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ON A NEW CLASS OF INFINITE GROUPS*
IIPO HOBHUM KJIAC HECKIHYEHHHUX I'PYII

In this paper, properties of a new class of @-groups are studied. To within this class of accuracy, we
characterize the class of layer-finite groups.
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HIapoBO CK1IHYCHH I'pynH.

Groups with conditions of finiteness were traditionally studied by V. P. Shunkov’s
school. Weak conditions imposed on subgroups. normalizers of finite subgroups, sud-
denly yield unexpected effect and can be extended over the whole group or give it
some interesting propertics.

This article investigates properties of a new class of @-groups. This class of
groups is rather broad: among them there are groups of Burnside type [1], O1’shanskii
monsters [2]. It is very closely connected with the groups of Burnside type of odd
period n 2> 665.

V. P. Shunkov posed the problem of studying groups with some additional
limitations provided that, for the given finite subgroup B, the following condition —

(*)  normalizer of any non-trivial B-invariant
finite subgroup has a layer-finite periodic part
~is valid.

This work solves this problem partly in the class of locally soluble groups and, for
the case | B|=2 and more general limitations, we solve it with ®-groups accuracy.

The main result of the article is the theorem from the sccond paragraph proved by
V. L. Senashov.

Theorem. Letr G be a group and let a be an involution of G satisfying the
Sfollowing conditions:

1. All the subgroups of the form gr(a,d®), g€ G. are finite;

2. Normalizer of every non-trivial (a)-invariant finite subgroup has a layer-
finite periodic part.

Then, either the set of all elements of finite order forms a layer-finite group or G
is an ®-group.

The first section dwells upon auxiliary results. The authors prove here layer-finite-
ness of periodic locally soluble groups with condition (*) imposed upon one of its
finite subgroups. In Theorem I, V. 1. Senashov established the properties of ®-groups:
conjugateness of involutions, construction of Sylow 2-subgroups and existence of
infinite two-generated subgroups.

1. Class of ®-groups.

Definition. Let G be a group and let § be an involution of G, satisfying the
Sfollowing conditions:

1) all subgroups of the form gr (i, ). g€ G. are finite;

2y Cq(i) is infinite und has a layer ﬁnzle periodic part;

3) Cai)#G and Cg (i) is not contained in other subgroup from G with a
periodic part;

4) if K is a finite subgroup from G, which is not inside Cg (i), and V =

* This work has been supported in part by the Russian Foundation for fundamental studies (grant 93 ~ 01
—16003).

© M. N.IVKO. V. I. SENASHOV, 1995
760 ISSN 0041-6053. Yxp. sam. xypn., 1995, m. 47, N° 6



ON A NEW CLASS OF INFINITE GROUPS 761

=K Ce(i)# 1. then K isa Frobenius group with complement V.

The group G with some involution | satisfying conditions | — 4 is called a
D-group.

This class of groups was introduced by V. P. Shunkov.

Example of ®-group. Let A=gr(b,c) (where b" =¢"=d. n is a positive
integer) be a torsion [rec group and let 4 /(d) be a free Burnside group with period #
[1]. Consider the group B=Az2(x)= (A XA)X(x), where x isan involution. Let us
take from A x A the element v = (d.d™1). Obviously, ve Z(AxA) and v =v" L.
Further, the group G = B/ (v) and its involution 7 =.x(v) (which is easy to sec from
the abstract properties of the group A = gr (b, c¢) [1]) satisfy all the conditions from
the definition of ®-group. Hence, G = B/(v) isan ®-group.

Recall that the layer-finite group is a group in which the sct of elements of each
order is finite.

We shall use the term (a, 6 )-condition of finiteness. 1t means that, in a group, the
element @ generates a finitec subgroup with almost every (without, possibly, a finite
number) element conjugated with b.

Anclement g of finite order of the group G is called a point if, first, for every
non-trivial (g )-invariant finite subgroup K from G, the sct of finite subgroups from
Ng(K), containing the clement g is finite. and. second. in the case where g =1, the
set of elements of finite orders from G is finite.

In the sequcl, we shall need the following well-known results which, when referred
1o, are called asscrtions with corre  ponding numbers.

1. An infinite layer-finite p-group has such a subgroup of finite index. which is
contained in center and is decomposcd into a direct product of a finite set of quasi-
cyclic subgroups {3].

