UDC 519.21

S. Kuzhel'* (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv), **L. Vavrykovych** (Nizhin State Univ.)

ON INFINITE-RANK SINGULAR PERTURBATIONS OF THE SCHRÖDINGER OPERATOR

ПРО СИНГУЛЯРНІ ЗБУРЕННЯ ОПЕРАТОРА ШРЕДІНГЕРА НЕСКІНЧЕННОГО РАНГУ

Schrödinger operators with infinite-rank singular potentials $V = \sum_{i,j=1}^{\infty} b_{ij} \langle \psi_j, \cdot \rangle \psi_i$ are studied under the condition that singular elements ψ_j are $\xi_j(t)$ -invariant with respect to scaling transformations in \mathbb{R}^3 .

Вивчається оператор Шредінгера з сингулярними потенціалами нескінченного рангу $V = \sum_{i,j=1}^{\infty} b_{ij} \langle \psi_j, \cdot \rangle \psi_i$ за умови, що сингулярні елементи $\psi_j \in \xi_j(t)$ -інваріантними відносно масштабних перетворень в \mathbb{R}^3 .

1. Introduction. Let $-\Delta$, $\mathcal{D}(\Delta) = W_2^2(\mathbb{R}^3)$ be the Schrödinger operator in $L_2(\mathbb{R}^3)$ and let $\mathfrak{U} = \{U_t\}_{t \in (0,\infty)}$ be the collection of unitary operators $U_t f(x) = t^{3/2} f(tx)$) in $L_2(\mathbb{R}^3)$ (so-called scaling transformations).

It is well known [1, 2] that $-\Delta$ is t^{-2} -homogeneous with respect to \mathfrak{U} in the sense that

$$U_t \Delta u = t^{-2} \Delta U_t u \quad \forall t > 0, \quad u \in W_2^2(\mathbb{R}^3).$$
(1.1)

In other words, the set \mathfrak{U} determines the structure of a symmetry and the property of $-\Delta$ to be t^{-2} -homogeneous with respect to \mathfrak{U} means that $-\Delta$ possesses a symmetry with respect to \mathfrak{U} .

Consider the heuristic expression

$$-\Delta + \sum_{i,j=1}^{\infty} b_{ij} \langle \psi_j, \cdot \rangle \psi_i, \qquad \psi_j \in W_2^{-2}(\mathbb{R}^3), \quad b_{ij} = \overline{b_{ji}} \in \mathbb{C}.$$
(1.2)

We will say that $\psi \in W_2^{-2}(\mathbb{R}^3)$ is $\xi(t)$ -invariant with respect to \mathfrak{U} if there exists a real function $\xi(t)$ such that

$$\mathbb{U}_t \psi = \xi(t)\psi \quad \forall t > 0, \tag{1.3}$$

where \mathbb{U}_t is the continuation of U_t onto $W_2^{-2}(\mathbb{R}^3)$ (see Section 2 for details).

The aim of the paper is to study self-adjoint operator realizations of (1.2) assuming that all ψ_i are $\xi_i(t)$ -invariant with respect to the set of scaling transformations \mathfrak{U} .

It is well known, see e.g. [1-4] that the Schrödinger operators perturbed by potentials homogeneous with respect to a certain set of unitary operators play an important role in applications to quantum mechanics. To a certain extent this generates a steady interests to the study of self-adjoint extensions with various properties of symmetry [5-11]. In particular, an abstract framework to study finite rank singular perturbations with symmetries for an arbitrary nonnegative operator was developed in [6].

© S. KUZHEL', L. VAVRYKOVYCH, 2008

^{*}Supported by DFFD of Ukraine (project 14.01/003).

ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 4

In the present paper we generalize some results of [6] to the case of infinite rank perturbations of the Schrödinger operator in $L_2(\mathbb{R}^3)$. In particular, the description of all t^{-2} -homogeneous extensions of the symmetric operator $-\Delta_{\text{sym}}$ is obtained. Another interesting property studied here is the possibility to get the Friedrichs and the Krein–von Neumann extension of $-\Delta_{\text{sym}}$ as solutions of a system of equations involving the functions t^{-2} and $\xi(t)$.

Throughout the paper $\mathcal{D}(A)$, $\mathcal{R}(A)$, and ker A denote the domain, the range, and the null-space of a linear operator A, respectively, while $A \upharpoonright \mathcal{D}$ stands for the restriction of A to the set \mathcal{D} .

