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OSCILLATION CRITERIA FOR NONLINEAR SECOND ORDER
DIFFERENTIAL EQUATIONS WITH DAMPING

OSCYLQCIJNI KRYTERI}

DLQ NELINIJNYX DYFERENCIAL|NYX RIVNQN|

DRUHOHO PORQDKU IZ ZATUXANNQM

Some new oscillation criteria are given for general nonlinear second order ordinary differential equations
with damping of the form  x′′ + p ( t ) x′ + q ( t ) f ( x ) = 0,  where  f  is with or without monotonicity.  Our
results generalize and extend some earlier results of Deng.

Navedeno deqki novi oscylqcijni kryteri] dlq zahal\nyx nelinijnyx zvyçajnyx dyferencial\nyx

rivnqn\ druhoho porqdku iz zatuxannqm vyhlqdu  x′′ + p ( t ) x′ + q ( t ) f ( x ) = 0,  de funkciq  f  abo mo-

notonna, abo nemonotonna.  Navedeni rezul\taty uzahal\nggt\ ta rozßyrggt\ deqki rezul\ta-

ty, otrymani raniße Denhom.

1.  Introduction.  Consider the second order linear differential equation with damped
term

x′′ + p ( t ) x′ + q ( t ) x  =  0,    t  ≥  t0  >  0, (1.1)

and the more general nonlinear equation

x′′ + p ( t ) x′ + q ( t ) f ( x )  =  0,    t  ≥  t0  >  0, (1.2)

where  p ∈ C1
 ( [ t0 , ∞ ), R ),  q ∈  C ( [ t0 , ∞  ), R  ),  f ∈  C ( R, R )  is to be specified in the

subsequent text, and  x f ( x ) > 0  whenever  x ≠ 0.
As usual, a nontrivial solution of (1.1) or (1.2) is called oscillatory if it has

arbitrarily large zeros; otherwise, it is said to be nonoscillatory.  Equation (1.1) or (1.2)
is said to be oscillatory if all of its solutions are oscillatory.

In the last decades, there has been an increasing interest in obtaining sufficient
conditions for the oscillation and/or nonoscillation of solutions for different classes of
second order differential equations [1 – 9].  In the absence of damping, many results
have been obtained for particular cases of (1.1), such as the linear equation

x′′ + q ( t ) x  =  0 (1.3)

and the quasilinear equation

′ ′( )′ + ( )− −x x q t x xγ γ1 1   =  0, (1.4)

where  γ > 0  is a constant.
It is well known that Hille [4] studied the linear equation (1.3) and obtained that

equation (1.3) is oscillatory if

q s ds
t

t

( ) ≥ +∞

∫ 1
4

δ
, (1.5)

where  δ  is any small positive number.  If introducing the transformation  u  =

= xe
p s ds

t− ( )∫1
2   for the damping equation (1.1), we have

′′ + ( ) − ( ) − ′( )





u q t
p t p t

u
2

4 2
  =  0, (1.6)

which has the same form as equation (1.3).  Hence applying condition (1.5) we can
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easily know that equation (1.6) is oscillatory if

q s
p s p s

ds
t

t

( ) − ( ) − ′( )





≥ +∞

∫
2

4 2
1

4
δ

. (1.7)

In an early paper [5], Chunchao Huang has established interesting oscillation and
nonoscillation criteria for the equation (1.3) with  q ∈ C [ 0, ∞  )  and  q  ( t ) ≥ 0,  where

conditions about the integrals of  q ( t )  on every interval  [ 2n
 t0 , 2n

 
+

 
1

 t0 ],  n = 1, 2, … ,
for some fixed   t0 > 0  are used in the results.  Since that time, many authors have also
investigated the oscillatory and nonoscillatory behavior of equation (1.3) by using
Huang’s technique, such as papers [3, 8].

Recently, by using the similar method in the proof of [6] (Lemma 3), Deng [2]

presented the following result for the oscillation of equation (1.3) with  q ∈ L1
 [ t0 , ∞ ).