2. Let G be a group, let A. B be somc of its locally finitc subgroups with
Chernikov primary subgroups. If A (1B =D has finite indices in A and B. then D
contains a finite index subgroup, the normalizer of which contains A and B [4].

3. If, in a periodic locally soluble group G, Sylow p-subgroups, for some prime
p, are Chemikov groups, then the quotient-group G /0O, (G) is a Chernikov group
[5].

4. Every locally soluble group G of finite rank contains a subgroup of finite
index, the commutant of which has an increasing central scrics [6].

5. Let G be agroup.let H be its subgroup strongly embedded in G. and let
be some involution from A satisfying the condition: for almost all elements of the
form g~tig(g e G\II), the subgroup gr (i, i) is finite. Then

1) all involutions from G are conjugate in G;

2) for any involution j from G\//. the set of clements from /4 which are strictly
real with respect to j has the same power as the set of involutions from H (assertion
4.3 from [7]).

6. Let G be a finite group and let H be its own subgroup. HNH*= 1(ge
€ G\H). Then G =FXH. where F\{1}=G\U,c cH' (see. for cxample, [8]).

7. Every Chernikov @-group has a non-trivial center [5].

8. If a Sylow p-subgroup P of the group G has finitely many conjugate sub-
groups. then these subgroups conjugate with P are all Sylow p-subgroups of the
group G [S].

9. A locally finite p-group is a Chernikov p-group if it has a finite maximal cl-
ementary Abclian subgroup [9].

10. Let G be alocally finite group., which is not almost locally soluble, and lct #/
be its strongly embedded subgroup. Then G/QO2(G)=T has either a single involu-
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762 M. N. IVKO, V. . SENASHOV

tion or a normal subgroup of odd index in 7', which is isomorphic tb one of the groups
of the types SL(2.K), Sz(K), PSU(3.K). where K is an infinite locally finite
ficld of characteristic 2 [10].

11. It a locally finitc group has a Sylow subgroup. which is isomorphic to a cyclic
group or to a gencralized quaternions group. then G = 04 (G) - Ci; (i), where ¢ is an
arbitrary involution from G [10, 11].

12. 2-group. which has a single involution, is either locally cyclic or a generalized
quaternions group (finitc or inlinite) [12, 13].

13. Let G be a group and fet 7 be an involution-point of G satisfying (i, i)
condition of finiteness. Then one of the following statements takes place:

A) G has a linite periodic part;

B) the.following conditions are valid in G:

Sylow 2-subgroups are cyclic or {inite generalized quanternions groups;

H = Cg(7) has a finite periodic part and H  is embedded in no other subgroup with
this property: ,

it L is a finite subgroup from (. which is not inside H, and L = 1, then L
is a Frobenius group with the complement L N/ [7].

14. Let G be a finite group of the form G = 0[,'((}))\[{ wherc R is an element-
ary Abclian subgroup of the order p2. Then 0,(G) is in the subgroup which is
generated by centralizers of non-identity elements from R [14].

I5. If ¢ is a point of the group G and |G : C;(g)| <oe. then G has a finite
periodic part [7].

16. If. for some involution i€ G. the condition of (i, i)finiteness is satisfied.
then, for any involution ke G. the condition of (%. i)-finiteness is satisfied [7].

[7. If'a p-group has a finite non-trivial class of conjugatc elements, then it has a
non-trivial center [15].

18. The extension of a Chernikov . group by a Chernikov group is a Chernikov
group [15].

19. If the centralizer of some finite p-subgroup of a locally finite group G
satisfies the min —-p condition. then all p-subgroups of G are Chernikov [13].

20. Let G be a periodic locally soluble group, let B be a finite subgroup of G. If
every B-invariant Abelian subgroup of G has a finite rank. then the rank of G is
finite [16, 17].

21. 1t G is a Frobenius group with a kernel £ and a complement # containing
an involution i, then # = Cg(i). F is an Abelian group and if i:{f’l. fe F [8].

Now we present our own results. Theorem 1 gives an idea about propertics of ®-
groups.

Theorem 1 (V. L. Senashov). An Q-group G possesses the properties:

Dy all involutions are conjugare;

2)  Sylow 2-subgroups are conjugate cyclic or finite generalized quaternions
groups; :

3) there are infinitely many elements of finite orders in G. which are strictly
real with respect to the involution | and for every such element ¢ of this set there
evists an element s from the centralizer of i such that gr(e. ™) is an infinite
group.