2. Auxiliary results. 2.1. Preliminaries. Since the Sobolev space $W_2^{-2}(\mathbb{R}^3)$ coincides with the completion of $L_2(\mathbb{R}^3)$ with respect to the norm

$$\|f\|_{W_2^{-2}(\mathbb{R}^3)} = \left\| (-\Delta + I)^{-1} f \right\| \quad \forall f \in L_2(\mathbb{R}^3),$$
(2.1)

the resolvent operator $(-\Delta+I)^{-1}$ can be continuously extended to an isometric mapping $(-\Delta+I)^{-1}$ from $W_2^{-2}(\mathbb{R}^3)$ onto $L_2(\mathbb{R}^3)$ (we preserve the same notation for the extension). Hence, the relation

$$\langle \psi, u \rangle = \left((-\Delta + I)u, (-\Delta + I)^{-1}\psi \right), \quad u \in W_2^{-2}(\mathbb{R}^3), \tag{2.2}$$

enables one to identify the elements $\psi \in W_2^{-2}(\mathbb{R}^3)$ as linear functionals on $W_2^2(\mathbb{R}^3)$.

It follows from (1.1), (2.1) that the operators $U_t \in \mathfrak{U}$ can be continuously extended to bounded operators \mathbb{U}_t in $W_2^{-2}(\mathbb{R}^3)$ and for any $\psi \in W_2^{-2}(\mathbb{R}^3)$

$$\langle \mathbb{U}_t \psi, u \rangle = \langle \psi, U_t^* u \rangle = \langle \psi, U_{1/t} u \rangle.$$
(2.3)

Since the elements U_t of \mathfrak{U} have the additional multiplicative property $U_{t_1}U_{t_2} = U_{t_2}U_{t_1} = U_{t_1t_2}$, relation (2.3) means that this relation holds for \mathbb{U}_t also. But then, equality (1.3) gives $\xi(t_1)\xi(t_2) = \xi(t_1t_2)$ ($t_i > 0$) that is possible only if $\xi(t) = 0$ or $\xi(t) = t^{-\alpha}$ ($\alpha \in \mathbb{R}$) [12] (Chap. IV). Hence, if an element $\psi \in W_2^{-2}(\mathbb{R}^3)$ is $\xi(t)$ -invariant with respect to \mathfrak{U} , then $\xi(t) = t^{-\alpha}$ ($\alpha \in \mathbb{R}$) (the case $\xi(t) = 0$ is impossible because \mathbb{U}_t has inverse).

2.2. Operator realizations of (2.1) in $L_2(\mathbb{R}^3)$. Let us consider (1.2) assuming that all elements ψ_j are $t^{-\alpha}$ -invariant with respect to \mathfrak{U} . This means that all elements of the linear span \mathcal{X} of $\{\psi_j\}_{j=1}^{\infty}$ also satisfy (1.3) with $\xi(t) = t^{-\alpha}$. Obviously, the same is true for the closure $\overline{\mathcal{X}}$ of \mathcal{X} in $W_2^{-2}(\mathbb{R}^3)$. Hence, if $\psi \in \overline{\mathcal{X}}$, then $\mathbb{U}_t \psi = t^{-\alpha} \psi$. This implies $\psi \in W_2^{-2}(\mathbb{R}^3) \setminus L_2(\mathbb{R}^3)$ (since the operator $U_t = \mathbb{U}_t \upharpoonright L_2(\mathbb{R}^3)$ is unitary in $L_2(\mathbb{R}^3)$. Thus $\overline{\mathcal{X}} \cap L_2(\mathbb{R}^3) = \{0\}$.

In that case, the perturbation $V = \sum_{i,j=1}^{n} b_{ij} \langle \psi_j, \cdot \rangle \psi_i$ turns out to be singular and the formula

$$-\Delta_{\text{sym}} = -\Delta \upharpoonright \mathcal{D}(-\Delta_{\text{sym}}),$$

$$\mathcal{D}(-\Delta_{\text{sym}}) = \left\{ u \in W_2^{-2}(\mathbb{R}^3) \colon \langle \psi_j, u \rangle = 0, \ j \in \mathbb{N} \right\}$$
(2.4)

determines a closed densely defined symmetric operator in $L_2(\mathbb{R}^3)$.

Following [1] a self-adjoint operator realization $-\widetilde{\Delta}$ of (1.2) in $L_2(\mathbb{R}^3)$ are defined by ON INFINITE-RANK SINGULAR PERTURBATIONS OF THE SCHRÖDINGER OPERATOR 489

$$-\widetilde{\Delta} = -\Delta_R \upharpoonright \mathcal{D}(-\widetilde{\Delta}), \qquad \mathcal{D}(-\widetilde{\Delta}) = \left\{ f \in \mathcal{D}(-\Delta^*_{\text{sym}}) \colon -\Delta_R f \in L_2(\mathbb{R}^3) \right\},$$
(2.5)

where

$$-\Delta_R = -\Delta + \sum_{i,j=1}^{\infty} b_{ij} \langle \psi_j^{\text{ex}}, \cdot \rangle \psi_i$$
(2.6)

is seen as a regularization of (1.2) defined on $\mathcal{D}(-\Delta_{\text{sym}}^*)$. Here $\langle \psi_j^{\text{ex}}, \cdot \rangle$ denote extensions of linear functionals $\langle \psi_j, \cdot \rangle$ onto $\mathcal{D}(-\Delta^*_{\mathrm{sym}})$.

