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CAUCHY PROBLEM FOR THE ESSENTIALLY
INFINITE-DIMENSIONAL HEAT EQUATION ON A SURFACE
IN HILBERT SPACE*

3AJAYA KOMII 1J1d CYTTE€BO HECKIHYEHHOBHMIPHOTI'O
PIBHAAHHA TEINVIOITPOBIZIHOCTI HA ITOBEPXHI
Y I'INIBBEPTOBOMY ITPOCTOPI

It is proved that the Cauchy problem for the simplest parabolic equation with essentially infinite-dimen-
sional coefficients on bounded level surfaces of smooth functions in a Hilbert space is uniformly well-
posed.

fa o6MeKEHHX MOBEPXHAX PiBHA IVIAAKHX (PYHKULH Y rinsbeproBoMy npocTopi /IoBeicHa piBHOMIipHa
KopekTHIicTE 3agaui Komii a4 HafinpocTilioro napatos1ivHoro pibIsiHHA 3 CYTTEBO HECKIHYCHHOBH-
MIpHHMH KocdpiuieHTaMu.

This paper deals with the Cauchy problem for the parabolic equation dv(x, 1)/dt =
= Lgv(x.t) ona level surface of a smooth function in an infinite-dimensional Hilbert
space. An operator L g is supposed to be “essentially infinite-dimensional” with res-
pect to x in the sense given below (see (2)). A similar problem on the Hilbert sphere
was studied in [1].

The investigation is developed by constructing a ( Cy)-semigroup on some Banach
space of functions. Lg turns out to be a generator of this semigroup. The fact that L ¢
is essentially infinite-dimensiona. turns out to be a simplifying condition (Lemma 1).
The solution of this problem is based on |2, 3], where an analogous problem in a linear
space was investigated, and on Theorem 1 from this paper.

1. Let H be a separable infinite-dimensional real Hilbert space and let B (#H) be
the Banach space of selfadjoint bounded operators on [/ (with operator norm).
Assume that je B (/)™ is a nonnegative functional which vanishes on all finite-di-
mensional operators from B (#7). The lunctional j generates the linear elliptic se-
cond-order differcntial operator

(Lu)(x) = %j(u”(x)). (D

Here, u e C2(H) and. for all cylindrical functions, Lu = 0.

Let § be a smooth (Cz-class) surface in {7 of co-dimension 1. The embedding
i: §G H induces the Riemann metric on §.

Let V Dbe the corresponding Levi—Civita connection. The embedding di,:
T,S — H of the tangent space 7, S into A atapoint x € S allows us to assume that
a bounded selfadjoint operator in 7, is the restriction of some bounded seltadjoint
operator in /1, which is determined up to a finite-dimensional operator. In this sense,
we identify the second covariant derivative V2 (x) with some operator from B (H)
and the differential operator on S may be introduced by the formula

(Lsi)(r) = = (V). @

2. Let A be an algebra of twice continuously Frechet-differentiable functions on
H with the conditions:
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738 Yu. V. BOGDANSKY

a) forany we U, there is a compact set N =N, S B, (1) and a number d =
=d,>0 suchthat #”(x)e N+ T, forall ve H (where T is the set of selfadjoint
Hilbert—Schmidt operators with the Hilbert—Schmidt norm <d) .

b) «”(-) is uniformly continuous on #/: sup |u(-)|<ee.
H
Let X be the closure of A in the norm of uniform convergence on H.

We say that ue C (H)NY belongs 1o A, if, for any he H, the function
(#’(-), h) = v,(-)e A and there cxist a compact set 1 € B (1) and d >0 such
that vy (x) e M+ T, forall xe i/ and he {hl |[h]|=1}.

Obviously. U is a subalgebrain A.

For an open set G < /. afunctional algebra A (G) is introduced by substituting
G for H inconditions a)and b). Analogously. we obtain A;(G) and X(G).

If the surface S may be represented as a level surface of a function ge A, (S¢)
(S, is e-neighborhood of § in H) with

fle’&Hll 28 >0, (3)
then we say that S is a surface of the class A ;. Assume that § = {xlg(x)=1}.