Proof. lLet us prove 1). Let ; be an arbitrary involution from the difference
G\Cg (i) and let 7 be an involution of G from the definition of ®-group. By condi-
tion 4 of the definition of ®-group. gr(i.j) is a Frobenius group, that makes the
mvolutions { and j conjugate. Hence, i conjugates with every involution from
G\C (i)
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ON A NEW CLASS OF INFINITE GROUPS 763

Suppose that the closure B = gr(iG) of the involution 7 is included in Cg(i). For
every element ¢ of finite order from G\Cg (i), the group gr (¢, B), which is finite
by condition 2 in the delinition of ®-group, is a Frobenius group with a complement

.o .. - . . . .G E
containing B by condition 4, By the Frobenius groups properties, in this case, 1 =1
This contradicts 1o condition 3 of the definition of ®-group.

Let now the group B be finite and not inside Cg (/). Then B - Cg (i) is a group
with a periodic part strictly containing Cq({). Contradiction to condition 3 of the
definition of ®-group mcans that the class of involutions, conjugate with 7. is infinite.

Denote by & some involution from Cg; (i) which are not conjugate with i. As we
showed above, there are infinitely many involutions outside of Cg; (i)

il‘I.Z‘ ee s inr fee s
which are conjugate with i. Consider subgroups of the form gr (k,i,). n=1,2.....
By Assertion 16 therc are infinitely many linite subgroups among them. Let gr (k. t)
be one of them. By the definition of ®-group, it is a Frobenius group with involution
k in its complement. By the Frobenius group properties, the involutions & and ¢ are
conjugate. This contradiction means that all involutions from G are conjugatc.

Let us prove 2). Let j be an involution of C;(7) different from i conjugate with
i by some element /e (G, thatis j:ih. Denote the periodic part of Cy; (1) by U.

. . J
Obviously, je U'NU.

If N (U) contains some clement b of finite order which does not belong to the
centralizer of 7, then consider the group gr (¢, 5). In view of layer-finiteness of U, it
is a finite group which is a Frobenius group with a complement containing the
involution i and ¢” =i by condition 4 of the definition of ®-group. Contradiction to
the construction of a Frobenius group mcans that N, (U) has a periodic part. By
condition 3 of the definition of ®-group. Cq(i)=Ng(U).

Consider the group gr(c, /). where ¢ is an element (rom the difference U "\U.
The group gr (c¢./) is finite in view of the layer-finiteness of Ut By condition 4 in
the definition of ®-group, its complement must contain j and, simultancously. the
involution j must belong to the center of this group (j belongs to the center of Ut ).
but this is impossible. This implies that U"=U. Inview of the previousand Cg (i) =
=Ng(U), the involutions i, j coincide. Thus, i is a single involution in its
cenltralizer.

Letnow S be an j-containing Sylow subgroup from G. If there is an involution ¢
in S different from i. then, by the definition of ®-group and by the property proved
above, the group gr (i,t) is a Frobenius group. At the same time. it must be a 2-
group. But this is impossible. Henee, i form a class of conjugate elements in § and
S has a non-trivial center. By the preceding argument, Z($) can contain a single in-
volution ; and then, by what has been said above, the group S does not contain other
involutions. It suffices to use Assertion 12 and note that S cannot be an infinitc
quaternions group because, in this case, it would not be layer-linite. contrary to condi-
tion 2 in the definition of ®-group. The property of being conjugate is valid with
regard to the same condition and 1).

Prove 3). The first part of the statement obviously follows from the infiniteness of
the set of involutions proved above, which are conjugate with 7. Assumc that the sc-
cond part of the statement is not valid, i.c., for somc clement ¢ of (inite order. which

ISSN 0041-6053. Yip. swom. xypu.. 1995, m. 47, N° 6



764 M. N. IVKO, V. I. SENASHOV

is strictly real with respect to i, all the groups of the form gr (¢, ¢') are finitc (se€
e Ca().

By condition 4 in the definition of ®-group. all groups gr (i, ¢, c") are Frobenius
groups with i-containing complements. The clements ¢. ¢, being strictly real with
respect Lo involution 7. are permutable by Statement 21. Then it follows from the as-
sumption that B=gr(c' Ise C;(i)) is an Abelian group. Obviously Cg(i)<
< Ne(B). Then the group Cg(i)- B has a periodic part and strictly contains Cg (7).
Contradiction to condition 3 in the definition of ®-group proves our statement. The
theorcm is proved.

