Yu. A. Shkol'nikov, cand. phys.-math. sci. (Inst. Math. Acad. Sci. Ukraine, Kiev)

HANDLE DECOMPOSITIONS OF SIMPLY-CONNECTED FIVE-MANIFOLDS. II РОЗКЛАД НА РУЧКИ ОДНОЗВ'ЯЗНИХ П'ЯТИВИМІРНИХ МНОГОВИДІВ. II

The handle decompositions of simply-connected smooth or piecewise-linear five-manifolds are considered. The basic notions and constructions necessary for proving further results are introduced.

Розглядається розклад на ручки однозв'язних гладких або кусково-лінійних п'ятивимірних многовидів. Наведені основні поняття і конструкції, необхідні для одержання подальших результатів.

The main result of this paper is Theorem 3 asserting that the D. Barden's handle decomposition of a closed 1-connected smooth or PL 5-manifold is geometrically diagonal. It is obtained as a consequence of Theorem 2 apparently describing the construction of the C. T. C. Wall's diffeomorphisms for each of 1-connected 4-manifolds $S^2 \times S^2 \# S^2 \times S^2$ and $S^2 \times S^2 \# S^2 \times S^2$. The basic notions and tools necessary to

prove these theorems were presented in [1].

4. D. Barden's constructions. As was proved by D. Barden in [2], any closed 1-connected 5-manifold is diffeomorphic to the finite connected sum of 5-manifolds of certain types. These manifolds are constructed as follows.

Consider standard 5-manifolds $M = A \ \ \ \ A$ and $X = B \ \ \ \ A$, where A and B are the elementary 5-manifolds designed above. Let V be either M or X; then V admits an exact handle decomposition $V = h^0 \cup h_1^2 \cup h_2^2$, which induces the canonical handle decomposition of $\partial V = h^0 \cup h_{11}^2 \cup h_{22}^2 \cup h_{22}^2 \cup h_{22}^4$ with the canonical basis $\{a_1, b_1, a_2, b_2\}$ of $H_2(\partial V)$. All cycles of this basis can be realized by 2-spheres embedded in ∂V . The spheres \tilde{a}_1 , and \tilde{a}_2 are determined by the cores of 5-dimensional 2-handles h_1^2 , and h_2^2 of V, the spheres \tilde{b}_1 , and \tilde{b}_2 are the b-spheres of these handles. The intersection form $Q(\partial V)$ in the canonical basis is

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \bigoplus \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ if } \partial V = \partial M \text{ or } \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \bigoplus \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ if } \partial V = \partial X.$$

Consider the following nondegenerate matrices with integer coefficients:

$$A(k) = \begin{pmatrix} 1 & 0 & 0 & -k \\ 0 & 1 & 0 & 0 \\ 0 & k & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad B(k) = \begin{pmatrix} 1 & 0 & 0 & -2k \\ 0 & 1 & 0 & k \\ k & 2k & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$C(k) = \begin{pmatrix} 1-2k & 2(1-2k) & -4k & 0 \\ 0 & 2k-1 & 2k & k-1 \\ 2k & 0 & 0 & 1-2k \\ 1-k & -2(k-1) & 1-2k & 0 \end{pmatrix}.$$
(1)

 b_2 $A(k), g_{k*}\{a_1, b_1, a_2, b_2\} = \{a_1, b_1, a_2, b_2\} B(k), h_{k*}\{a_1, b_1, a_2, b_2\} = \{a_1, b_1, a_2, b_2\} C(k).$

