M. H. M. Rashid (Mu'tah Univ., Al-Karak, Jordan)

GENERALIZED WEYL'S THEOREM AND TENSOR PRODUCT УЗАГАЛЬНЕНА ТЕОРЕМА ВЕЙЛЯ ТА ТЕНЗОРНИЙ ДОБУТОК

Abstract

We give necessary and/or sufficient conditions ensuring the passage of generalized a-Weyl theorem and property (gw) from A and B to $A \otimes B$.

Наведено необхідні та/або достатні умови, що гарантують поширення узагальненої а-теореми Вейля та властивості $(g w)$ із A та B на $A \otimes B$.

1. Introduction. Given Banach spaces \mathbb{X} and \mathbb{Y}, let $\mathbb{X} \otimes \mathbb{Y}$ denote the completion (in some reasonable uniform cross norm) of the tensor product of \mathbb{X} and \mathbb{Y}. For Banach space operators $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$, let $A \otimes B \in \mathcal{L}(\mathbb{X} \otimes \mathbb{Y})$ denote the tensor product of A and B. Recall that for an operator S, the Browder spectrum $\sigma_{b}(S)$ and the Weyl spectrum $\sigma_{w}(S)$ of S are the sets

$$
\begin{gathered}
\sigma_{b}(S)=\{\lambda \in \mathbb{C}: S-\lambda \text { is not Fredholm or } \operatorname{asc}(S-\lambda) \neq \operatorname{dsc}(S-\lambda)\}, \\
\sigma_{w}(S)=\{\lambda \in \mathbb{C}: S-\lambda \text { is not Fredholm or } \operatorname{ind}(S-\lambda) \neq 0\} .
\end{gathered}
$$

In the case in which \mathbb{X} and \mathbb{Y} are Hilbert spaces, Kubrusly and Duggal [15] proved that

$$
\begin{gathered}
\text { if } \sigma_{b}(A)=\sigma_{w}(A) \text { and } \quad \sigma_{b}(B)=\sigma_{w}(B), \quad \text { then } \quad \sigma_{b}(A \otimes B)=\sigma_{w}(A \otimes B) \\
\text { if and only if } \quad \sigma_{w}(A \otimes B)=\sigma(A) \sigma_{w}(B) \cup \sigma_{w}(A) \sigma(B) .
\end{gathered}
$$

In other words, if A and B satisfy Browder's theorem, then their tensor product satisfies Browder's theorem if and only if the Weyl spectrum identity holds true. The same proof still holds in a Banach space setting.

For a bounded linear operator $S \in \mathcal{L}(\mathbb{X})$, let $\sigma(S), \sigma_{p}(S)$ and $\sigma_{a}(S)$ denote, respectively, the spectrum, the point spectrum and the approximate point spectrum of S and if $G \subseteq \mathbb{C}$, then $G^{\text {iso }}$ denote the isolated points of G. Let $\alpha(S)$ and $\beta(S)$ denote the nullity and the deficiency of S, defined by $\alpha(S)=\operatorname{dim} \operatorname{ker}(S)$ and $\beta(S)=\operatorname{codim} \Re(S)$.

If the range $\Re(S)$ of S is closed and $\alpha(S)<\infty$ (respectively $\beta(S)<\infty)$, then S is called an upper semi-Fredholm (respectively a lower semi-Fredholm) operator. If $S \in \mathcal{L}(\mathbb{X})$ is either upper or lower semi-Fredholm, then S is called a semi-Fredholm operator, and ind (S), the index of S, is then defined by $\operatorname{ind}(S)=\alpha(S)-\beta(S)$. If both $\alpha(S)$ and $\beta(S)$ are finite, then S is a Fredholm operator. The ascent, denoted asc (S), and the descent, denoted $\operatorname{dsc}(S)$, of S are given by $\operatorname{asc}(S)=$ $=\inf \left\{n \in \mathbb{N}: \operatorname{ker}\left(S^{n}\right)=\operatorname{ker}\left(S^{n+1}\right\}, \operatorname{dsc}(S)=\inf \left\{n \in \mathbb{N}: \Re\left(S^{n}\right)=\Re\left(S^{n+1}\right\}\right.\right.$ (where the infimum is taken over the set of non-negative integers); if no such integer n exists, then $\operatorname{asc}(S)=\infty$, respectively $\operatorname{dsc}(S)=\infty$.)

For $S \in \mathcal{L}(\mathbb{X})$ and a nonnegative integer n define $S_{[n]}$ to be the restriction of S to $\Re\left(S^{n}\right)$ viewed as a map from $\Re\left(S^{n}\right)$ into $\Re\left(S^{n}\right)$ (in particular, $S_{[0]}=S$). If for some integer n the range space $\Re\left(S^{n}\right)$ is closed and $S_{[n]}$ is an upper (a lower) semi-Fredholm operator, then S is called
an upper (a lower) semi- B-Fredholm operator. In this case the index of S is defined as the index of the semi- B-Fredholm operator $S_{[n]}$, see [8]. Moreover, if $S_{[n]}$ is a Fredholm operator, then S is called a B-Fredholm operator. A semi- B-Fredholm operator is an upper or a lower semi- B-Fredholm operator. An operator S is said to be a B-Weyl operator [9] (Definition 1.1) if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{B W}(S)$ of S is defined by $\sigma_{B W}(S)=\{\lambda \in \mathbb{C}: S-\lambda I$ is not a B-Weyl operator\}.