In what follows, the elements $\{\psi_j\}_{j=1}^{\infty}$ in (1.2) are supposed to be a Riesz basis of the subspace $\overline{\mathcal{X}} \subset W_2^{-2}(\mathbb{R}^3)$. Then the vectors $h_j = (-\Delta + I)^{-1}\psi_j, j \in \mathbb{N}$, form a Riesz basis of the defect subspace $\mathcal{H} = \ker(-\Delta^*_{sym} + I) \subset L_2(\mathbb{R}^3)$ of the symmetric operator $-\Delta_{sym}$ (see (2.2) and (2.4)).

Let $\{e_i\}_1^\infty$ be the canonical basis of the Hilbert space l^2 (i.e., $e_j = (\dots, 0, 1, 0, \dots)$, where 1 occurs on the j th place only). Putting $\Psi e_j := \psi_j, j \in \mathbb{N}$, we define an injective linear mapping $\Psi: l^2 \to W_2^{-2}(\mathbb{R}^3)$ such that $\mathcal{R}(\Psi) = \mathcal{X}$. Let $\Psi^*: W_2^2(\mathbb{R}^3) \to \mathbb{C}^n$ be the adjoint operator of Ψ (i.e., $\langle u, \Psi d \rangle = (\Psi^* u, d)_{l^2}$

 $\forall u \in W_2^2(\mathbb{R}^3) \; \forall d \in l^2$). It is easy to see that

$$\Psi^* u = \left(\langle \psi_1, u \rangle, \dots, \langle \psi_j, u \rangle, \dots \right) \quad \forall u \in W_2^2(\mathbb{R}^3).$$
(2.7)

It follows from (2.7) that the extended functionals $\langle \psi_i^{\text{ex}}, \cdot \rangle$ in (2.6) are completely defined by an extension Ψ_R^* of Ψ^* onto $\mathcal{D}(-\Delta_{\text{sym}}^*)$, i.e.,

$$\Psi_R^* f = \left(\langle \psi_1^{\text{ex}}, f \rangle, \dots, \langle \psi_j^{\text{ex}}, f \rangle, \dots \right) \quad \forall f \in \mathcal{D}(-\Delta_{\text{sym}}^*).$$
(2.8)

Since $\mathcal{D}(-\Delta_{\text{sym}}^*) = W_2^2(\mathbb{R}^3) + \mathcal{H}$, where $\mathcal{H} = \ker(-\Delta_{\text{sym}}^* + I)$ the formula (2.8) can be rewritten as

$$\Psi_R^* f = \Psi_R^* \left(u + \sum_{k=1}^\infty d_k h_k \right) = \Psi^* u + Rd \quad \forall f \in \mathcal{D}(-\Delta_{\text{sym}}^*),$$
(2.9)

where $u \in W_2^2(\mathbb{R}^3)$, $d = (d_1, d_2, \ldots) \in l_2$, and R is an arbitrary bounded operator acting in l^2 .

Using the definition of Ψ and Ψ_R^* , the regularization (2.6) takes the form

$$-\Delta_R = -\Delta + \Psi B \Psi_R^*, \tag{2.10}$$

where the self-adjoint operator B is defined in l^2 by the infinite-dimensional Hermitian matrix $\mathbf{B} = \|b_{ij}\|_{i,j=1}^{\infty}$.

2.3. Description in terms of boundary triplets. The formulas (2.5) and (2.10) do not provide an explicit description of operator realizations $-\Delta$ of (1.2) through the parameters b_{ij} of the singular perturbation V. To get the required description the method of boundary triplets is now incorporated.

Definition 2.1 [13]. Let A_{sym} be a closed densely defined symmetric operator in a Hilbert space \mathfrak{H} . A triplet (N, Γ_0, Γ_1) , where N is an auxiliary Hilbert space and Γ_0, Γ_1 are linear mappings of $\mathcal{D}(A^*_{sym})$ into N, is called a boundary triplet of A^*_{sym} if $(A^*_{\text{sym}}f,g) - (f,A^*_{\text{sym}}g) = (\Gamma_1 f,\Gamma_0 g)_N - (\Gamma_0 f,\Gamma_1 g)_N$ for all $f,g \in \mathcal{D}(A^*_{\text{sym}})$ and the mapping $(\Gamma_0, \Gamma_1): \mathcal{D}(A^*_{svm}) \to N \oplus N$ is surjective.