Examples ol such surfaces are:  {x] (Cyx, .\')2 + (C'l.\‘,..\f): 1}, where Cy,
Coe B,(II);and C;20: Cr287>0 (see [4]).

Lemma 1. Ler ne CZ(_SE) and S he a level surface of ¢ € Cz(Se). Then,
for xe S, :

Lou(x) = Lu(x) - MLO(\) 4)

TS

Proof. Let vector fields X and Y be defined in a ncighborhood W C H of the
point v e § and tangent 1o S on SN W. Let # be the ficld of a single normal vector
to §.

It X isthe derivative of the map y +> X(y) in x, then

VyX(y) = XL(Y() — (X(Y(x). a0 n(x) =

= XY () — (XY (). /() S

e

On the other hand.
(V2)(X.Y) = YXu ~ (VyX)u:
(YXu - X(Y)u)o) = (u"(x)X (), Y(x):
(X(Y). g )x) = Y(X,g)x) ~ (X g"(¥))v) = = (2"(v) X(x), Y(x))
and, therefore.
(Vzu.)(X. M) = ()X (). Y (x)) -
LX) s
Jool”

- (&7(%) X(x). Y(x))
This implies the assertion.
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The algebra A(S) ona €% -class surface is introduced similarly to A and A(G)
by replacing u” by VZu. Let X($) be the closurc of A(S) in the norm of uniform
convergence.

Any function ¢ e A(S) may be extended from the surface of class A to the
function § e A [4].

It should be observed that, for ye CZ(IR ). o U(S).

Yo@e A(S): Lg(Yop) = (Yo@) Lso.

Let C2(S) be the space of functions from CZ(S) with uniformly continuous
Hcssians. .

Lemma 2. Suppose that S is a surface of class A . W is an open set in H :
we CYS): Lyu>e>0 in WNS. Then

Sup 4 = sup u.
wns AWNS)

Proof. Without loss of generality, we may assume that w(x)>1 on SV W. Let
there be given $>0, C; >0 such that, in a B-neighborhood Sﬁ of the surface S,
we have 8/2 <l ¢’(M)|j < C; (see (3)).

The flow @ (z,x) of the vector field g’ (x)/|| g’(.\')]]2 is defined in Sg, for xe
€ Sp. we have @(—g(x)+1.x" : §. For xe §5. weset #(x) = u(®(-g(x)+
+1,.x)s(g(x))), where the function s(7) = p(|r—1]) of the rcal variable ¢ satis-
fies the conditions: p(¢) monotonically decreases: s € CZ(IR ): s()e (0,1) as
t=1, s(1)=1, s’(1)=0. Forthisreason, (#’.¢"}=0 on SN W and. by virtue of
Lemma 1, we have Lﬁlsﬂw = Lgsu.

Let (SNAW)p={@(r.x)e Sglxe SOAW} De the part of S filled with the
integral curves that begin in S W. Becausc of uniform continuity of L& in Sy,
decreasing f if necessary, one can consider that Lii(x)>e/2 in (SN W)g.
Furthermore, there exists such y>0 that @(r.x)e (SNW)y for [rl<y (xe
e SM\W). For this reason. (@, x))<u(x)p(y) (p(y)e (0,1)). where
O(r,x)e I(SOAW)p and xe SOAW.

Let C= sup « and xe SAW be such that u(x)>p(y)C. By virtue of the
wns .

maximum principle for domains in A [3. 5], we have: u(x) < sup i . But then
ASNW)R)

there exists ye d(SMNW) for which u(y)= u(x). for otherwise there would cxist
ye d((SNW)g) of the form y=@(r,z). ze SOAW, and &(y)=u(x): thus
u(z)> u(y)/p(y) > C. The lemma is proved.

The analogous statement holds true for inf.

The next proposition proves that L ¢ is subtended in the space C2(S).