Theorem 2 (M. N. Ivko. V. I. Senashov). A periodic locally soluble group is
layer-finite if and only if, for some of its finite subgroups B, the condition

C**)  normalizer of any non-trivial B-invariant
finite subgroup is layer-finite
is valid.

Proof. Consider first the case where C;{(B) has an elementary Abelian subgroup
R of the order p2. Denote by P a Sylow p-subgroup which contains R. The cen-
tralizer of R in P, by Assertion 1 and condition (**), is a Chernikov group. Hence,
by Assertion 19, all Sylow p-subgroups in G can be casily shown to be Chernikov.

If G isa Chernikov group, then there is a finite normal subgroup in it and, by
condition (*¥), the group G is layer-finite. Hence. it is necessary to consider the case
of non-Chernikov group. By Asscrtions 3 and 18, ()l,r(G)>\R is not a Chernikov
group. By Assertion 14. 0,(G) is included in the subgroup gr(Cq(r;)1r;i € R¥).
Every centralizer generating this subgroup is layer-finite by condition (¥¥). In view of
Assertion 9, primary Sylow subgroups in it are Chernikov groups and, being layer-
finite groups, cvery centralizer has a {inite index in others, so we can apply Assertion 2
to the pair of centralizers Cg;(ry) and Cg(#5). Then there is a subgroup D, from
the mntersection Co{ry) N Ce () which has finitc indices in both Cg (r;). Ce(ra)
and it is normal in each of them.

Let dy beanarbitrary non-unit clement from Dy, lct K; be a normal closure of
D in G. Denote by N the normalizer of K| in the group gr (Ce(ry), CG(rz))‘of
by b ) - .
the clement dy*d}* ... d{". where b; —all elements of the group B, i=1,2. ... ..
Since K isa finitc B-invariant subgroup. by condition (¥¥). N; is layer-finite and so
the centralizer of the element r3 € N has a finite index in N;. The centralizer
Ce(ry) iscontained in Nz hence, the intersection of N; and Cg () is a subgroup
of finite index. Applying again Assertion 2 to the pair N, C; (7). we shall receive
the subgroup D, which is normal in both subgroups and again the normalizer N, of
the finite B-invariant subgroup K, (chosen similarly to the subgroup K;) is a layer-
fimite subgroup. In the same way. we construct the layer-finitc subgroup N,._, which
contains all centralizers C(r;). i=1,2. ..., p%— 1. From this, we cau deduce layer-
finitencss of the subgroup Op'( G ). Itis normal in the group G. hence there is a finite
subgroup in it which is normal in . Again by condition (**), the group G is layer-

finite,

Now we can assume that Cz(B) has no non-cyclic clementary Abelian subgroups.
Obviously. the rank of an arbitrary Abelian subgroup from Cg(B) is equal to one.
Hence, by Asscrtion 20, rank of Cg (B) is tinite.
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If all B-invariant Abelian subgroups of G have finite ranks, then, by Zaitsev
theorem (Assertion 20), the whole group has a finite rank but, by Kargapolov theorem
{Assertion 4), such a group has a finitc index subgroup whose commutant decomposes
into a direct product of its Sylow subgroups of finite ranks. It is impossible to have
infinitely many Sylow subgroups in this decomposition in view of condition (**).
Then the lower of the commutant of the group G is a finite subgroup invariant in G.
By condition (**), G is layer-finite. In this case, all is proved.

Hence, in G, there is a B-invariant Abelian subgroup L of infinite rank. Then it
is apparent that in L there exists a finite B-invariant subgroup K. Its normalizer
contains 7 = L X B and is a layer-finite group. By the properties of layer-finite groups,
the centralizer C;(B) has a finite index in 7, but its rank is finite, which ensures a
finiteness of the rank of T. A contradiction. The theorem is proved.

2. Characterization of ®-groups.

Theorem 3 (V. L. Senashov). Let G be a group, let a be an involution of G,
satisfying the conditions:

1. Al subgroups of the form gr(a.a*), ge G, are finite;

2. Normalizer of every non-trivial (a)-invariant finite subgroup has a layer-
finite periodic part.

Then either the set of all elements of finite orders forms a layer-finite group or G
is an M-group.