Theorem A.  If for large  t ∈ R,

q s ds
t

t

( ) ≥
∞

∫ α0 , (1.8)

where  α0 > 1 / 4,  then equation (1.3) is oscillatory.
More recently, inspired by the recent work of Deng [2], Yang [9] obtain following

oscillation result.

Theorem B.  If  q ∈ L1
 [ t0 , ∞ )  and for large  t > t0 ,

t q s ds
t

γ ( )
∞

∫   ≥  α0 , (1.9)

where  α0 > 
γ

γ

γ

γ( + ) +1 1 ,  then equation (1.4) is oscillatory.

It is obvious that (1.8) or (1.9) is condition on the integral of  q ( s )  in  [ t, ∞ )  for
arbitrarily large value of  t,  while the conditions of Huang [5] and Elbert [3] concern

the integral of  q ( s )  in  [ 2n
 t0 , 2n

 
+

 
1

 t0 ]  for every  n ∈ N,  and the condition of Yang [8]

concern the integral of  q ( s )  in  [ t0 / ε, t0 / εn
 
+

 
1

 ]  for every  n  ∈  N   and  0 < ε  < 1.
Therefore, they are different kinds of condition.

Motivated by the idea of Deng [2], in this paper we are study the more general
equation (1.2), and obtain oscillation criteria which contain Theorems A and B as a

special case, and establish oscillation criteria for equation (1.2) when  f (  x ) = | x | λ sgn x
with  λ > 1  or  0 < λ < 1.

This paper is organized as follows.  In Section 2, we shall present oscillation criteria
for equation (1.2) when  q ( t ) ≥ 0  and the function  f ( x )  is not monotonous.  Section 3
contains also oscillation criteria for equation (1.2) when  q ( t )  changes its sign and the
function  f ( x )  is monotonous.

2.  Oscillation results for  f  (((( x ))))  without monotonicity.  In this section, we
consider the oscillation of equation (1.2) when  q ( t ) ≥ 0  and the function  f ( x )  is not
monotonous.

Theorem 2.1.  Let   q ( t ) ≥ 0   and   
f x
x
( )

 ≥ M > 0   for  x ≠ 0,   where   M   is a

constant.  If for large  t ∈ R,
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p ( t )  =  O ( 1 )    and    Mq s
p s p s

ds
t

t

( ) − ( ) − ′( )





≥
∞

∫
2

0

4 2
α

, (2.1)

where  α0 > 1 / 4,  then equation (1.2) is oscillatory.

Proof.  Let  x( t )  be a nonoscillatory solution of equation (1.2), which, without loss

of generality, can be assumed to be  x ( t ) > 0,  f ( x ( t ) ) > 0  for  t ≥ t0 > 0.  By (2.1), it is
easy to see that there exists  t1 ≥ t0  such that

Mq s
p s p s

ds
t

t

( ) − ( ) − ′( )





≥
∞

∫
2

0

4 2
α

    for    t  ≥  t1 ,

which yields that there exists an integer  n ( t ) ≥ t  such that

Mq s
p s p s

ds
t

t

t

( ) − ( ) − ′( )





≥
′

∫
2

1

4 2
α

    and    
α α α1

2
1
2 2

t t t
−

′
≥     for    t′  ≥  n ( t ),

(2.2)

where  α0 ≥ α1 ≥ α > 1 / 4.

Define  v ( t ) = x′ ( t ) / x ( t )  for  t ≥ t0 .  By equation (1.2),  v ( t )  satisfies the equation

  
′ + + + ( )

v v v2 p q
f x
x

  =  0. (2.3)

Because  
f x
x
( )

 ≥ M > 0  and  q ≥ 0,  (2.3) can be rewritten as

 ′ + + +v v v2 p Mq   ≤  0.