One can easily calculate that all f_{k*} preserve the intersection form $Q(\partial M)$, whereas g_{k*} and h_{k*} preserve $Q(\partial X)$. By the Wall's theorem [3], there exist diffeomorphisms f_k of ∂M , and g_k and h_k of ∂X , which induce the diffeomorphisms f_{k*} , g_{k*} , and h_{k*} on $H_2(\partial M)$ and $H_2(\partial X)$. For k > 1 introduce closed 1-connected 5-manifolds $M_k = M \cup_{f_k} (-M)$, $X[B(k)] = X \cup_{g_k} (-X)$, and $X[C(k)] = X \cup_{h_k} (-X)$ for $k \ge 1$. Introduce also $M_1 = X_0 = S^5$, $M_{\infty} = S^2 \times S^3$, and $X_{\infty} = B \cup_{g_{\infty}} (-B)$, where $g_{\infty} = \text{id. Since } \partial B = S^2 \times S^2 \cong \mathbb{CP}^2 \# (-\mathbb{CP}^2)$, the $H_2(\partial B)$ admits also a basis $\{p, q\}$ such that each of p and q corresponds to the summand \mathbb{CP}^2 . One can easily specify the diffeomorphism g_{-1} of ∂B , which induces the following automorphism g_{-1*} of $H_2(\partial B)$: g_{-1*} : $\{p, q\} \rightarrow \{p, -q\}$. In the canonical basis $\{a = p, b = p - q\}$ of ∂B , the automorphism g_{-1*} is represented by the matrix $\begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix}$. Put $X_{-1} = X \cup_{g-1} (-B)$. By definition, all 5-manifolds constructed above admit exact handle decompositions.

The matrices B(k) and C(k) differ from those considered in [2] because instead of the canonical basis for $H_2(\partial B)$ and $\partial X = \partial A \# \partial B \approx \partial B \neq \partial B$ as in [2], the corresponding bases $\{p, q\}$ and $\{p_1, q_1, p_2, q_2\}$ are used. When fixing the canonical basis, the matrices B(k) and C(k) change to (1).

Lemma 5 [2].

1) $H_2(M_k) = \mathbb{Z}_k \oplus \mathbb{Z}, \ k \neq 1, \infty;$

2) $H_2(X_{-1}) = \mathbb{Z}_2, \ H_2(X_{\infty}) = H_2(M_{\infty}) = \mathbb{Z};$

3) $H_2(X[B(k)]) = \mathbb{Z}_{2k} \oplus \mathbb{Z}_{2k}, \ H_2(X[(k)]) = \mathbb{Z}_{2k-1} \oplus \mathbb{Z}_{4k-2}, \ 0 < k < \infty.$

Any 1-connected closed 5-manifold W admits the linking form $b(x, y) = x \circ y \in$ $\in \mathbb{Q}/\mathbb{Z}$ on tors ($H_2(W)$). This is a nonsingular nondegenerate skew-symmetric integer bilinear form. In [2], a b-basis $\{z_1, z_2, x_1, y_1, \dots, x_m, y_m\}$ was constructed, i.e., the basis in which z_1 has an odd order φ , z_2 has the order 2φ , and $b(z_1, z_2) = 1/\varphi$; both x_i and y_i have an odd order θ_i and $b(x_i, y_i) = 1 / \theta_i$; on the other pairs (u, v) of the basis elements except, possibly, (z_2, z_2) and (y_i, y_i) , i = 1, ..., m, the value of b(u, v) is 0. The elements z_1 or both z_1 and z_2 may be missed from the *b*-basis. In this case, we include z_1 and z_2 into the basis assuming them to be equal to zero. A basis of the entire $H_2(W)$ is called a *b*-basis if it contains a *b*-basis of tors $(H_2(W))$. It is shown in [2] that a b-basis may be chosen to be minimal, i.e., such that it contains a minimal number of elements. Since for each $x \in \text{tors}(H_2(W))$, we have b(x, x) = 0or b(x, x) = 1/2, the minimal b-basis of tors $(H_2(W))$ may be modified so that b(x, x) = 1/2. x) = 0 for each element X of the b-basis except, possibly, for one element. For any $x \in \text{tors}(H_2(W))$ we have $b(x, x) \neq 0$ if $w^2(x) \neq 0$ ([2]). If $w^2(e) \neq 0$ for each $e \in Fr(H_2(W))$, then we can modify also a basis of $Fr(H_2(W))$ so that $w^2(e) = 0$ for each element e of the basis except, possibly, for one element.

Thus we have constructed the basis of $H_2(W)$, which we call the minimal $w^2 - b$ -

basis.