Proof. Let G have no layer-finite periodic part. By condition 2 of the theorem,
C(a) has a layer-finite periodic nart U.

First, we consider the case where U is finite, If G has a non-trivial («)-invariant
finite subgroup K, then Ng(K) has a layer-finite periodic part M by condition 2 of
the theorem and ¢ € M. In vicw of the layer-finiteness of M, the clement « is con-
tained in the finite class of conjugate involutions from M. Hence, | M : Co(a) N M| <
< oo, But Cp(a) has a finite periodic part by assumption. This implies the finitcness
of M and, hence, the finiteness of the set of finite subgroups from N (K), which
contain the element «. This means that « is an involution-point of the group G.
Then, by Asscrtion 13, G is an ®-group and in this case the thcorem is proved.

Letnow U be an infinite group. Consider a chain of layer-finitc subgroups

U<H <Hy<..<H <..

and their union V.

Assume that V is not a layer-finite group. Prove that all involutions of V are
conjugate.

If the set of involutions from V is finite, then. by the Ditsman lemma, it generates
a finite (a)-invariant subgroup which is normal in V. In this case. V. by condition 2.
is layer-finite.

Let the set of involutions from V be infinite and

Iy = d, iy, iz ...
— some subsct of it. Suppose that the involutions i,. /, are not conjugatc. Then

gr (i, i,) contains a central involution i 12~ Thercfore. in view of the layer-finiteness
of periodic parts of Cg(i;), Cs(ij2). we conclude that the involution 7, is not con-
jugate with only finitcly many involutions from the list. Without loss of generality. we
assume that i; is not conjugate with 7, only. Then every group

gr(i.i50) = g 5*) o g (L 54) = @iy i), ...
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766 M. N. IVKO, V. L. SENASHOV

has central involutions. It is impossible for the set of such invelutions to be finite
Decause, in this case. a centralizer of some involution contains an infinite sct of
involutions iy. I5, i3. ..., contrary to condition 2 of the thecorem. Then we can
consider all of them to be different. There arc no infinitely many equal involutions in
the sct ia, 5%, 5. ... by the same reason. But then. as above. 7, is conjugate with
some involution {rom this set and this mecans that it is conjugate with i, too. This
contradiction means conjugation of all involutions from V.

Let us show that the assumption of infiniteness of the set of involutions from V
Icads us to a contradiction and. in this way. we shall prove the layer-finiteness of V.

Let S be a Sylow 2-subgroup from V' which contains «a. Let us show that it is a
Chernikov group. It § i1s finite. this is truc. Let S be infinite. By condition 2 of the
theorem, there arc no infinite elementary Abelian subgroup in G. Then by Asscrtion
9. S is a Cherikov group.

By Asscrtion 7, there is an invelution j in S from the center of 5. Assume V' to
be not a layer-finite group. Then. by what was said above., the involutions « and j
are conjugate in V. IUis easy to sce that all the conditions ol the theorem hold for the
involution j.

Consider the centralizers Uy, U,. ... . U,, ofall involutions j =1 t5, ... , t,, from
U =Cy () in V. By the condition of the theorem, all these subgroups are Iayer-finite.
The intersection D, = U, N U5 has tinite indices in U and U,. Tt is correct he-
causc the intersection of Cy(ry) = U, and U, isa subgroup ol [inite index in view of
layer-finiteness of 1/, and ;€ U,. By the same reasons, the imersections ol U/,
and U iform a subgroup ol finite index. By Assertion 9, primary Sylow subgroup
from U arc Chernikov: henee, we can apply Assertion 2 for the subgroups Uy, U,
D,. By this assertion, there is a subgroup K, of [inite indices in U, and U; and
normal in both of them. The subgroup 7/, = Ny(R,) is layer-finite and [/, : U] <
< eo. This [ollows from layer-liniteness of R, and from the condition of the theorem.
Thus, Uy. U, < H,. By analogy. we get a layer-linite group H3 = Ny (R3). where Ry
is a finite index subgroup in Dy = i, (1 5. Now already Uy, U,. U3 < H,. Repeat-
ing this m times. we receive a layer-finite group N from V' containing centralizers of
all involutions from Cy. ().

Denote by [/ a subgroup in N generated by the centralizers of all involutions
{rom Cy(j). Since we chose j from the center of the group S, it lies in /4 with the
centralizer of j. Obviously. § will be a Sylow 2-subgroup in /7. Let £ be an arbit-
rary involution from H. By Assertion 8, Sylow 2-subgroups are conjugate in . so
there is an involution in § which is conjugatc with & in /. Since the centralizer of
this involution is contained in {7 by the coustruction of H. Cp (k)< /1.