An operator $S \in \mathcal{L}(\mathbb{X})$ is called Drazin invertible if it has a finite ascent and descent. The Drazin spectrum $\sigma_{D}(S)$ of an operator S is defined by $\sigma_{D}(S)=\{\lambda \in \mathbb{C}: S-\lambda I$ is not Drazin invertible $\}$. Define also the set $L D(\mathbb{X})$ by $L D(\mathbb{X})=\left\{S \in \mathcal{L}(\mathbb{X}): a(S)<\infty\right.$ and $\Re\left(T^{a(S)+1}\right)$ is closed $\}$ and $\sigma_{L D}(S)=\{\lambda \in \mathbb{C}: S-\lambda \notin L D(\mathbb{X})\}$. Following [10], an operator $S \in \mathcal{L}(\mathbb{X})$ is said to be left Drazin invertible if $S \in L D(\mathbb{X})$. We say that $\lambda \in \sigma_{a}(T)$ is a left pole of S if $S-\lambda I \in L D(X)$, and that $\lambda \in \sigma_{a}(S)$ is a left pole of S of finite rank if λ is a left pole of T and $\alpha(S-\lambda I)<\infty$. Let $\pi_{a}(S)$ denotes the set of all left poles of S and let $\pi_{a}^{0}(S)$ denotes the set of all left poles of S of finite rank. From [10] (Theorem 2.8) it follows that if $S \in \mathcal{L}(\mathbb{X})$ is left Drazin invertible, then S is an upper semi-B-Fredholm operator of index less than or equal to 0 . Note that $\pi_{a}(S)=\sigma_{a}(S) \backslash \sigma_{L D}(S)$ and hence $\lambda \in \pi_{a}(S)$ if and only if $\lambda \notin \sigma_{L D}(S)$.

Following [9], we say that generalized Weyl's theorem holds for $S \in \mathcal{L}(\mathbb{X})$ (in symbol $S \in \mathrm{gW}$) if $\Delta^{g}(S)=\sigma(S) \backslash \sigma_{B W}(S)=E(S)$, where $E(S)=\left\{\lambda \in \sigma^{\text {iso }}(S): 0<\alpha(S-\lambda I)\right\}$ is the set of all isolated eigenvalues of S, and that generalized Browder's theorem holds for $S \in \mathcal{L}(\mathbb{X})$ (in symbol $S \in \mathrm{gB}$) if $\Delta^{g}(S)=\pi(S)$, where $\pi(T)$ is the set of poles of the resolvent of T. It is proved in [5] (Theorem 2.1) that generalized Browder's theorem is equivalent to Browder's theorem. In [10] (Theorem 3.9), it is shown that an operator satisfying generalized Weyl's theorem satisfies also Weyl's theorem, but the converse does not hold in general. Nonetheless and under the assumption $E(S)=\pi(S)$, it is proved in [11] (Theorem 2.9) that generalized Weyl's theorem is equivalent to Weyl's theorem. Let $\Psi_{+}(\mathbb{X})$ be the class of all upper semi- B Fredholm operators, $\Psi_{+}^{-}(\mathbb{X})=\left\{S \in \Psi_{+}(\mathbb{X}): \operatorname{ind}(S) \leq 0\right\}$. The upper B-Weyl spectrum of S is defined by $\sigma_{S B F_{+}^{-}}(S)=\left\{\lambda \in \mathbb{C}: T-\lambda I \notin \Psi_{+}^{-}(\mathbb{X})\right\}$. We say that generalized a-Weyl's theorem holds for $S \in \mathcal{L}(\mathbb{X})$ (in symbol $S \in \operatorname{gaW}$) if $\Delta_{a}^{g}(S)=\sigma_{a}(S) \backslash \sigma_{S B F_{+}^{-}}(S)=E_{a}(S)$, where $E_{a}(S)=\left\{\lambda \in \sigma_{a}^{\text {iso }}(S): \alpha(S-\lambda)>0\right\}$ is the set of all eigenvalues of S which are isolated in $\sigma_{a}(S)$ and that $S \in \mathcal{L}(\mathbb{X})$ obeys generalized a-Browder's theorem $(S \in$ gaB $)$ if $\Delta_{a}^{g}(S)=\pi_{a}(S)$. It is proved in [5] (Theorem 2.2) that generalized a-Browder's theorem is equivalent to a-Browder's theorem, and it is known from [10] (Theorem 3.11) that an operator satisfying generalized a-Weyl's theorem satisfies a-Weyl's theorem, but the converse does not hold in general and under the assumption $E_{a}(S)=\pi_{a}(S)$ it is proved in [11] (Theorem 2.10) that generalized a-Weyl's theorem is equivalent to a-Weyl's theorem.

The operator $T \in \mathcal{L}(\mathbb{X})$ is said to have the single valued extension property at $\lambda_{0} \in \mathbb{C}$ (abbreviated SVEP at λ_{0}) if for every open disc \mathbb{D} centred at λ_{0}, the only analytic function $f: \mathbb{D} \rightarrow$ which satisfies the equation $(T-\lambda) f(\lambda)=0$ for all $\lambda \in \mathbb{D}$ is the function $f \equiv 0$. An operator $T \in \mathcal{L}(\mathbb{X})$ is said to have SVEP if T has SVEP at every point $\lambda \in \mathbb{C}$.