The next two results (Lemma 2.1 and Theorem 2.3) are some 'folk-lore' of the extension theory (see, e.g., [14-16]). Basically their proofs are the same as in [14], where the case of finite defect numbers has been considered.

Lemma 2.1. Let R in (2.9) be a bounded self-adjoint operator in l^2 . Then the triplet $(l^2, \Gamma_0, \Gamma_1)$, where the linear operators $\Gamma_i: \mathcal{D}(-\Delta^*_{sym}) \to l^2$ are defined by the formulas

$$\Gamma_0 f = \Psi_R^* f, \qquad \Gamma_1 f = -\Psi^{-1} (-\Delta + I)h,$$
(2.11)

(where f = u + h, $u \in W_2^2(\mathbb{R}^3)$, $h \in \mathcal{H}$) is a boundary triplet of $-\Delta^*_{sym}$.

Theorem 2.1. The operator realization $-\Delta$ of (1.2) defined by (2.5) and (2.10) is a self-adjoint extension of $-\Delta_{sym}$ which coincides with the operator

$$-\Delta_B = -\Delta_{\text{sym}}^* \upharpoonright \mathcal{D}(\Delta_B), \qquad \mathcal{D}(\Delta_B) = \left\{ f \in \mathcal{D}(\Delta_{\text{sym}}^*) \colon B\Gamma_0 f = \Gamma_1 f \right\}, \quad (2.12)$$

where Γ_i are defined by (2.11) and a self-adjoint operator B is defined in l^2 by the Hermitian matrix $\mathbf{B} = \|b_{ij}\|_{i,j=1}^{\infty}$.

3. t^{α} -Invariant singular perturbations of $-\Delta$. 3.1. Description of all t^{α} invariant elements. An additional study of \mathbb{U}_t allows one to restrict the variation of the
parameter α for $t^{-\alpha}$ -invariant elements.

Theorem 3.1 [6]. $t^{-\alpha}$ -Invariant elements $\psi \in W_2^{-2}(\mathbb{R}^3)$ with respect to scaling transformations exist if and only if $0 < \alpha < 2$.

Proof. For the convenience of the reader we briefly outline the principal stages of the proof. Consider a family of self-adjoint operators on $L_2(\mathbb{R}^3)$

$$G_t = (-t^{-2}\Delta + I)(-\Delta + I)^{-1}, \quad t > 0.$$
(3.1)

It follows from (1.1), (2.2), and (2.3) that for all $u \in W_2^2(\mathbb{R}^3)$

$$\langle \mathbb{U}_t \psi, u \rangle = \left((-\Delta + I) U_{1/t} u, h \right) = \left(U_{1/t} (-t^{-2} \Delta + I) u, h \right) =$$
$$= \left((-t^{-2} \Delta + I) u, U_t h \right) = \left(G_t (-\Delta + I) u, U_t h \right) = \left((-\Delta + I) u, G_t U_t h \right), \quad (3.2)$$

where $h = (-\Delta + I)^{-1}\psi$. On the other hand, if ψ is $t^{-\alpha}$ -invariant, then

$$\langle \mathbb{U}_t \psi, u \rangle = t^{-\alpha} \langle \psi, u \rangle = \left((-\Delta + I)u, t^{-\alpha}h \right).$$

Combining the obtained relation with (2.3) one gets that an element ψ is $t^{-\alpha}$ -invariant with respect to scaling transformations if and only if

$$G_t U_t h = t^{-\alpha} h, \qquad t > 0, \quad h = (\mathbb{A}_0 + I)^{-1} \psi.$$
 (3.3)

The formula for G_t in (3.1) with an evident reasoning leads to the estimates

$$\alpha(t)\|h\| = \alpha(t)\|U_th\| < \|G_tU_th\| < \beta(t)\|U_th\| = \beta(t)\|h\|,$$

where $\alpha(t) = \min\{1, t^{-2}\}$ and $\beta(t) = \max\{1, t^{-2}\}$. Therefore $\alpha(t) < t^{-\alpha} < \beta(t)$ for all t > 0. This estimation can be satisfied for $0 < \alpha < 2$ only.

To complete the proof it suffices to construct $t^{-\alpha}$ -invariant elements ψ for $0 < \alpha < 2$.

ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 4

=

Fix $m(w) \in L_2(S^2)$, where $L_2(S^2)$ is the Hilbert space of square-integrable functions on the unit sphere S^2 in \mathbb{R}^3 , and determine the functional $\psi(m, \alpha) \in W_2^{-2}(\mathbb{R}^3)$ by the formula

$$\langle \psi(m,\alpha), u \rangle = \int_{\mathbb{R}^3} \frac{\overline{m(w)}}{|y|^{3/2 - \alpha} (|y|^2 + 1)} (|y|^2 + 1) \widehat{u}(y) dy \quad (y = |y|w \in \mathbb{R}^3), \quad (3.4)$$

where $\widehat{u}(y) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} e^{ix \cdot y} u(x) dx$ is the Fourier transformation of $u(\cdot) \in W_2^2(\mathbb{R}^3)$. It is easy to verify that

It is easy to verify that

$$\widehat{(U_{1/t}u)}(y) = \frac{1}{(2\pi t)^{3/2}} \int_{\mathbb{R}^3} e^{iy \cdot x} u(x/t) dx = U_t \widehat{u}(y) = t^{3/2} \widehat{u}(ty).$$
(3.5)

Using (3.4) and (3.5), one obtains $\langle \psi(m,\alpha), U_{1/t}u \rangle = t^{-\alpha} \langle \psi(m,\alpha), u \rangle$ for all $u \in W_2^2(\mathbb{R}^3)$. By (1.3) and (2.3) this means that $\psi(m,\alpha)$ is $t^{-\alpha}$ -invariant with respect to \mathfrak{U} .

Theorem 3.1 is proved.

The next statement describes all $t^{-\alpha}$ -invariant elements for a fixed $\alpha \in (0,2)$.

Proposition 3.1. An element $\psi \in W_2^{-2}(\mathbb{R}^3)$ is $t^{-\alpha}$ -invariant with respect to scaling transformations if and only if $\psi = \psi(m, \alpha)$ where $\psi(m, \alpha)$ is defined by (3.4).

Proof. Let $\psi \in W_2^{-2}(\mathbb{R}^3)$ be $t^{-\alpha}$ -invariant with respect to $\mathfrak{U} = \{U_t\}_{t \in (0,\infty)}$. This means that (3.3) holds for $h = (\mathbb{A}_0 + I)^{-1}\psi$. Using (3.5) one can rewrite (3.3) as

$$\frac{t^{-2}|y|^2 + 1}{|y|^2 + 1} t^{-3/2} \widehat{h}\left(\frac{y}{t}\right) = t^{-\alpha} \widehat{h}(y), \quad t > 0,$$
(3.6)

where the equality is understood in the sense of $L_2(\mathbb{R}^3)$. Setting t = |y|, (w = y/|y|) one derives that (3.6) holds if and only if

$$\widehat{h}(y) = \frac{m(w)}{|y|^{3/2 - \alpha}(|y|^2 + 1)}, \qquad m(w) = 2\widehat{h}(w), \tag{3.7}$$

where $m(w) \in L_2(S^2)$ (because $\hat{h}(w) \in L_2(\mathbb{R}^3)$). Combining (3.7) with (2.2) and (3.4) one concludes that $\psi = \psi(m, \alpha)$.

Proposition 3.1 is proved.

Remark 3.1. Proposition 3.1 generalizes Proposition 3.1 in [9] where the case $\alpha = 3/2$ was considered.

3.2. t^{-2} -Homogeneous extensions of $-\Delta_{sym}$ transversal to $-\Delta$. Denote $-\Delta_R = -\Delta_{sym}^* \upharpoonright \ker \Gamma_0$, where Γ_0 is defined by (2.11). Since $(l^2, \Gamma_0, \Gamma_1)$ is a boundary triplet of $-\Delta_{sym}^*$ and the initial operator $-\Delta$ coincides with $-\Delta_{sym}^* \upharpoonright \ker \Gamma_1$, one concludes that $-\Delta_R$ and $-\Delta$ are transversal self-adjoint extensions of $-\Delta_{sym}$, i.e., $\mathcal{D}(-\Delta_R) \cap \mathcal{D}(-\Delta) = \mathcal{D}(-\Delta_{sym})$ and $\mathcal{D}(-\Delta_R) + \mathcal{D}(-\Delta) = \mathcal{D}(-\Delta_{sym}^*)$ [13].

In view of (1.3) and (2.3) the $t^{-\alpha_j}$ -invariance of an element ψ_j in (1.2) is equivalent to the relation

$$t^{-\alpha_j}\langle\psi_j, u\rangle = \langle\psi_j, U_{1/t}u\rangle \quad \forall u \in W_2^2(\mathbb{R}^3), \quad t > 0.$$
(3.8)

It turns out that the preservation of (3.8) for the extended functionals $\langle \psi_j^{\text{ex}}, \cdot \rangle$ is equivalent to the t^{-2} -homogeneity of $-\Delta_R$.