Lemma 3. Let S be a surface of class A : u, e C2(S): u
Lsu,, =v uniformlyon §. Then v=0.

n—0 and

Proof. Suppose the converse. Without loss of generality. we consider: v (xg) =
=e>0 (xge §). Hence, a neighborhood W=W_(xy) of x, exists with radius
>0 suchthat Lou,(x)>¢e/2 (xe W[S), beginning with some N.
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740 Yu. V. BOGDANSKY

-1
Let o0>0 be taken so that | (x—xg, ¢"(x))] € (8%/2) (supng[) [lj|I for
s
any xe W S. This is possible as the left-hand side of the ast incquality is continu-
ous. Butthen, for A(x) = ('(H.\'~.\‘0H2) {¢>0), wehave (xe SNW):

“/(‘)] l e Le()] _
l(\”(“)’nauu Lo = 2¢1emvo ) EEL < .

So Lgh =cljll-(h. g /g’ Lg < 2¢lljll in WNS and Lg(u,—h)Xx)>
>e/2=-2clljll>e/4 if c=e/(8}lj]]): xe WNS. Inview of Lemma 2,

u,(xg) € sup u, — —— o,
AWNS) 811
contrary 1o the condition: #, — 0 on §.
Lemma 4. Let S be a surfuce of class A . Then, for any ue C2(S)., we
have fu—Leull = | ull. where ||u]] = sup|ul.
Proof. We assume. without loss of gengralily, that [Jull = s%p u = 1 and admit

Nu-Lgull=t-y<1.

Take vye S suchthat u(xy) = 1 -¢>1-7v. Then L¢u(xy)>7y-€. By using
the method of Lemuma 3, we can find o> 0 such that there exists xe W (xy) NS
for which w(x)> u(xg) + (y—£)a?/(8]1j1).

Furthermore, we can choose ¢ independently of € and xq for € <7y/2. It suf-
fices to choose o under the conditions:

a) |Leu(x)-Leu(ml<y/a for || x—y||< o (because of the uniform continuity
of Lgu);

-1
b) [(v—xg, 8" (M) < % (SgpngI) il ve Wglxog) NS,

(the left-hand side of the incquality is continuous with respect to x uniformly in xg).

If ee (0,min(y/2.vya?/(16][jl1))). we have u(x)>1 at some point xe
e W, NS, ie., we arrive at a contradiction.

Remark 1. The proof of Lemmas 2—4 does not rely on § belonging Ad; and.
thercfore. the statements proved above hold for a considerably broader class of sur-
faccs. Lemmas 2—4 can be generalized to the case of operator L having variable
coefficients.

3. Theorem 1. Ler B(1) (1€ [0.1,) C[0,0)) he a one-parameter family of
bounded linzar operators on a Banach space X - [|B(H||s<1: B(0)=1I. Let D
be a dense linear manifold in X . on which a linear operator A: D— X and a
nonnegative function h: D— R are defined. Furthermore, assime that

1) BODC D forany te [0.4y):

2) there exists 0.>0 such that ||B()B(s)x -B@+s)xll < t%sh(x) for any
ve Dot 5. 1+s5€ [0.1g):

3) there exists a> 0 such that I (B(1)x) < explat)h(x) for any xe D, te€
e [0.1y):

4) IBMx — x| < th(x) forany xe D. te [0.14):
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5) there exists a function q:[0.1y) x D— R such that, for any 1€ [0.14).

1(B(r),\:—x) — Axl < g, x), ¢(t,x)> 0 as t >0+, and
!

xe D, we have

q(i,BLi—) xJ - 0 as n—o . (6}

\n

Then, for any t€ [0, ),
/ f n
V() = s— 11m BL \,
n .
is defined: V(t) is a contraction (C)-semigroup on X and V'(0) = A

o
Proof. Step 1. We shall show that B{(r/2")" x has a limit as »n — o for any

te [0.00) and xe X.
Let x € D. By virtue of conditions 1 -3 we have

t t \"
B(zn+l \_B<F) v <
271 2% 5
r N oy ! 2 k-] r)
< kZO B( 2u+1)l k8(7n+1) _‘B('Z_,,))B (\F, X <
o 21
I ( t
E e =
< i\ ZaeT k;ﬂ Cxpl\lxaz” le(\)
LI+ .
I 1y -1
L2 L\p(af/7 ) 1