Obviously, every $T \in \mathcal{L}(\mathbb{X})$ has SVEP at the points of the resolvent $\rho(T):=\mathbb{C} \backslash \sigma(T)$. Moreover, from the identity theorem for analytic function, it easily follows that $T \in \mathcal{L}(\mathbb{X})$, as well as its dual
T^{*}, has SVEP at every point of the boundary $\partial \sigma(T)=\partial \sigma\left(T^{*}\right)$ of the spectrum $\sigma(T)$. In particular, both T and T^{*} have SVEP at every isolated point of the spectrum, see $[1,4,2,3]$.

Let

$$
\begin{gathered}
\Psi_{+}(S)=\{\lambda \in \mathbb{C}: S-\lambda \text { is upper semi-B-Fredholm }\}, \\
\Psi(S)=\{\lambda \in \mathbb{C}: S-\lambda \text { is B-Fredholm }\}, \\
\sigma_{S B F_{+}}(S)=\left\{\lambda \in \sigma_{a}(S): \lambda \notin \Psi_{+}(S)\right\}, \\
\sigma_{S B F_{+}^{-}}(S)=\left\{\lambda \in \sigma_{a}(S): \lambda \in \sigma_{S B F_{+}}(S) \text { or } \operatorname{ind}(S-\lambda)>0\right\}, \\
H_{0}(S)=\left\{x \in \mathbb{X}: \lim _{n \longrightarrow \infty}\left\|S^{n} x\right\|^{1 / n}=0\right\} .
\end{gathered}
$$

2. Main results. Let $\sigma_{s}(S)=\{\lambda \in \sigma(S): S-\lambda$ is not surjective $\}$ denote, the surjectivity spectrum. Let $\Psi_{-}(\mathbb{X})$ be the class of all lower semi-B-Fredholm operators, $\Psi_{-}^{+}(\mathbb{X})=\left\{S \in \Psi_{-}(\mathbb{X})\right.$: $\operatorname{ind}(S-\lambda) \geq 0\}$. The lower semi-B-Weyl spectrum of S is defined by $\sigma_{S B F_{-}^{+}}(S)=\{\lambda \in \mathbb{C}: S-\lambda \notin$ $\left.\notin \Psi_{-}^{+}(\mathbb{X})\right\}$. Define $R D(\mathbb{X})=\left\{S \in \mathcal{L}(\mathbb{X}): d s c(S)=d<\infty\right.$ and $\Re\left(S^{d+1}\right)$ is closed $\}$. The right Drazin invertible is defined by $\sigma_{R D}(S)=\{\lambda \in \mathbb{C}: S-\lambda \notin R D(\mathbb{X})\}$. It is not difficult to see that $\sigma_{D}(S)=\sigma_{L D}(S) \cup \sigma_{R D}(S)$. Moreover, $\sigma_{L D}(S)=\sigma_{R D}\left(S^{*}\right)$ [7]. Then S satisfies generalized s-Browder's theorem if $\sigma_{S B F_{-}^{+}}(S)=\sigma_{R D}(S)$. Apparently, S satisfies generalized s-Browder's theorem if and only if S^{*} satisfies generalized a-Browder's theorem. A necessary and sufficient condition for S to satisfy generalized a-Browder's theorem is that S has SVEP at every $\lambda \in \Delta_{a}^{g}(S)$ [12] (Theorem 3.1); by duality, S satisfies generalized s-Browder's theorem if and only if S^{*} has SVEP at every $\lambda \in \sigma_{s}(S) \backslash \sigma_{S B F_{-}^{+}}(S)$. More generally, if either of S and S^{*} has SVEP, then S and S^{*} satisfy both generalized a-Browder's theorem and generalized s-Browder's theorem. Either of generalized a-Browder's theorem and generalized s-Browder's theorem implies generalized Browder's theorem, but the converse is false. generalized a-Browder's theorem fails to transfer from A and B to $A \otimes B$ [13] (Example 1).

Lemma 2.1. Let $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$. Then $0 \notin \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}}(A \otimes B)$.
Proof. Suppose $0 \in \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}}(A \otimes B)$. Then $0 \in \sigma_{a}(A \otimes B) \cap \Psi_{+}(A \otimes B)$. So, there exists an integer n_{0} such that for any $n \geq n_{0}, A \otimes B-\frac{1}{n} I$ has closed range and $0<$ $<\alpha\left(A \otimes B-\frac{1}{n} I\right)<\infty$. Since $A \otimes B-\frac{1}{n} I$ is injective if and only if A and B are injective, we have $\alpha(A)>0$ or $\alpha(B)>0$. But then $\alpha\left(A \otimes B-\frac{1}{n} I\right)=\infty$, and we have a contradiction.