Proposition 3.2. Let ψ_j^{ex} be defined by (2.8). Then the relations

$$t^{-\alpha_j}\langle \psi_i^{\text{ex}}, f \rangle = \langle \psi_j^{\text{ex}}, U_{1/t}f \rangle \quad \forall j \in \mathbb{N} \quad \forall t > 0$$
(3.9)

hold for all $f \in \mathcal{D}(-\Delta_{\text{sym}}^*)$ if and only if the operator $-\Delta_R$ is t^{-2} -homogeneous with respect to $\mathfrak{U} = \{U_t\}_{t \in (0,\infty)}$.

Proof. It follows from (2.2) and (2.3) that

$$\langle \psi_j, U_t u \rangle = \langle \mathbb{U}_{1/t} \psi_j, u \rangle = t^{\alpha_j} \langle \psi_j, u \rangle = 0$$

for every $u \in \mathcal{D}(-\Delta_{sym})$. Thus $U_t \colon \mathcal{D}(-\Delta_{sym}) \to \mathcal{D}(-\Delta_{sym})$ and, by (1.1) and (2.4), the symmetric operator $-\Delta_{sym}$ is t^{-2} -homogeneous: $U_t \Delta_{sym} = t^{-2} \Delta_{sym} U_t$. But then the adjoint $-\Delta_{sym}^*$ of $-\Delta_{sym}$ is also t^{-2} -homogeneous. This means that a self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{sym}$ is t^{-2} -homogeneous with respect to $\mathfrak{U} = \{U_t\}_{t \in (0,\infty)}$ if and only if $U_t \mathcal{D}(-\widetilde{\Delta}) = \mathcal{D}(-\widetilde{\Delta})$ for all t > 0. Since $U_t U_{1/t} = I$ the last equality is equivalent to the inclusion

$$U_t \mathcal{D}(-\widetilde{\Delta}) \subset \mathcal{D}(-\widetilde{\Delta}) \quad \forall t > 0.$$
 (3.10)

Using (2.8) one can rewrite relations (3.9) as follows:

$$\Xi(t)\Psi_R^* f = \Psi_R^* U_{1/t} f \quad \forall f \in \mathcal{D}(-\Delta_{\text{sym}}^*) \quad \forall t > 0,$$
(3.11)

where a bounded invertible operator $\Xi(t)$ in l^2 is defined by the formulas

$$\Xi(t)e_j = t^{-\alpha_j}e_j, \quad j \in \mathbb{N}.$$
(3.12)

Since $\mathcal{D}(-\Delta_0) = \ker \Gamma_0 = \ker \Psi_R^*$, (3.11) implies that $\mathcal{D}(-\Delta_R)$ satisfies (3.10). Thus $-\Delta_R$ is t^{-2} -homogeneous with respect to \mathfrak{U} .

Conversely, assume that $-\Delta_R$ is t^{-2} -homogeneous. According to (2.9) and (3.10) this is equivalent to the relation

$$\Psi_R^* U_{1/t} f = 0 \quad \forall f = u + \sum_{j=1}^{\infty} d_j h_j \in \mathcal{D}(-\Delta_R) \quad \forall t > 0.$$
(3.13)

Let us study (3.13) more detail. Using (3.1) and (3.3) it is seen that

$$U_{1/t}h_j = t^{-2}G_{1/t}U_{1/t}h_j + (I - t^{-2}G_{1/t})U_{1/t}h_j =$$
$$= \frac{t^{-2}}{t^{-\alpha_j}}h_j + (1 - t^{-2})(-\Delta + I)^{-1}U_{1/t}h_j,$$

where $h_j = (-\Delta + I)^{-1} \psi_j$. Therefore,

ISSN 1027-3190. Укр. мат. журн., 2008, т. 60, № 4

492

$$U_{1/t}f = v + \sum_{j=1}^{\infty} t^{\alpha_j - 2} d_j h_j, \qquad (3.14)$$

where the element $v = U_{1/t}u + (1 - t^{-2})(-\Delta + I)^{-1}U_{1/t}\sum_{i=1}^{\infty} d_jh_j$ belongs to $\mathcal{D}(-\Delta)$. Substituting the obtained expression for $U_{1/t}f$ into (3.13) and using (2.9) one gets

$$\Psi^* U_{1/t} u + (1 - t^{-2}) \Psi^* (-\Delta + I)^{-1} U_{1/t} \sum_{j=1}^{\infty} d_j h_j + t^{-2} R \Xi^{-1}(t) d = 0.$$
 (3.15)

Here $\Psi^* U_{1/t} u = \Xi(t) \Psi^* u$ by (2.3) and (2.7). Moreover $\Psi^* u = -Rd$ since the vector $f = u + \sum_{j=1}^{\infty} d_j h_j$ belongs to $\mathcal{D}(-\Delta_R) = \ker \Psi_R^*$. Thus $\Psi^* U_{1/t} u = -\Xi(t) Rd$.