Theorem 1 (the Barden decomposition theorem, [2]). For any b-basis $\{z_1, z_2, x_1, y_1, \ldots, x_m, y_m, l_1, \ldots, l_s\}$ of $H_2(W)$, there exists a diffeomorphism ψ of W into the manifold

$$V = M_{z_1, z_2} \# M_{x_1, y_1} \# \dots \# M_{x_r, y_r} \# M_{e_1} \# \dots \# M_{e_s},$$
(2)

where $M_{z_1, z_2} = X_{-1}$ if the order φ of z_1 is 1, i. e. $z_1 = 0$, and $M_{z_1, z_2} = X[C((\varphi - 1)/2)]$ if $\varphi > 1$; $H_{x_i, y_i} = M_{\theta_i}$ if $b(y_i, y_i) = 0$ and $M_{x_i, y_i} = X[B(\theta_i/2)]$ if $b(y_i, y_i) \neq 0$, where θ_i is the order of x_i and y_i ; $M_{e_i} = M_{\infty}$ if $w_2(e_i) = 0$ and $M_{e_i} = X_{\infty}$ if $w^2(e_i) \neq 0$. For each pair $(u, v) = (z_1, z_2)$ or (x_i, y_i) , the diffeomorphism ψ induces the isomorphism between gp (u, v) and $H_2(M_{u,v})$, which preserves the linking numbers. For each generator e_i of $Fr(H_2(W))$, we have $H_2(M_{e_i}) = \mathbb{Z}$ and $w^2(M_{e_i}) = 0$ iff $w^2(e_i) = 0$.

It follows from Theorem 1 that any *b*-basis of $H_2(W)$ determines a handle decomposition of *W* which contains one 0-handle, one 5-handle, and a pair of 2-handle and 3-handle for each element of this basis. The minimal w^2 - *b*-basis determines an exact handle decomposition of *W* which contains at most one summand of type *X* for each of tors ($H_2(W)$) and Fr ($H_2(G)$), all other summand being of type *M*. Since the basis is minimal, the handle decomposition is exact. In what follows, we will consider only such decompositions and call them the Barden handle decompositions.

5. Diffeomorphisms of manifolds $S^2 \times S^2 \# S^2 \times S^2$ and $S^2 \times S^2 \# S^2 \times S^2$. Let V denote either $S^2 \times S^2 \# S^2 \times S^2$ or $\partial X = S^2 \times S^2 \# S^2 \times S^2$. V admits an induced canonical handle decomposition with the canonical basis $\{a_1, b_1, a_2, b_2\}$ and 2spheres $\{\tilde{a}_1, \tilde{b}_1, \tilde{a}_2, \tilde{b}_2\}$, which realize this basis. $\{a_2, b_2\}$ will always be considered as a canonical basis of the second summand, i.e., of $S^2 \times S^2$. We prove here the theorem which provides a geometric description of the Wall's diffeomorphisms of v.

Theorem 2. For $V = \partial M$ or $V = \partial X$, let φ_* be an automorphism of $H_2(V)$, which preserves the intersection form Q(V). Let C be a matrix, which represents φ_* in the canonical basis $\{a_1, b_1, a_2, b_2\}$ of an induced canonical handle decomposition of V. Then there exists a diffeomorphism φ of V, which induces the automorphism φ_* on $H_2(V)$ and maps each sphere of $\{\tilde{a}_1, \tilde{b}_1, \tilde{a}_2, \tilde{b}_2\}$ into the corresponding sphere of $\{\tilde{a}_1, \tilde{b}_1, \tilde{a}_2, \tilde{b}_2\}C$, where the addition operation means the connected summing and the minus sign means the altering of the orientation.

Fix the above-mentioned induced canonical handle decomposition of V. By rearranging the handles, we can construct the proper handle decomposition of V. Let η be the corresponding diffeomorphism of V. The *a*-spheres of the proper handle decomposition $V = h^0 \cup h_{11}^2 \cup h_{12}^2 \cup h_{21}^2 \cup h_{22}^2 \cup h^4$ are in ∂h^0 and the cores of these 2-handles determine the 2-spheres $\{\tilde{a}, \tilde{b}, \tilde{x}, \tilde{y}\} = \eta\{\tilde{a}_1, \tilde{b}_1, \tilde{a}_2, \tilde{b}_2\}$ which realize the basis $\{a, b, x, y\} = \eta_{\ast}\{a_1, b_1, a_2, b_2\}$ with geometric intersections and $\{x, y\}$ corresponds to the second summand $S^2 \times S^2$. Consider a new proper handle decomposition $V = h^0 \cup \overline{h}_{12}^2 \cup \overline{h}_{21}^2 \cup \overline{h}_{22}^2 \cup h^4$, where $\{\overline{h}_{11}^2, \overline{h}_{12}^2, \overline{h}_{21}^2, \overline{h}_{22}^2\} = \{h_{11}^2, h_{12}^2, h_{21}^2, h_{22}^2\}C$, the addition operation means the handle summing, and the minus sign means the