Lemma 2.2. Let $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$. Then

$$
\begin{gathered}
\sigma_{S B F_{+}^{-}}(A \otimes B) \subseteq \sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B) \subseteq \\
\subseteq \sigma_{a}(A) \sigma_{L D}(B) \cup \sigma_{L D}(A) \sigma_{a}(B)=\sigma_{L D}(A \otimes B) .
\end{gathered}
$$

Proof. Since $\sigma_{S B F_{+}^{-}}(S) \subseteq \sigma_{L D}(S)$ for every operator S, it follows that the inclusion $\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}^{+}(A) \sigma_{a}(B) \subseteq \sigma_{a}(A) \sigma_{L D}(B) \cup \sigma_{L D}(A) \sigma_{a}(B)$ is evident. To prove the
inclusion $\sigma_{S B F_{+}^{-}}(A \otimes B) \subseteq \sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)$, take $\lambda \notin \sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup$ $\cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)$. Since

$$
\sigma_{S B F_{+}}(A \otimes B) \subseteq \sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B),
$$

Lemma 2.1 implies that $\lambda \neq 0$. For every factorization $\lambda=\mu \nu$ such that $\mu \in \sigma_{a}(A)$ and $\nu \in \sigma_{a}(B)$ we have that $\mu \in \sigma_{a} \backslash \sigma_{S B F_{+}^{-}}(A)$ and $\nu \in \sigma_{a}(B) \backslash \sigma_{S B F_{+}^{-}}(B)$, i.e., $\mu \in \Psi_{+}(A), \nu \in \Psi_{+}(B), \operatorname{ind}(A-$ $-\mu) \leq 0$ and $\operatorname{ind}(B-\nu) \leq 0$. In particular, $\lambda \notin \sigma_{S B F_{+}}(A \otimes B)$.

We prove next that $\operatorname{ind}(A \otimes B-\lambda) \leq 0$. Suppose $\operatorname{ind}(A \otimes B-\lambda)>0$. Then there exists an integer n_{0} such that for any $n \geq n_{0}$ we have $\alpha\left(A \otimes B-\lambda I-\frac{1}{n} I\right)<\infty$. But this implies that $\beta\left(A \otimes B-\lambda I-\frac{1}{n} I\right)<\infty$, so that $A \otimes B-\lambda$ is B-Weyl. Let

$$
F=\left\{\left(\mu_{i}, \nu_{i}\right)_{i=1}^{k} \in \sigma(A) \sigma(B): \mu_{i} \nu_{i}=\lambda\right\} .
$$

Then F is a finite set. Furthermore
(i) if $m>1$, then $\mu_{i} \in \sigma^{\text {iso }}(A)$ for $1 \leq i \leq m$;
(ii) if $k>m$, then $\nu_{i} \in \sigma^{\text {iso }}(B)$ for $m+1 \leq i \leq k$;
(iii) $\operatorname{ind}(A \otimes B-\lambda)=\sum_{j=m+1}^{k} \operatorname{ind}\left(A-\mu_{i}\right) \operatorname{dim} H_{0}\left(B-\nu_{i}\right)+\sum_{j=1}^{m} \operatorname{ind}\left(B-\nu_{i}\right) \operatorname{dim} H_{0}(A-$ $-\mu_{i}$).
Since $\operatorname{ind}\left(A-\mu_{i}\right)$ and $\operatorname{ind}\left(B-\nu_{i}\right)$ are non-positive, we have a contradiction. Hence, $\operatorname{ind}(A \otimes B-\lambda) \leq$ ≤ 0, and consequently, $\lambda \notin \sigma_{S B F_{+}^{-}}(A \otimes B)$. This leaves us to prove the equality $\sigma_{L D}(A \otimes B)=$ $=\sigma_{a}(A) \sigma_{L D}(B) \cup \sigma_{L D}(A) \sigma_{a}(B)$.

Suppose that $\lambda \notin \sigma_{L D}(A \otimes B)$. Then $\lambda \neq 0, \lambda \in L D(A \otimes B), a=\operatorname{asc}(A \otimes B-\lambda)<\infty$ and $\Re(A \otimes B-\lambda)^{a+1}$ is closed and hence $\lambda \in \pi_{a}(A \otimes B)$. Observe that $\lambda \in \sigma_{a}^{\text {iso }}(A \otimes B)$. Let $\lambda=\mu \nu$ be any factorization of λ such that $\mu \in \sigma_{a}(A)$ and $\nu \in \sigma_{a}(B)$; then $\mu \in L D(A)$ and $\nu \in L D(B)$. Furthermore, since $\sigma_{a}^{\text {iso }}(A \otimes B) \subseteq \sigma_{a}^{\text {iso }}(A) \cup \sigma_{a}^{\text {iso }}(B) \cup\{0\}, A$ has SVEP at μ and B has SVEP at ν. Consequently, $\mu \in \pi_{a}(A), \nu \in \pi_{a}(B)$, that is, $\mu \notin \sigma_{L D}(A)$ and $\nu \notin \sigma_{L D}(B)$. But then $\lambda \notin \sigma_{a}(A) \sigma_{L D}(B) \cup \sigma_{L D}(A) \sigma_{a}(B)$. Hence $\sigma_{a}(A) \sigma_{L D}(B) \cup \sigma_{L D}(A) \sigma_{a}(B) \subseteq \sigma_{L D}(A \otimes B)$.