On the other hand, employing (2.2) and (2.7), one gets

$$\Psi^*(-\Delta + I)^{-1} U_{1/t} \sum_{j=1}^{\infty} d_j h_j = K_t d,$$

where K_t is a bounded operator in l^2 that is defined by the infinite-dimensional matrix $\mathbf{K} = ||k_{ij}||_{i,j=1}^{\infty}$, $k_{ij} = (h_j, U_t h_i)$ with respect to the canonical basis $\{e_j\}_1^{\infty}$ (see Subsection 2.2). The obtained relations allow one to rewrite (3.15) as follows:

$$\left[-\Xi(t)R + t^{-2}R\Xi^{-1}(t) + (1 - t^{-2})K_t\right]d = 0 \quad \forall t > 0,$$

where d is an arbitrary element from l^2 (it follows from the presentation $f \in \mathcal{D}(-\Delta_R)$ in (3.13) and the transversality $-\Delta$ and $-\Delta_R$ with respect to $-\Delta_{sym}$). Therefore, the t^{-2} -homogeneity of $-\Delta_R$ is equivalent to the operator equality in l^2 :

$$\Xi(t)R - t^{-2}R\Xi^{-1}(t) = (1 - t^{-2})K_t \quad \forall t > 0.$$
(3.16)

Finally, employing (2.9) and (3.15) it is easy to see that equality (3.16) is equivalent to (3.11). Therefore, the extended functionals $\langle \psi_i^{\text{ex}}, \cdot \rangle$ satisfy (3.9).

Proposition 3.2 is proved.

Remark 3.2. The result similar to Proposition 3.2 was proved in [6] for the case of finite rank perturbations of a self-adjoint operator acting in an abstract Hilbert space \mathfrak{H} .

Theorem 3.2. Let $\alpha_j \in (1,2)$ for any $t^{-\alpha_j}$ -invariant element ψ_j in the definition (2.4) of $-\Delta_{sym}$. Then there exists a unique t^{-2} -homogeneous self-adjoint extension of $-\Delta_{sym}$ transversal to $-\Delta$.

Proof. It follows from the general theory of boundary triplets [13, 17] that an arbitrary self-adjoint extension $-\tilde{\Delta}$ of $-\Delta_{\text{sym}}$ transversal to $-\Delta$ coincides with $-\Delta_R$ for a certain choice of a bounded self-adjoint operator R in l^2 . As was shown in the proof of Proposition 3.2, $-\Delta_R$ is t^{-2} -homogeneous with respect to scaling transformations if and only if the operator R is a solution of (3.16) that does not depend on t > 0. Using (3.12) and the definition of K_t one can rewrite (3.16) componentwise as follows:

$$(t^{-\alpha_i} - t^{\alpha_j - 2})r_{ij} = (1 - t^{-2})(h_j, U_t h_i), \quad \mathbf{R} = ||r_{ij}||_{i,j=1}^{\infty}$$
(3.17)

where the infinite-dimensional matrix **R** is the matrix presentation of R with respect to the canonical basis $\{e_i\}_{1}^{\infty}$.

Let us calculate $(h_j, U_t h_i)$ in (3.17). According to Proposition 3.1, $t^{-\alpha_j}$ -invariant elements ψ_j in (1.2) have the form $\psi_j = \psi(m_j, \alpha_j)$, where $m_j(\cdot) \in L_2(S^2)$ and elements $h_j = (-\Delta + I)^{-1} \psi(m_j, \alpha_j)$ are defined by (3.7).

It follows from (3.5) that

$$\widehat{U_t h_i}(y) = t^{-3/2} \widehat{h}\left(\frac{y}{t}\right) = t^{2-\alpha_i} \frac{m_i(w)}{|y|^{3/2-\alpha_i}(|y|^2 + t^2)}$$