Thercfore. the left-hand side of (7) is O (1/2"%*) as n — e. This involves the
convergence

L

A
1% - = 1l —_— X
V(r)x = lim_ B( 2 ) X

forany x e 2 and, hence, for any ve X.
Step 2. V(t) isa (Cqy)-semigroup on X.
We verify that V(n)x=V"(t)x (ne N.xe X). Let ve D. Then

|B(ntyx — B"@¢)x]| < !i""Bk(z)(B((n -k)yyx — B(t)B((n—k—-1)0) r)" <
k=0

< N v (n=Dn
< h{x)t 5 .

P4

Thus. we have, due to the identity

m—1

Am _ m _ 2 A k—~ I(A B)
k=0

<o) S e[ -

liBm(ﬂ\\.\_ _ Bnm(_’_\‘-\_
\ m/

_ _z_f_ exp (nat) — 1

1+a’
= h(x (—) .
(x) m 2 exp(nat/m) -1
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742 Yu. V. BOGDANSKY

Therefore, V(nt)x=V"(1)x when passing to the limit for m=2" — co.
This implies that

V(rt+1)x = V(r)V(D)x (8)

forany xe X. re Q.
Let us verify the strong right continuity of V(¢) for +>0.
Assume that xe D, Ar>0:

HB(r+A)x—B)x|] < ||B(r+A)x-B()B(A) x| +
+ JIBOH(B(ANDx — ¥)]] € W%+ 1) Ar:

d m N\
“B(’+A j X - B(i) x
mo . \om
m—1 . .
< 3| e =) - 5 )) e )
Py m m m m.

< h(v)ﬂ (-’—)a + 1)———————-—-——-——-@(1}(‘”) - !
T m m/ Jexp(at/m) — 1"

. L k
When passing to the limit for m=2" — o, wc have

<

V(e +ADY - Vx| < h(,\‘)A—:(cxp(al) —1).
¢

Hence, condition (8) holds for any » >0, x e X. and. together with condition 4) of
the theorem, it proves that V(r) isa (Cy)-semigroup on X.

Step 3. We shall prove that V'(0)= A .

Let xe D. t>0. Dueto (7).

- 2%y
, X (& ~ alt
“ V(Dx — B(l)\” < ll+a_l‘l(.\f) 2 2 (L+l)(l+a){ 2 CXPW]‘ 9
k=0 =0 -
Since
m—1
—_ 2 cxpﬂ < explat),
m =g m

the right-hand side of (9) does not excecd

% (x) ,)llﬂl k;)qia exp (at(,) = CtH%%(x) (1€ (0.1g)).

Condition 5) gives now: | (V(1)x~x)/t—Ax[|>0 as r—> 0+, so V' (0)|p=A4A
and A is subtended.

We shall verify that V (f)xe D(A) for re D=D(A) and AV(x=
=V(1)Ax. Inthiscase. V(N D(A)C D(A). so V'(0)= A,

In view of condition 5 for xe D. te [0.1y), we have

n+l n n
B(—’-) x~3(ij x—iB(i) Ax
bt 1 I n
PNV 23 n N\
B(‘—) .\‘—B(i) ,\’—-LAB(—’-‘ RY
n n n )l}
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n

n / PR y P P M
AB X — l—JA\T <q(—\ + gq| —. B —)x.
N/ n n
Passing to the limit, we get V(r)xe D(A) and AV(H)x = V(¢)Ax.
It remains to note that, by virtue of the Chemott theorem [6],

whence

Viyx = 11m B( \Ju,\‘ (reX.1e]0,)).
i,

Remark 2. Theorem 1 is close by naturc to Theorem 2.1 in Chapter VI from [7].
4. Let S beasurface ofclass UAq, S={xlg(x)=1}. g€ A(S,) (seept. 1):