altering of orientation for the core of a handle. If we construct a diffeomorphism θ of V, such that $\theta(h_{ij}^2) = \overline{h}_{ij}^2$, \vec{i} , j = 1, 2, and then turn back to the induced canonical handle decomposition, we obtain the diffeomorphism $\varphi = \eta^{-1} \theta \eta$ we are searching for. Thus, our nearest aim is to construct a diffeomorphism θ . The 2-handles of the proper handle decomposition of V are glued along a framed

link in $S^3 = \partial h^0$ of type (3) for $V = \partial M$ or type (4) for $V = \partial X$.

Since any two links of type 3 are ambiently isotopic in S^3 and the same holds also for any two links of type 4, Theorem 2 will be proved if we show that the link for attaching 2-handles $\overline{h_{ij}}^2$, i, j = 1, 2, to $S^3 = \partial h^0$ is the same as that for attaching h_{ii}^2 . Denote this property by Γ . The property Γ is equivalent to all mutual intersection indices of $\{\tilde{a}, \tilde{b}, \tilde{x}, \tilde{y}\}C$ being geometric (algebraic indices of $\{\tilde{a}, \tilde{b}, \tilde{x}, \tilde{y}\}C$ are equal to those of $\{\tilde{a}, \tilde{b}, \tilde{x}, \tilde{y}\}$ because C preserves the intersection form). Let Y be an arbitrary closed 1-connected 4-manifold with the indefinite intersec-

tion form. Consider $V = Y \# S^2 \times S^2$. In the proof of the Wall's Theorem [3], all the generators of the group of automorphisms of $H_2(V)$ preserving the intersection form are presented. Let $\{x, y\}$ be a canonical basis of $H_2(S^2 \times S^2)$ and z be an arbitrary element of $H_2(Y)$. Consider the following automorphisms of $H_2(V)$:

$$E_{\omega}^{y}: z \to z - (z \cdot \omega) y \qquad E_{\omega}^{x}: z \to z - (z \cdot \omega) y x \to x - Ny + \omega \qquad x \to x y \to y \qquad y \to y - Nx + \omega,$$

where ω is the element of $H_2(Y)$ such that $\omega \cdot \omega = 2N \in \mathbb{Z}$. For $\omega \in H_2(V)$ such that $|\omega \cdot \omega| = 1$, if it exists, consider the automorphism $S(\omega)$

$$z \to z - \frac{2}{\omega \cdot \omega} (z \cdot \omega) \omega, \quad x \to x, \quad y \to y.$$

Consider also the following automorphisms

ISSN 0041-6053. Укр. мат. журн., 1993, т. 45, № 9

As was shown by Wall [3], in the case where Q(V) is even, the group of automorphisms of $H_2(V)$ preserving the intersection form Q(V) admits the following generators:

1) $E_{\omega}^{y}, E_{\omega}^{x}$ for all $\omega \in H_{2}(Y)$ with even $\omega \cdot \omega$;

2) R_0 , R_1 , R_2 .

In the case where Q(V) is odd, the generators are the same as specified in 1) and 2) and also S(u) for a fixed $u \in H_2(V)$ such that $|u \cdot u| = 1$ By applying this result to $V = \partial X$ with the basis $\{a, b, x, y\}$, we obtain $E_{\alpha,\beta}^y$: $a \to a - (2\alpha + \beta)y$, $b \to b - 2\alpha y$, $x \to x - 2\alpha(\alpha + \beta)y + 2\alpha a + \beta b$, $y \to y$ for any $\omega = 2\alpha a + \beta b \in H_2(S^2 \times S^2)$. $E_{\alpha,\beta}^x$ can be obtained as a result of permuting x and y in $E_{\alpha,\beta}^y$. Fixing u = a, we obtain

 $S(u) = g_{-1} \oplus E.$ For $V = \partial M$, we have

$$E_{\alpha,\beta}^{y}: a \to a - \beta y, b \to b - \alpha y, x \to x - \alpha \beta y + \alpha a + \beta b, y \to y$$

for any $\omega = \alpha a + \beta b$, because $\omega \cdot \omega$ is always even, and $E_{\alpha,\beta}^x$ as a result permuting x and y in $E_{\alpha,\beta}^y$.