Let  w ( t ) = v ( t ) + 
p t( )
2

.  Now, we have

′ + + − − ′
w w Mq

p p2
2

4 2
  ≤  0. (2.4)

Integrating (2.4) from  t  to  t ′,  by (2.2) we obtain

w t w t w s ds Mq s
p s p s

ds
t

t

t

t

( ) − ( ′) ≥ ( ) + ( ) − ( ) − ′( )





′ ′

∫ ∫2
2

4 2
  ≥  0 (2.5)

for  t′ ≥ n ( t )  and  t ≥ t1 .

If there exists  t2 ≥ t1  such that  w ( t2 ) < 0,  then from (2.5),  w ( t ) < 0  for  t ≥ n  ( t2 ).
Therefore,  w ( t )  is either eventually positive or eventually negative.

If  w ( t )  is eventually negative, then there exists  t3 ≥ t1  such that  w ( t ) < 0  for  t ≥
≥ t3  and

w t w s ds Mq s
p s p s

ds
t

t

t

t

( ) ≥ ( ) + ( ) − ( ) − ′( )



∫ ∫2

2

3 3
4 2

for  t ≥ n ( t3 )  which, with (2.2), yields

w t w s ds
t t t

t

t

( ) ≥ ( ) + ≥ ≥∫ 2 1

3

1

3

1

3

α α α
    for    t  ≥  n ( t3 ). (2.6)
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Substituting this into (2.6), we obtain

w t
s

ds
n t t

n t

t

( ) ≥ +
( )

≥ +

( )
∫α α τ τ

1
2

2
1

3

0
2

01

3

    for    t  ≥  n ( n ( t3 ) ), (2.7)

where  τ0 = α > 1 / 4.

If  w ( t )  is eventually positive, then there exists  t4 ≥ t1  such that  w ( t ) > 0  for  t ≥
≥ t4  and from (2.2) and (2.5), we have

w t w s ds Mq s
p s p s

ds
t

t

t

t

t

( ) ≥ ( ) + ( ) − ( ) − ′( )





≥
′ ′

∫ ∫2
2

1

4 2
α

(2.8)

for  t′ ≥ n ( t )  and  t ≥ t4 .
Using similar methods to those in the proof of (2.7), we get

w t
t

( ) ≥ +τ τ0
2

0     for    t  ≥  n ( t4 ). (2.9)

Setting  τi = τ τi − +1
2

0,  i = 1, 2, …  ,  and taking  t5 = max { n ( n ( t3 ) ), n  ( t4 ) },  we

obtain

w t
t

( ) ≥ τ1     for    t  ≥  t5

from (2.7) and (2.9).  By induction, from (2.6) and (2.8), we can prove that

w t
t
i( ) ≥ τ
    for    t  ≥  t5 

,    i  =  1, 2, … .

It is easy to see that

w t( )   →  ∞    for    t  ≥  t5 
.

Using  p ( t ) = O ( 1 )  for large  t ∈  R,  we obtain    v( )t  →  ∞ .  So, this contradiction
completes the proof.

Thus,  f ( x )  acts a linear function for sufficiently large  x,  we have the following
result for the equation (1.2).

Corollary 2.1.  Let  f ( x )  behaves like  M  x  for sufficiently large  x.  If for large
t ∈ R,

Mq s
p s p s

ds
t

t

( ) − ( ) − ′( )





≥
∞

∫
2

0

4 2
α

, (2.10)

where  α0 > 1 / 4,  then equation (1.2) is oscillatory.

Remark 2.1.  If  α 0 > 1 / 4,  then  α0 ≥ 
1

4
+ δ

  where  δ  is any small positive

number.  Thus, condition (2.10) with  M = 1  reduces to (1.7).
The following theorem is concerned with the oscillatory behavior of a special case

of equation (1.2), namely, the equation

x′′ + p ( t ) x′ + q ( t ) | x | λ sgn x  =  0, (2.11)

where  λ > 0  is a real constant.
Theorem 2.2.  Let  q ( t ) ≥ 0.  If for large  t ∈ R  and every constant  c > 0,
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p ( t )  =  O ( 1 )    and    cq s
p s p s

ds
t

t

( ) − ( ) − ′( )