(x
Zx) = - —%L—%Lg(x)
le'(0)]
is a vector field which is defined in S for some o€ (0,€). Let B >0 be such that
{xllg(x)-1]<P} C S (existence of B is guaranteed by the properties of g) and
let ge C”(R) be given by
j I. se[l-B/3.1+B/3].
[0, s¢(1-2B3/3.1+2B/3).
Let Y be the vector field on H, whichis equal to ¢ (g(x))Z(x) on {xllg(x) -
— 1] < B} and vanishes in other points, Let @, (x)= @ (7. x) be the flow of Y.
Basically simple but cumbersome calculation shows that 4 o ®,€ A for ue U.

q(s) =

In doing so. for fixed ¢, we have
(4o @) (x) = 1 (@,(x)) o O;(x): (10)

(u o®, )" (x) = <u’(<D,(,\‘)),CD','(.\')(-.-)> + [(D;(x)]v u”((D,(x)) @ (x) (1D
(here and below, the operation of “lifting-lowering of indices™ is not specified).
For fixed x, ®j(x) and ®7(x) satisfy the cquations

%CD;(.\‘) = Y@, (1)) D)(x), @pH(x) =1: (12)
y _ _
] ” 7 ” 44 ’ ’
%(d),(x).h) = Y(@,(0)){@7(x). h) + {Y"(®,(x)). D) (x)1) D(x).
(13)
Do(x) =1; ®i(x) =0 (he H).
If ue A, then '
Yu = llgno ;(uod),—u) e X (14)

due to the uniform boundedness of

x) (xe H.te[0.14]).

on H.

For this reason. we can speak about the well-defined operator L+ Y:d — X.
Furthermore, Lgulg(x)=Lu(x) + Yu(x) for xe §.

We shall show that L +7Y is subtended and L +7Y is a generator of contraction
(Cy)-semigroup V(1).

Let us apply Theorem 1.
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Let T(2) bea (Cq)-semigroup on X witha gencrator L [2,3]:

P(Ou=uod, B(E)=PNOT{). D=U,

hw) = € (sup ()1 + supll (1
H i
(the constant C >0 can be found from computations given below).
Condition 1 follows from the embeddings T(NAC A: PHAC U:
NPOTOPS)T (S u—-Pt+s)T(t+s)ufl <
< (T(HP(s)-P(s) T T(s)ull.
As follows from [7],
"(T (D) < hu). (15)

Thus. to verify condition 2, it suffices to prove that || (T(1)P(s) =P (s)T())v] <
< t1Y2sh(v). In the notation of [2. 3].

T(D(v 0 ®)0) - T(NDv(@, () =
= lim [ @(D(s,x+)) = v(P(s.0)+3)) Bg, ().
H
Sincce the valuc of the left-hand side of the last equality depends on the value y in

the ball || yll< /7)1 [3.5]) and

oGty = @G 0=y S ) =1y < Cpsliyll £ Csyt

with some C,>0 for se (0. 1) because of (12),

TP (s)v =P )T € CasAf1 supv' ()] < s/ h(v).
i

Standard integral inequalities yicld the following estimates of solutions of equa-
tions (12). (13):
”(D;(_\‘)" < exp(Car): H(I)',’(.\')” < Cyrexp(Cst)
(C3.C4,C5>0: 1€ ]0.15] C[0.0)).
In view of (10), (11), we get A{P()u) < [exp(2C41) + C rexp(Cst)) h(u). By

virtuce of (15). this proves condition 3) of Theorem 1.
Let us verify condition 4).

<

NT@Ou —ull =

H
J'l‘(r)Ludr
0

% AN sup o ()1

0 (@O, ) —u(x) = (W (@ ). Y(@(1.0)r (F1te (0,1)),
so H(P(H-Dull < C(;rs%p la’ ()] and

HPOTu—ull € |1 (PO-DTOull + | T(HOu—-ull € thw)
(for an appropriate constant € >0);

}(P(I)T(r)u—u) —(L+Y)u| < “-}(P([)T(I)H—T(I)ll) -~ Y(T(t)u)" +

+ | Y(T(OHu - )] + “—:—(T(f)u—u) -~ Lu
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2

;;-]F(vOQY)('r)

<

t sup < Cqth():

1
2 reH te|0.1]