Thus. {1 contains centralizers of all its involutions. Morcover, I is gencrated by
the centralizers of the involutions contained in the centralizer of cvery involution /
from M. Indecd. let the group M. gencrated by these centralizers. be strictly con-
tained in H. Consider the group M” for i e i1 such that /" =j. Then M" is gener-
ated by the centralizers of all involutions from Cy/ (/) and is strictly contained in H.
This contradicts the construction of the group /4.

Let., for some clement 2 € V\H. the intersection [ (N /1f contain the involution
k. Since centralizers of all involutions from // lic in H. II¥ satisly the same
property. Hence, Cy{(k)< 1IN H*. By the same reason. [/ (V11 contains central-
izers of all involutions from Cy (k). But we have alrcady showed before that /7 is
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ON A NEW CLASS OF INFINITE GROUPS 767

generated by the centralizers of involutions from Cy(k). The same is valid for H¥.
Finally, /I = H*,

Consider now the group 7T =Ny (/). If there is an involution & from the
difference T\H, then, in the dihedral group I = gr (a. k). the element ak must have
an odd order in view of the properties of the group [/, dihedral groups and since
ae ll, ke H. By the properties of dihedral groups, in this case, there is an clement
g€ (ak), for which a®*=k but g€ Ny(H). ae H. Hence, ¢®*=ke H. The con-
tradiction means that there are no involutions in - 7\//. Thus, for every element from

VAT, the intersection 7 {1 T® has no involutions. If therc is an involution that belongs
to the intersection, by applying the same argument as before, we see that this is an

involution from H (\ H® and. hence, H = H®. Thercfore, g€ T =N (I1). This con-
tradiction means that 7" is strictly embedded in V.

Suppose that V' is not an almost locally soluble group. Then by Assertion 10.
V =V /0, (V) either has a single involution or a normal subgroup of odd index in 7.
which is isomorphic to one of the group of the form Sz (K), SL(2.K), PSU(3.K).
where K is an infinite locally finite field of characteristic 2.

By Assertions 11, 12, in the lirst case. we can decompose the group V  into the
product V=0,(V)-Cy(j). In view of the Feit~Thompson thcorem O, (V) is
locally soluble, so it suflices is to prove that Cy(j) is almost locally soluble.

If Cy(j) is finite, then V is atmost locally soluble. Assume that Cy(j) is infi-
nite (by condition 2 of the theorem, it is layer-finite). If the Sylow 2-subgroup S,
from Cy(j) is infinite. then, by the propertics of layer-finite groups. the complete part
5’2 of S, iscontained in the center of Cy(j) and has a [inite index in S,. Consider a
quotient-group Cy(j)/ S,. In this situation. it is necessary to prove that this layer-
finite group with finite Sylow 2-subgroup is locally soluble. So. without loss of
generality. assume that S, is finite. By induction on the order of Sylow 2-subgroup,
prove that Cy(j) is almost locally soluble.

Let S; be anormal closure of §, in Cy(j). It is finite in vicw of the properties of
layer-finite groups. Denote by C the centralizer of Sy in Cy(j). If C1Z hasno
involutions, then C is locally soluble by Feit—~Thompson theorem and sincc
| Cy(j): C] is finite, in this casc, all is proved. Then we can assume that C {1Z has
an even order, Then, in the quotient-group C by Sylow 2-subgroup from C(1Z, the
order of Sylow 2-subgroup decreases and. by the inductive assumption. it is almost
locally soluble. Hence, as we noted above. V' is an almost locally soluble group. A
-contradiction to the assumption. In the second case. V' has a non-Chernikov Sylow 2-
subgroup, but this is impossible as we alrcady showed. This mcans that our assump-
tion is incorrect and V is almost locally soluble. By Theorem 2, V' has a layer-finitc
subgroup of finite index. By the second condition of the theorem, in this case, V is
layer-finite. A contradiction.

Consider a set M of all subgroups with layer-finite periodic parts containing
- Cg(a). This set is partially ordered by inclusion and, by what proved above, the union
of every chain belongs to it. By Rzom lemma, T has a maximal element, i.c.. a
subgroup // from TN which is contained in no other subgroup from M. Let ¥ be
the periodic part of the group H.