≥
∞

∫
2

0

4 2
α

, (2.12)

where  α0 > 1 / 4,  then:

(i)  every unbounded solution of equation (2.11) with  λ > 1  is oscillatory,
(ii)  every bounded solution of equation (2.11) with  0 < λ < 1  is oscillatory.
Proof.  Without loss of generality, we assume that  x  ( t )  is a nonoscillatory

solution of equation (2.11) such that  x ( t ) > 0  for  t ≥ t0 > 0.  By (2.12), there exists
t1 ≥ t0  such that

cq s
p s p s

ds
t

t

( ) − ( ) − ′( )





≥
∞

∫
2

0

4 2
α

     for    t  ≥  t1

so there exists an integer  n ( t ) ≥ t  such that

cq s
p s p s

ds
t

t

t

( ) − ( ) − ′( )





≥
′

∫
2

1

4 2
α

    and    
α α α1

2
1
2 2

t t t
−

′
≥     for    t′  ≥  n ( t ),

where  α0 ≥ α1 ≥ α > 1 / 4.

Define  v ( t ) = x′ ( t ) / x ( t )  for  t ≥ t0 .  By equation (2.11),  v ( t )  satisfies the
equation

  ′ + + + −v v v2 1p qxλ   =  0. (2.13)

Next, we consider the following two cases:
(i)  If  x ( t )  is an unbounded nonoscillatory solution of equation (2.11) with  λ > 1

for  t ≥ t0 , then there exist a constant  k1 > 0  and  t2 ≥ t1 ≥ t0  such that  x ( t ) ≥ k1  for
t ≥ t2 .  Therefore

x t kλ λ− −( ) ≥1
1

1  =  c1    for    t  ≥  t2 , (2.14)

where  c1  is a constant.  Using (2.14) and  q ( t ) ≥ 0  in (2.13), and proceeding as in the
proof of Theorem 2.1, we arrive at the desired contradiction. 

(ii)  If  x ( t )  is a bounded nonoscillatory solution of equation (2.11) with  0 < λ < 1
for  t ≥ t0 ,  then there exist a constant  k2 > 0  and  t2 ≥ t1 ≥ t0  such that  x ( t ) ≤ k2  for
t ≥ t2 .  Therefore

x t kλ λ− −( ) ≥1
2

1  =  c2    for    t  ≥  t2 ,

where  c2  is a constant.  The rest of the proof is similar to that in the previous case and
hence is omitted.

3.  Oscillation results for  f (((( x ))))  with monotonicity.  In this section, we establish
the oscillation of equation (1.2) under the assumption that  q ( t )  changes its sign and
the function  f ( x )  is monotonous.

Theorem 3.1.  Assume that   f ∈ C1
 ( R, R )   and   f ′ ( x ) ≥ K > 0   for all   x ∈  R,

where  K  is a constant.  If for large  t ∈ R,

p ( t )  =  O ( 1 )    and    q s
p s

K
p s

K
ds

t
t

( ) − ( ) − ′( )





≥
∞

∫
2

0

4 2
α

, (3.1)

where  α0 > 1 / 4,  then equation (1.2) is oscillatory.
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Proof.  Suppose that  x ( t )  is a nonoscillatory solution of equation (1.2), say,
x ( t ) > 0  when  t ≥ t0 > 0  for some  t0  depending on the solution  x ( t ).  By condition
(3.1), there exists  t1 ≥ t0  such that

q s
p s

K
p s

K
ds

t
t

( ) − ( ) − ′( )





≥
∞

∫
2

0

4 2
α

    for    t  ≥  t1 
,

which yields that there exists an integer  n ( t ) ≥ t  such that

q s
p s

K
p s

K
ds

t
t

t

( ) − ( ) − ′( )





≥
′

∫
2

1

4 2
α

    and    
K

t
K

t t
α α α1

2
1
2 2

−
′

≥     for    t′  ≥  n ( t ),

where  α0 ≥ α1 ≥ α > 1 / 4.