It sufficies to prove property Γ only for these generators, since the property is obvious for R_0 , R_1 , R_2 .

To prove the property Γ for $g_{-1} \oplus E$, consider g_{-1} in the basis $\{p, q\}$ of $H_2(S^2 \times S^2)$. This basis is realized by the embedded 2-spheres $\{\tilde{p}, \tilde{q}\}$ and determined by the handle decomposition with the 2-handles attached along the obvious framed link. This link consists of two circles in S^3 having framings 1 and -1. The first sphere corresponds to p and the second to q. Since, by definition, $g_{-1}(p) = p$ and $g_{-1}(q) = -q$, the link is not changed and property Γ is obvious. Since the canonical basis $\{a, b\}$ of $H_2(S^2 \times S^2)$ is obtained from $\{p, q\}$ with a = p and b = p - q, g_{-1} can be performed with one Kirby move, hence, g_{-1} has property Γ in the canonical basis of $H_2(S^2 \times S^2)$. The same is, certainly, true for $g_{-1} \oplus E$ in the canonical basis of ∂X .

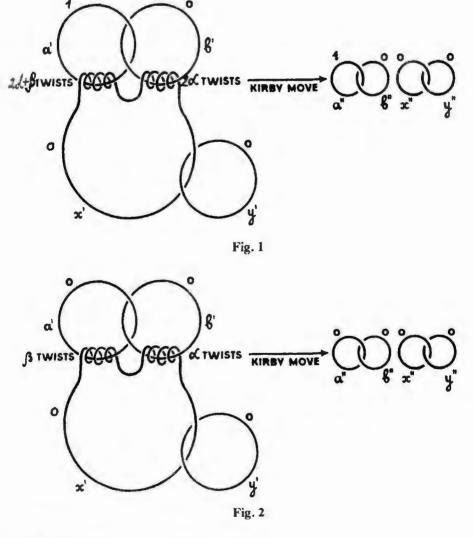
If we prove the property Γ for $E_{\alpha,\beta}^x$ and $E_{\alpha,\beta}^y$, the proof of Theorem 2 will be completed because R_0, R_1, R_2 , and $g_{-1} \oplus E$ are of order 2 and the diffeomorphisms opposite to $E_{\alpha,\beta}^x$ and $E_{\alpha,\beta}^y$ are the same as $E_{\alpha,\beta}^x$ and $E_{\alpha,\beta}^y$, but with different α and β . Since x and y in $E_{\alpha,\beta}^x$ and $E_{\alpha,\beta}^y$ are symmetric, it suffices to prove property Γ only for $E_{\alpha,\beta}^y$ for $V = \partial X$ or $V = \partial M$. For $V = \partial X$, consider $E_{\alpha,\beta}^y$ as the product C_2C_1 , where the automorphisms C_1 and C_2 act as follows

$$C_{1}: a \rightarrow a' = a \qquad C_{2}: a' \rightarrow a'' = a' - (2\alpha + \beta)y' b \rightarrow b' = b \qquad b' \rightarrow b'' = b' - 2\alpha y' x \rightarrow x' = x - 2\alpha(\alpha + \beta)y + 2\alpha a + \beta b \qquad x' \rightarrow x'' = x' y \rightarrow y' = y \qquad y' \rightarrow y'' = y'.$$

ISSN 0041-6053. Укр. мат. журн., 1993, т. 45, № 9

Note that C_1 and C_2 do not preserve the intersection form $Q(\partial X)$. Having performed C_1 for a given proper handle decomposition h_{ij} , i, j = 1, 2 of ∂X , we obtain a handle decomposition attached along the framed link on the left-hand side of the picture.

In Fig. 1 we show the attaching circles of 2-handles. Near each circle, we show the framing and the cyclc in $H_2(\partial X)$ determined by the core of the 2-handle attached to this circle. Denote these circles by $\gamma_{a'}$, $\gamma_{b'}$, $\gamma_{x'}$, $\gamma_{y'}$. Since $\gamma_{y'}$ has a trivial framing and links $\gamma_{x'}$, geometrically one time, we can apply the Kirby moves [4] to free $\gamma_{x'}$ of $\gamma_{a'}$ and $\gamma_{b'}$. It readily follows from the definition of the Kirby move that the composition of the Kirby moves we have just performed determines the automorphism C_2 of $H_2(\partial X)$ applied to the link on the left-hand side. Thus, after performing C_1 and C_2 , we have a framed link on the right-hand side of the picture with all linking numbers being geometric. The property Γ for $V = \partial X$ is proved.