To prove the reverse inclusion we start by recalling the fact that if $\mu \in \sigma_{a}^{\text {iso }}(A)$ and $\mu \in \sigma_{a}^{\text {iso }}(B)$ for every factorization $\lambda=\mu \nu$ of $\lambda \neq 0$, then $\lambda=\mu \nu \in \sigma_{a}^{\text {iso }}(A \otimes B)$. Let $\lambda \in \sigma_{a}(A) \sigma_{L D}(B) \cup$ $\cup \sigma_{L D}(A) \sigma_{a}(B)$. Then $\lambda \neq 0$. Furthermore, if $\lambda=\mu \nu$ is any factorization of λ such that $\mu \in \sigma_{a}(A)$ and $\nu \in \sigma_{a}(B)$, then the following implications hold:

$$
\begin{gathered}
\mu \notin \sigma_{L D}(A) \quad \text { and } \quad \nu \notin \sigma_{L D}(B) \Rightarrow \mu \in \pi_{a}(A) \quad \text { and } \quad \nu \in \pi_{a}(B) \Rightarrow \\
\Rightarrow \lambda \in \pi_{a}(A \otimes B), \mu \in \sigma_{a}^{\text {iso }}(A) \quad \text { and } \quad \nu \in \sigma_{a}^{\text {iso }}(B) \Rightarrow \\
\Rightarrow \lambda \in \pi_{a}(A \otimes B) \quad \text { and } \quad \lambda \in \sigma_{a}^{\text {iso }}(A \otimes B) \Rightarrow \\
\Rightarrow \lambda \notin \sigma_{L D}(A \otimes B) .
\end{gathered}
$$

Hence $\sigma_{L D}(A \otimes B) \subseteq \sigma_{a}(A) \sigma_{L D}(B) \cup \sigma_{L D}(A) \sigma_{a}(B)$.
Lemma 2.2 is proved.

Lemma 2.3. Let $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$. If $A \otimes B$ satisfies generalized a-Browder's theorem, then

$$
\sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)
$$

Proof. $A \otimes B$ satisfies generalized a-Browder's theorem if and only if $\sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{L D}(A \otimes$ $\otimes B)$. Thus the stated result is an immediate consequence of Lemma 2.2.

The next theorem, our main result, proves that A and B satisfy generalized a-Browder's theorem implies $A \otimes B$ satisfies generalized a-Browder's theorem if and only if $\sigma_{S B F_{+}^{-}}(A \otimes B)=$ $=\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)$.

Theorem 2.1. Let $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$. If A and B satisfy generalized a-Browder's theorem, then the following are equivalent:
(i) $A \otimes B$ satisfies generalized a-Browder's theorem;
(ii) $\sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)$;
(iii) A has SVEP at every $\mu \in \Psi_{+}(A)$ and B has SVEP at every $\nu \in \Psi_{+}(B)$ such that $(0 \neq$ $\neq \lambda)=\mu \nu \in \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)$.

Proof. If A and B satisfy generalized a-Browder's theorem, then $\sigma_{L D}(A)=\sigma_{S B F_{+}^{-}}(A)$ and $\sigma_{L D}(B)=\sigma_{S B F_{+}^{-}}(B)$.
(i) \Rightarrow (ii). By Lemma 2.3 we have, without any extra conditions.
(ii) \Rightarrow (i). If (ii) is satisfied, then

$$
\begin{gathered}
\sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)= \\
=\sigma_{a}(A) \sigma_{L D}(B) \cup \sigma_{L D}(A) \sigma_{a}(B)= \\
=\sigma_{L D}(A \otimes B) \quad(\text { by Lemma 2.2 }) .
\end{gathered}
$$

Hence $A \otimes B$ satisfies generalized a-Browder's theorem.
(ii) \Rightarrow (iii). Suppose (ii) holds. Let $\lambda \in \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)$. Then $\lambda \neq 0$ and for every factorization $\lambda=\mu \nu$ such that $\mu \in \sigma_{a}(A) \cap \Psi_{+}(A)$ and $\nu \in \sigma_{a}(B) \cap \Psi_{+}(B)$. Hence $\mu \in \pi_{a}(A)$ and $\nu \in \pi_{a}(B)$.So it follows from [10] (Remark 2.7) that $\mu \in \sigma_{a}^{\text {iso }}(A)$ and $\nu \in \sigma_{a}^{\text {iso }}(B)$. Therefore, A and B have SVEP at (all such) μ and ν, respectively.
(iii) \Rightarrow (ii). In view of Lemma 2.2, we have to prove that $\sigma_{L D}(A \otimes B) \subseteq \sigma_{S B F_{+}^{-}}(A \otimes B)$. Suppose that (ii) is satisfied. Take a $\lambda \in \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)$. Then $(0 \neq) \lambda \in \Psi_{+}(A \otimes B)$ and ind $(A \otimes B-\lambda) \leq 0$. The equality $\sigma_{S B F_{+}}(A \otimes B)=\sigma_{a}(A) \sigma_{S B F_{+}}(B) \cup \sigma_{S B F_{+}}(A) \sigma_{a}(B)$ implies that for any factorization $\lambda=\mu \nu$ (such that $\mu \in \sigma_{a}(A)$ and $\nu \in \sigma_{a}(B)$) we have that $\mu \in \Psi_{+}(A)$ and $\nu \in \Psi_{+}(B)$. The SVEP hypotheses on A and B implies that $\operatorname{asc}(A-\mu I)$ and $\operatorname{asc}(B-\lambda)$ are finite. Hence, $\mu \in \sigma_{a}^{\text {iso }}(A)$ and $\mu \in \sigma_{a}^{\text {iso }}(B)$. So, it follows from Theorem 2.8 of [10] that $\mu \in \pi_{a}(A)$ and $\nu \in \pi_{a}(B)$. Therefore, $\mu \notin \sigma_{L D}(A)$ and $\nu \notin \sigma_{L D}(B)$. But then $\lambda \notin \sigma_{L D}(A \otimes B)$. Hence $\sigma_{L D}(A \otimes B) \subseteq \sigma_{S B F_{+}^{-}}(A \otimes B)$.