%(P(r)v—v) — Yo

1Y (T —wll < Vel suplua”lsup 7] < Cyt' h(u):

!
lH(T(!)u—u.) -~ Lu| < ; JIL(T )y u=w)ldr. (16)
O

Let
e(8.u) = sup{llw”(x)— "M Nx-ylI<8} +
+ sup { ' (o) —w' (W) Ilx =yl < 8},
e(8.u) >0 as & > 0+.
Since [ (I'(1)u—-u)"] < e(m,u) and because of (16).

ll}(]‘(r)u—u) - Lull < —l— Hjll 8(«/!"]] .u).
Since A{T()u) < h(u), it is natural to set
g u) = Coth@)+ Cgt* n(uy + %llj” 8(Jf|[/ﬂ14)

To verify condition (6). it suffices to verily that
?[ Llljl[.B(L) uj > 0 as n-»>oo.
n 143

a(8) = sup {I Y ()= Y "W Ne-ylI<8} +
+ sup {NY' () -Y Ot Tx-ylII<d}
(the uniform continuity of Y” on H follows from the construction of the vector field

Y). It follows from (10) —(13) by means of the integral inequalities [8] that there exist
10> 0, ¢>0 such that

e(8, P(NHu) < cth@w)o(ed) + ¢“"e(e 8. u)

Let

forany 1€ (0,1y). ue A.
Also., we have €(8, T(f)u) < €(8. u). This implies that (put ¢=a)

b4
€ (SB(;,;) u) < crehu)a(ed) + e“e(e”d, u).

It only remains to note that o (8) >0 and €(8.u4) —> 0 as d— 0.

5. The continuation procedure of the function v € X(§) to a function on the
whole H described in [4], defines a mapping i: X(S) — X for which /(A(S)) <
< AU. The restriction of the function x € X to § gives the function p(u)e X(S).
Furthermore, p(A) = A(S). i and p are linear bounded operators.

We define operators W(1): X(8) — X(S) (120) by therule: W(1)=pV(1)i.

By virtue of (4) and (14), Lgve X(S) for v e A(S). Put D(Ls)=A(S).

Theorem 2. W(r) is a contraction (Cy)-semigroup on X(S). W (0)= L.

Proof. To verify the semigroup rule, it suffices to verify that

W()(Kerp) € Kerp. (17)

ISSN 0041-6053. Yp. aam. sxypn., 1995, m. 47, N° 6



746 Yu. V. BOGDANSKY

Lemma 5. Let V(1) be a contraction (Cy)-semigroup on a Banach space X
with a generator A and let X | be a subspace in X invariant with respect 1o

(K—A)w] for A>Xg20. Then X is invariant with respect to the operators
V() (£=0).

Proof. X is invariant with respect 1o the bounded operators A = AA (A —A)_l
(A >2X,) and. hence. it is invariant with respect to exp (74;). It remains to note that

V() = s — lim cxp(1Ay).

A= +oo
The lemma is proved.

In the case under consideration, A= L+Y . The condition (A-A)" ! (Kerp) C
C Kerp (A > 0) follows from Lemma 4. Thus, (17) is proved.

The conditions 7 = s - lim W() and ||W(r)}] €1 arc evident.
t— 0+

Inviewol Lemma 1. p(L+Y)i = Lg. Hence, Ly < W (0). We shall show that
p(D(L+Y)) = D(Lg). Let u,ed.u,->ue DC+Y)., (L+Y)u,—>
(L +Y)u. Then pu,—pu. Lpu, =p(L+Y)u,->p(L+¥)u. so puce
€ DL and Lopu=p(L+Y)u.

For this reason. for v e A(S)=D(Lg) we have W(nNv=pV()ive D(Ly)
and

LoWiny = LepV()iv = p(L+Y)V()iv =
= pV(L+Y)iv= pV()iLgy = W()Lgv

(ducto(I7yfor (L+VY)iw—iLsve Kerp).
Thus. W()D(L¢) < D(L¢) and W (0)= L.
So it is proved that the Cauchy problem

du -
— = Lcu,
dt §

| #(0)e D(Ly)
is uniformly well-posed.
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