ISSN 0041-6053. Укр. мат. журн., 1993, т. 45, № 9

For $V = \partial M$, we have $E_{\alpha,\beta}^y = C_2 C_1$ with

$$C_{1}: a \rightarrow a' = a \qquad C_{2}: a' \rightarrow a'' = a' - \beta y' b \rightarrow b' = b \qquad b' \rightarrow b'' = b' - \alpha y' x \rightarrow x' = x - \alpha \beta y + \alpha a + \beta b \qquad x' \rightarrow x'' = x' y \rightarrow y' = y \qquad y'' = y'.$$

The application of C_2 of $H_2(\partial M)$ to the link on the left-hand side of Fig. 2 is equivalent to performing a series of Kirby moves with it to obtain a link with geometric linking numbers on the right-hand side. This proves property Γ for $E_{\alpha,\beta}^y$ and completes the proof of Theorem 2.

6. Applications to the Barden handle decomposition. Here we use Theorem 2 to prove the following theorem.

Theorem 3. All incidence indices of 3-handles and 2-handles in the Barden handle decomposition of a closed 1-connected 5-manifold are geometrically diagonal.

It suffices to prove this theorem for M_{∞} , X_{∞} , X_{-1} , M_k , X[B(k)] and X[C(k)]. For M_{∞} , X_{∞} , and X_{-1} , the theorem is obvious. To prove it for other manifolds, consider an exact handle decomposition of the standard 5-manifold W = M or W = X. It induces the canonical handle decomposition of the standard 4-manifold ∂W with the canonical basis $\{a_1, b_1, a_2, b_2\}$ realized by the 2-spheres $\{\tilde{a}_1, \tilde{b}_1, \tilde{a}_2, \tilde{b}_2\}$ embedded into ∂W (\tilde{b}_1 and \tilde{b}_2 are the *b*-spheres of 5-dimensional 2-handles of W). Each of closed 5-manifolds M_k , X[B(k)], and X[C(k)] can be obtained as a double of M, X, and X, respectively, along the corresponding boundary diffeomorphisms f_k , g_k and h_k . By Statement 3, the homomorphism ∂_3 : $C_3 \rightarrow C_2$ can be represented in the canonical basis of the boundary by the matrix $a_{ij}^k = f_k(\tilde{b}_i) \cdot \tilde{b}_j$ for M_k , $a_{ij}^k = g_k(\tilde{b}_i) \cdot \tilde{b}_j$ for X[B(k)], and X[C(k)]. It is easy to calculate these matrices for M_k , X[B(k)], and X[C(k)] to obtain

$$\begin{pmatrix} 0 & -k \\ k & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & -2k \\ 2k & 0 \end{pmatrix}, \quad \begin{pmatrix} 2(1-2k) & 0 \\ 0 & 1-2k \end{pmatrix},$$

respectively. By Theorem 2, all the coefficients of these matrices are geometric. Thus, Theorem 3 is proved.

This theorem can be applied also to construct round Morse functions [5]. Combining it with the technique of A. T. Fomenko and V. V. Sharko [6], we obtain the following theorem.

Theorem 4. Any closed 1-connected 5-manifold admits an exact round Morse function.

- Shkol'nikov Yu. A. Handle decompositions of simply-connected five-manifolds. I // Укр. мат. журн. -1993. - 45, № 8. - C. 1151-1156.
- 2. Barden D. Simply-connected five-manifolds // Ann. Math. 1965. 82. P. 365-385.
- Wall C. T. C. Diffeomorphisms of 4-manifolds // J. London Math. Soc. 1964. 35. P. 131-140.
- 4. Kirby R. A calculus of framed links in S^3 // Invent. Math. 1978. 45. P. 35-56.
- Asimov D. Round handles and singular Morse Smale flows // Ann. Math. 1975. 102, № 1. P. 41–54.
- 6. Шарко В. В. Функции на многообразиях. Киев: Наук. думка, 1990. 196 с.

Received 12.06.92