By the choice of the set . the group Y is layer-finite. Obviously, Y is normal
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in /1 and it is a characteristic subgroup in //. Hence. in view of the maximality of /1
in M and since ae Y. we sce that

Ng(Y) = If = Ng(il).

Let & be an arbitrary involution from Y. If

F=a(kfleeG) <Y,
then, since F is «-invariant and Y is layer-finite. the group G has a layer-finite
periodic part by condition 2. A contradiction o the assumption. Hence, for some
g€ G, theinvolution f=k* ¢ H. Consider the dihedral group L = ¢r (a, t). Suppose
that L is not a finite Frobenius group. In this case, the order of & is either infinite or
even. The first possibility is not realized because the extension of the finite group
gr(a.a’) by (1) isafinite group gr(a.t).

Let [d| be even. By the propertics of dihedral groups. () has an involution
J€ Cal@dyN Cr(ns I, Since j belongs to a finite normal subgroup from H.
{H:Co(NH] <oo.

In view of a e Cg()), the centralizer C,;(j) has a layer-finite periodic part R
and a belong to a finite normal subgroup from C (/). We conclude from it that
[Ca(iY: HN Ce ()] is tinite. Since. by Assertion 1. Sylow primary subgroups in R
and in ¥V arc Chernikov subgroups, we can apply Assertion 2 to the groups R and Y1
there is @ subgroup X in R 1Y of finite index in R Y such that Y, R <N (X).
Since re R, the involution ¢ belongs (0 N (X): on the other hand., r¢ H and
II <Ng(X). Hence. H # Ng(X) and. in view of the definition of H. the group M=
= N (X) has no layer-finite periodic part. Further, X <H and |Y: X|<eo: more-
over, X is laycr-{inite.

It ae X. then « liesin a finite subgroup K which is characteristic in X. Then
Ng(K)2 M and has a layer-finite periodic part. The contradiction means that ¢ ¢ X.

Since X isinvariantin M and « € M. i vicw of the layer-finiteness of X. we
can find a finite non-trivial layer of clements of some order in it which gencrates («)-
invariant subgroup S characteristic in M. By condition 2. its normalizer has a layer-
finite periodic part and contains M. This contradiction means that ¢ is an element of
odd order and the involutions « and / are conjugate in G by the properties of the
dihedral groups. Then £, a are conjugate in G.

Let us prove that /1 is a strongly embedded subgroup in G. Supposc that this is
not so. Then J1 # H? forsome ge G and /IS has some involution &. In view
of the layer-finiteness of periodic parts of the groups H and M ¢, the indices
[H:Co(k)NH and |HY: Ci (k) H* | are finite. Applying to /7. I1¥ and Cg (k)
the considerations used for /{1 and C(j). we conclude that Cp; (k)< HONH* and
H = H¥. Hence. H is a subgroup strongly embedded in 6.

Supposc that /' has more than one involution. Then, by Assertion 5. there 1s a
non-identity element ¢ of finite order in F/. which is strictly rcal with respect to some
involution j € G\J{. Consider the subgroup M = C; (k)X (/). Since, by Assertion 5,
a.j arc conjugate in G. the group M¥=Cn(c*)x (@) has a layer-finite periodic part
and M also has a layer-finite periodic part. In view of the Iaycr-finiteness of ¥ and
since ce Y, the index [H:MOVH] is finite. As above, we receive a contradiction
with j& H. Hence, H has a single involution.
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Now it sutfices to show that 7/} H® is a torsion-free group. Indeed, if this is not
so.then H [N H® has an element A of finitc order. In view of the layer-finiteness of
Y, the centralizer C; () intersects H and H® forming subgroups of finite indices.

Again we arrive at a contradiction. Hence, ¥ (NY* =1. By Assertion 21 applied to
any finitc subgroup K from G. we conclude thatif KN Y =W and K<Y, then K
is a Frobenius group with a complement W, Thus, if G has no layer-finite periodic
part, then G is an ®-group and the theorem is proved.

Corollary. Let G De a group with involutions and let i be some involution
from G satisfying the conditions:

1) G is generated by the involutions conjugate with I

2) almost all groups gr (i, i) arc finite ge G:

3) normalizer of every (i)-invariant finite subgroup has a layer-finite periodic
part.

Then G is either a finite or an D-group.
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