Theorem 2.1 is proved.
The next theorem gives a sufficient condition for $A \otimes B$ to satisfy generalized a-Weyl theorem, given that A and B satisfy generalized a-Weyl theorem. But before that a couple of technical lemmas. Recall that an operator S is said to be a-isoloid if $\lambda \in \sigma_{a}^{\text {iso }}(S)$ implies $\lambda \in \sigma_{p}(S)$.

Lemma 2.4. Suppose that A, B and $A \otimes B$ satisfy generalized a-Browder's theorem. If $\mu \in$ $\in \pi_{a}(A)$ and $\nu \in \pi_{a}(B)$, then $\lambda=\mu \nu \in \pi_{a}(A \otimes B)$.

Proof. Since $\mu \in \sigma_{a}(A) \backslash \sigma_{S B F_{+}^{-}}(A), \nu \in \sigma_{a}(B) \backslash \sigma_{S B F_{+}^{-}}(B)$ and $\sigma_{S B F_{+}^{-}}(A \otimes B)=$ $=\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)$. Hence, $\lambda=\mu \nu \in \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)=\pi_{a}(A \otimes B)$.

Theorem 2.2. Suppose that $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$ are a-isoloid which satisfy generalized a-Weyl theorem. If $\sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)$, then $A \otimes B$ satisfies generalized a-Weyl theorem.

Proof. The hypotheses imply that $A \otimes B$ satisfies generalized a-Browder's theorem, that is, $\sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)=\pi_{a}(A \otimes B)$. Since $\pi_{a}(A \otimes B) \subseteq E_{a}(A \otimes B)$, we have to prove that $E_{a}(A \otimes B) \subseteq \pi_{a}(A \otimes B)$. Let $\lambda \in E_{a}(A \otimes B)$. Then $0 \neq \lambda=\mu \nu$ for some $\mu \in \sigma_{a}^{\text {iso }}(A)$ and $\nu \in \sigma_{a}^{\text {iso }}(B)$. The operators A and B being a-isoloid, it follows from $\lambda=\mu \nu \in E_{a}(A \otimes B)$ that $\mu \in E_{a}(A)=\pi_{a}(A)$ and $\nu \in E_{a}(B)=\pi_{a}(B)$. By Lemma 2.4, $\lambda \in \pi_{a}(A \otimes B)$.

Theorem 2.2 is proved.
Following [16], we say that $S \in \mathcal{L}(\mathbb{X})$ satisfies property (w) if $\sigma_{a}(S) \backslash \sigma_{a w}(S)=E^{0}(S)$. The property (w) has been studied in [2, 3, 4, 16]. In [3] (Theorem 2.8), it is shown that property (w) implies Weyl's theorem, but the converse is not true in general. An operator $S \in \mathcal{L}(\mathbb{X})$ is said to be satisfies property $(g w)$ if $\sigma_{a}(S) \backslash \sigma_{S B F_{+}^{-}}(S)=E(S)$. Property $(g w)$ has been introduced and studied in [6]. Property $(g w)$ extends property (w) to the context of B-Fredholm theory, and it is proved in [6] that an operator satisfying property $(g w)$ satisfies property (w) and generalized Weyl's theorem but the converse is not true in general.

The following theorem gives a necessary and sufficient condition for the transference of property $(g w)$ from isoloid A and B to $A \otimes B$ But before that a lemma and some observations, which will often be used in the sequel. Let $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$. Then $\sigma^{\text {iso }}(A \otimes B) \subseteq \sigma^{\text {iso }}(A) . \sigma^{\text {iso }} \cup\{0\}$. If 0 is in the point spectrum of either of A and B, then $\alpha(A \otimes B)=0$; in particular, $0 \notin E(A \otimes B))$. It is easily seen, see the argument of the proof of [15] (Proposition 2), that $E(A \otimes B) \subseteq E(A) E(B)$.

Theorem 2.3. If $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$ are isoloid operators which satisfy property $(g w)$, then the following conditions are equivalent:
(i) $A \otimes B$ satisfies property $(g w)$;
(ii) the generalized a-Weyl spectrum equality $\sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup$ $\cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)$ is satisfied;
(iii) $A \otimes B$ satisfies generalized a-Browder's theorem.