Define  v ( t ) = x′ ( t ) / f ( x ( t ) )  for  t  ≥ t0 .  By equation (1.2),  v  ( t )  satisfies the
equation

′ + ′( ) + +v v vf x p q2   =  0. (3.2)

Because  f ′ ( x ) ≥ K > 0,  and setting  w ( t ) = v ( t ) + 
p t

K
( )

2
,  (3.2) can be rewritten as

′ + + − − ′
w Kw q

p
K

p
K

2
2

4 2
  ≤  0.

The rest of the proof is similar to that of Theorem 2.1, and is omitted.
Now, by combining some ingredients of the proofs of Theorem 2.2 and of Theorem

3.1, we give the following theorem, whose proof is similar to that of Theorem 2.2, for
the equation (2.11).

Theorem 3.2.  If for large  t ∈ R  and every constant  β > 0,

p ( t )  =  O ( 1 )    and    q s
p s p s

ds
t

t

( ) − ( ) − ′( )





≥
∞

∫
2

0

4 2β β
α

,

where  α0 > 1 / 4,  then:

(i)  every unbounded solution of equation (2.11) with  λ > 1  is oscillatory, 
(ii)  every bounded solution of equation (2.11) with  0 < λ < 1  is oscillatory.
Remark 3.1.  Theorems 2.1 and 3.1 extend and improve Theorem A for the

nonlinear equation (1.2).  In addition to this, they are true for the linear equation (1.1).
Also note that when  f ( x ) ≡ x,  it is not necessary to assume  q (  t ) ≥ 0  in Theorem 2.1.
So, if  p ( t ) ≡ 0  then Theorems 2.1 and 3.1 reduce to Theorem A, Theorem B with  γ =
= 1  and the well known Hille’s result.

Remark 3.2.  If we compare Theorem 2.2 or Theorem 3.2 with Theorem 2.2 given
in [1], it is easy to see that these results include different types of sufficient conditions
for the oscillation.

Finally, we give an example to illustrate the efficiency of our results.  The example
is not covered by any of the results of Deng [2] and Yang [9].

Example.  Consider the equations

′′ + ′ + [ + ]x
t

x
t

x x
2

2
3θ

  =  0, (3.3)

′′ + ′ +x
t

x
t

x x
2

2
θ λ sgn   =  0, (3.4)

and
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′′ + ′ + +
+







x
t

x
t

x
x

1
1

1
12 2

µ
  =  0, (3.5)

where  t > 0,  θ > 
1
4

,  λ > 0  and  µ > 0.  Note that, for the equation (3.3)  
f x
x
( )

 = 1 +

+ x2 ≥ 1 = M  or  f ′ ( x ) = 1 + 3x2 ≥ 1 = K  for all  x,  and  
p t

p t
2

2
( ) + ′( ) = 0  when  p ( t ) =

= 
2
t

.  Applying Theorem 2.1 or Theorem 3.1 for the equation (3.3), and Theorem 3.2

for the equation (3.4), it is easy to verify that  
θ θ
s

ds
t t

t
2

1
4

∞

∫ = > .  Hence, equation (3.3),

every unbounded solution of equation (3.4) with   λ > 1  and every bounded solution of

equation (3.4) with  0 < λ  < 1  are oscillatory for  θ  > 
1
4

.  Note that  f  ( x ) =

= x
x

1
1

1 2+
+





   and  f ′ ( x ) = 1 + 

1

1

2

2 2
−

( + )
x

x
  for the equation (3.5).  It is clear that

Theorem 3.1 cannot be applied to equation (3.5). Nevertheless, we can prove the
oscillatory character of equation (3.5) by using Theorem 2.1 or Corollary 2.1.  Taking

into account that  
f x
x
( )

 = 1 + 
1

1 2+ x
 ≥ 1 = M  for  x ≠ 0, we get

µ µ
s s s

ds
t t

t
2 2 2

1
4

1
2

1
4

1 1
4

− +





= +



 >

∞

∫ .

Hence, equation (3.5) is oscillatory for  µ > 0.
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