Ar), AT fo, A fo ),

and so the equalities (68) for n = 1 are proved. Let for all n = 0, 1, ..., g the statement be proved,
show that it also is true for n = ¢ + 1. Consider

(AT AT ho, ATho ) = (AT + 2i(A1)1) ATAS'ho, Afho) =

- <A‘{A’2"h0,A{’+1h0> + 2 (A1) AT AT ho, APho) .
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For the first summand, (68) takes place in view of the induction supposition, as for the second
summand, we write it as
(A{AZ ho, hy)

where h, = 2(A1);AVho € Hy. If m = 0, then Theorem 6 and (63) imply that

(AVho,2(A1)1AVhg) = <A§fo,2(/~11)]z‘~1€fo> .
When m > 0, we obtain that
(ATAT ho, hy) = (AJ AT ho, Ashy) + i { AJ AT T ho, 2(A2)shy) -

Since 2(A2)rhy, € Hy and Hy is given by (61), for the second summand (68) is true by the supposition
of induction. In accordance with Ash, € Hj, repeating this process, ‘transfer’ of the operator A,
on the second place in the scalar product, proper number of times, we at last receive the expression
(A{hg, A5*hy,) , for which (63) is true. Thus truth of the equalities (68) is proved.

To prove that (67) take place, consider

(AT AL ho, AR ASho) = ( AT AP ho, (A5 + 2i(A2)r) AL Aho ) =

= (A7 AT ho, AT ARho ) — 20 ((A2) AT AT o, A" AZhy ).
Taking into account that (A2); AT A ho € Hy and Hj is given by (61), we in view of (68) have that
<2(A2)1A711A§nh0,f43_1141fh0> = <2(A2)[A?A31f071‘1%_11‘1€f0>-

For the first summand, again repeat this procedure of ‘transfer’ of grades of the operator A from
the second place in the scalar product to the first. After the finite number of steps, we obtain the

expression <A?Agl+qh1, Al h0>, for which the truth of equalities (68) is already proven.
Theorem 8 is proved.
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