Proof. Since property ($g w$) implies generalized a-Browder's theorem, the equivalence (ii) \Leftrightarrow (iii) and (i) \Rightarrow (iii) follows from Theorem 2.2. We prove (iii) \Rightarrow (i). The hypothesis A and B satisfy property ($g w$) implies

$$
\sigma_{a}(A) \backslash \sigma_{S B F_{+}^{-}}(A)=E(A), \quad \sigma_{a}(B) \backslash \sigma_{S B F_{+}^{-}}(B)=E(B)
$$

Observe that (iii) implies generalized a-Browder's theorem transfers from A and B to $A \otimes B$: hence $\sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)$. Let $\lambda \in E(A \otimes B)$; then $\lambda \neq 0$ and hence there exist $\mu \in \sigma^{\text {iso }}(A)$ and $\nu \in \sigma^{\text {iso }}(B)$ such that $\lambda=\mu \nu$. By hypotheses A and B are isoloid; hence μ is an eigenvalue of A and ν is an eigenvalue of B. Hence $\mu \in E(A)=\sigma_{a}(A) \backslash \sigma_{S B F_{+}^{-}}(A)$ and $\nu \in E(B)=\sigma_{a}(B) \backslash \sigma_{S B F_{+}^{-}}(B)$. Consequently, $\lambda \in \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)$; hence
$E(A \otimes B) \subseteq \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)$. Conversely, if $\lambda \in \sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)$, then $\lambda \neq 0$. So, there exist $\mu \in \sigma_{a}(A) \backslash \sigma_{S B F_{+}^{-}}(A)=E(A)$ and $\nu \in \sigma_{a}(B) \backslash \sigma_{S B F_{+}^{-}}(B)$ such that $\lambda=\mu \nu$. But then $\lambda \in E(A \otimes B)$. Hence $\sigma_{a}^{+}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B) \subseteq E(A \otimes B)$. Therefore, the proof is achieved.

An operator $S \in \mathcal{L}(\mathbb{X})$ is said to be polaroid (respectively, a-polaroid) if $\sigma^{\text {iso }}(S)$ (respectively, $\sigma_{a}^{\text {iso }}(S)$) is empty or every isolated point of $\sigma(S)$ (respectively, $\sigma_{a}(S)$) is a pole of the resolvent. $S \in \mathcal{L}(\mathbb{X})$ is polaroid implies S^{*} polaroid. It is well known that if S or S^{*} has SVEP and S is polaroid, then S and S^{*} satisfy generalized Weyl's theorem. Not as well known is the fact [6] (Theorem 2.10), that if S is polaroid and S^{*} (respectively, S) has SVEP, then S (respectively, S^{*}) satisfies property $(g w)$. Here the SVEP hypotheses on S and S^{*} can not be exchanged. The following theorem is the tensor product analogue of this result.

Theorem 2.4. Suppose that the operators $A \in \mathcal{L}(\mathbb{X})$ and $B \in \mathcal{L}(\mathbb{Y})$ are polaroid.
(i) If A^{*} and B^{*} have SVEP, then $A \otimes B$ satisfies property ($g w$).
(ii) If A and B have SVEP, then $A^{*} \otimes B^{*}$ satisfies property ($\left.g w\right)$.

Proof. (i) The hypothesis A^{*} and B^{*} have SVEP implies

$$
\sigma(A)=\sigma_{a}(A), \quad \sigma(B)=\sigma_{a}(B), \quad \sigma_{S B F_{+}^{-}}(A)=\sigma_{B W}(A), \quad \sigma_{S B F_{+}^{-}}(B)=\sigma_{B W}(B)
$$

and

$$
A^{*}, B^{*} \quad \text { and } \quad A^{*} \otimes B^{*} \quad \text { satisfy generalized s-Browder's theorem. }
$$

Thus generalized s-Browder's theorem and generalized Browder's theorem transform from A^{*} and B^{*} to $A^{*} \otimes B^{*}$. Hence

$$
\begin{aligned}
& \sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{S B F_{-}^{+}}\left(A^{*} \otimes B^{*}\right)=\sigma_{s}\left(A^{*}\right) \sigma_{S B F_{-}^{+}}\left(B^{*}\right) \cup \sigma_{S B F_{-}^{+}}\left(A^{*}\right) \sigma_{s}\left(B^{*}\right)= \\
& =\sigma_{a}(A) \sigma_{S B F_{+}^{-}}(B) \cup \sigma_{S B F_{+}^{-}}(A) \sigma_{a}(B)=\sigma(A) \sigma_{B W}(B) \cup \sigma_{B W}(A) \sigma(B),
\end{aligned}
$$

and

$$
\begin{gathered}
\sigma_{B W}(A \otimes B)=\sigma_{B W}\left(A^{*} \otimes B^{*}\right)=\sigma\left(A^{*}\right) \sigma_{B W}\left(B^{*}\right) \cup \sigma_{B W}\left(A^{*}\right) \sigma\left(B^{*}\right)= \\
=\sigma(A) \sigma_{B W}(B) \cup \sigma_{B W}(A) \sigma(B) .
\end{gathered}
$$

Consequently,

$$
\sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma_{B W}(A \otimes B) .
$$

Already,

$$
\sigma_{a}(A \otimes B)=\sigma_{a}(A) \sigma_{a}(B)=\sigma(A) \sigma(B)=\sigma(A \otimes B)
$$

Evidently, $A \otimes B$ is polaroid by Lemma 2 of [14]; combining this with $A \otimes B$ satisfies generalized Browder's theorem, it follows that $A \otimes B$ satisfies generalized Weyl's theorem, i.e., $\sigma(A \otimes B) \backslash$ $\sigma_{B W}(A \otimes B)=E(A \otimes B)$. It follows then

$$
\sigma_{a}(A \otimes B) \backslash \sigma_{S B F_{+}^{-}}(A \otimes B)=\sigma(A \otimes B) \backslash \sigma_{B W}(A \otimes B)=E(A \otimes B)
$$

that is, $A \otimes B$ satisfies property $(g w)$.
(ii) In this case $\sigma(A)=\sigma_{a}\left(A^{*}\right), \sigma(B)=\sigma_{a}\left(B^{*}\right), \sigma_{B W}\left(A^{*}\right)=\sigma_{S B F_{+}^{-}}\left(A^{*}\right), \sigma_{B W}\left(B^{*}\right)=$ $=\sigma_{S B F_{+}^{-}}\left(B^{*}, \sigma\left(A^{*} \otimes B^{*}\right)=\sigma_{a}\left(A^{*} \otimes B^{*}\right)\right.$, both generalized Browder's theorem and generalized s-Browder's theorem transfer from A and B to $A \otimes B$. Hence

$$
\begin{gathered}
\sigma_{S B F_{+}^{-}}\left(A^{*} \otimes B^{*}\right)=\sigma_{S B F_{-}^{+}}(A \otimes B)=\sigma_{s}(A) \sigma_{S B F_{-}^{+}}(B) \cup \sigma_{S B F_{-}^{+}}(A) \sigma_{s}(B)= \\
=\sigma_{a}\left(A^{*}\right) \sigma_{S B F_{+}^{-}}\left(B^{*}\right) \cup \sigma_{S B F_{+}^{-}}\left(A^{*}\right) \sigma_{a}\left(B^{*}\right)=\sigma(A) \sigma_{B W}(B) \cup \sigma_{B W}(A) \sigma(B)= \\
=\sigma_{B W}(A \otimes B)=\sigma_{B W}\left(A^{*} \otimes B^{*}\right) .
\end{gathered}
$$

Thus, since $A^{*} \otimes B^{*}$ polaroid and $\left.A \otimes B\right)$ satisfies generalized Browder's theorem imply $A^{*} \otimes B^{*}$ satisfy generalized Weyl's theorem,

$$
\sigma_{a}\left(A^{*} \otimes B^{*}\right) \backslash \sigma_{S B F_{+}^{-}}\left(A^{*} \otimes B^{*}\right)=\sigma\left(A^{*} \otimes B^{*}\right) \backslash \sigma_{B W}\left(A^{*} \otimes B^{*}\right)=E\left(A^{*} \otimes B^{*}\right),
$$

that is, $A^{*} \otimes B^{*}$ satisfies property $(g w)$.
Theorem 2.4 is proved.

1. Aiena P. Fredholm and local spectral theory with applications to multipliers. - Kluwer, 2004.
2. Aiena P., Guillen J., Peña P. Property (w) for perturbations of polaroid operators // Linear Algebra and Appl. - 2008. - 428. - P. 1791-1802.
3. Aiena P., Peña P. Variations on Weyl's theorem // J. Math. Anal. and Appl. - 2006. - 324, № 1. - P. 566-579.
4. Aiena P., Biondi M. T., Villafañe F. Property (w) and perturbations III // J. Math. Anal. and Appl. - 2009. - 353. P. 205-214.
5. Amouch M., Zguitti H. On the equivalence of Browder's and generalized Browder's theorem // Glasgow Math. J. 2006. - 48. - P. 179-185.
6. Amouch M., Berkani M. On the property $(g w) / /$ Mediterr. J. Math. - 2008. - 5. - P. 371-378.
7. Amouch M., Zguitti H. B-Fredholm and Drazin invertible operators through localized SVEP // Math. Bohemica. 2011. - 136. - P. 39-49.
8. Berkani M., Sarih M. On semi B-Fredholm // Glasgow Math. J. - 2001. - 43, №. 3. - P. 457-465.
9. Berkani M. B-Weyl spectrum and poles of the resolvent // J. Math. Anal. and Appl. - 2002. - 272. - P. 596-603.
10. Berkani M., Koliha J. Weyl type theorems for bounded linear operators // Acta Sci. Math. (Szeged). - 2003. - 69. P. 359-376.
11. Berkani M. On the equivalence of Weyl theorem and generalized Weyl theorem // Acta math. sinica. - 2007. - 272. - P. 103-110.
12. Duggal B. P. SVEP and generalized Weyl's theorem // Mediterr. J. Math. - 2007. - 4. - P. 309-320.
13. Duggal B. P., Djordjevic̀ S. V., Kubrusly C. S. On the a-Browder and a-Weyl spectra of tensor products // Rend. Circ. mat. Palermo. - 2010. - 59. - P. 473-481.
14. Duggal B. P. Tensor product and property $(w) / /$ Rend. Circ. mat. Palermo DOI. - 10.1007/s12215-011-0023-9.
15. Kubrusly C. S., Duggal B. P. On Weyl and Browder spectra of tensor product // Glasgow Math. J. - 2008. - 50. P. 289-302.
16. Rakoc̃ević V. On a class of operators // Math. Vesnik. - 1985. - 37. - P. 423-426.

Received 06.10.11, after revision - 26.04.12