Hence,

$$\begin{aligned} (h_j, U_t h_i) &= t^{2-\alpha_i} \int_{\mathbb{R}^3} \frac{m_j(w) \overline{m_i(w)}}{|y|^{3-(\alpha_j+\alpha_i)} (|y|^2 + t^2) (|y|^2 + 1)} \, dy = \\ &= (m_j, m_i)_{L_2} \int_0^\infty \frac{t^{2-\alpha_i}}{|y|^{1-(\alpha_i+\alpha_j)} (|y|^2 + t^2) (|y|^2 + 1)} d|y| = \\ &= c_{ij} \frac{t^{\alpha_j} - t^{2-\alpha_i}}{t^2 - 1} (m_j, m_i)_{L_2}, \end{aligned}$$

where $c_{ij} = \int_0^\infty \frac{|y|^{3-(\alpha_i+\alpha_j)}}{|y|^2+1} d|y|$ and $(m_i, m_j)_{L_2} = \int_{S^2} m_i(w) \overline{m_j(w)} dw$ is the scalar product in $L_2(S^2)$. Substituting the obtained expression for $(h_j, U_t h_i)$ into (3.17) one finds $r_{ij} = -c_{ij}(m_j, m_i)_{L_2}$. The matrix $\mathbf{R} = ||r_{ij}||_{i,j=1}^\infty$ determined in such a way is the matrix representation of a unique solution R of (3.16) that does not depend on t > 0.

Theorem 3.2 is proved.

3.3. The Friedrichs and Krein-von Neumann extensions. As was shown in the proof of Proposition 3.2, the symmetric operator $-\Delta_{\text{sym}}$ is t^{-2} -homogeneous with respect to scaling transformations. According to general results obtained in [6, 10], the Friedrichs $-\Delta_F$ and the Krein-von Neumann $-\Delta_N$ extensions of $-\Delta_{\text{sym}}$ are also t^{-2} -homogeneous.

Theorem 3.3. Let $\alpha_j \in (1,2)$ for any $t^{-\alpha_j}$ -invariant element ψ_j in the definition (2.4) of $-\Delta_{sym}$ and let the spectrum of $-\Delta_R$, where R is a unique solution of (3.16) does not cover real line \mathbb{R} . Then the Krein-von Neumann extension $-\Delta_N$ coincides with $-\Delta_R$ and the Friedrichs extension $-\Delta_F$ coincides with the initial operator $-\Delta$.

Proof. A simple analysis of (3.7) shows that $h_j \in L_2(\mathbb{R}^3) \setminus W_2^1(\mathbb{R}^3)$ for $1 \le \alpha < 2$, i.e., singular elements ψ_j in (2.4) form a $W_2^{-1}(\mathbb{R}^3)$ -independent system. This means that the initial operator $-\Delta$ coincides with the Friedrichs extension $-\Delta_F$.

Since $-\Delta_R$ is t^{-2} -homogeneous and $\sigma(-\Delta_R) \neq \mathbb{R}$, the equality

$$U_t(-\Delta_R - \lambda I) = t^{-2}(-\Delta_R - t^2 \lambda I)U_t, \quad t > 0,$$

means that the spectrum of $-\Delta_R$ is nonnegative. Therefore, $-\Delta_R$ is a nonnegative extension of $-\Delta_{\text{sym}}$ transversal to the Friedrichs extension $-\Delta$. But then the Krein-von Neumann extension $-\Delta_N$ is also transversal to $-\Delta$. Since $-\Delta_N$ is t^{-2} -homogeneous, Theorem 3.2 gives $-\Delta_N = -\Delta_R$ that completes the proof.

3.4. t^{-2} -Homogeneous extensions of $-\Delta_{sym}$. Let us consider the heuristic expression (1.2), where all elements ψ_j are assumed to be $t^{-\alpha}$ -invariant with respect to scaling transformations, i.e., $\psi_j = \psi(m_j, \alpha)$, where $\alpha \in (1, 2)$ is fixed.

It follows from (1.3) and (2.3) that the singular potential $V = \sum_{i,j=1}^{\infty} b_{ij} \langle \psi_j, \cdot \rangle \psi_i$ in (1.2) is $t^{-2\alpha}$ -homogeneous in the sense that

$$\mathbb{U}_t V u = t^{-2\alpha} V U_t u \quad \forall u \in W_2^2(\mathbb{R}^3).$$

Hence, the initial operator $-\Delta$ and its singular perturbation V possess the homogeneity property with different index of homogeneity: t^{-2} and $t^{-2\alpha}$, respectively. In view of this, it is natural to expect that any self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{sym}$ having the t^{-2} -homogeneity property (as well as $-\Delta$ and $-\Delta_R$) is closely related to $-\Delta$ and $-\Delta_R$.

Let $(l^2, \Gamma_0, \Gamma_1)$ be a boundary triplet of $-\Delta_{\text{sym}}^*$ defined by (2.11), where R is a unique solution of (3.16).

Theorem 3.4. Let all elements ψ_j be $t^{-\alpha}$ -invariant with respect to scaling transformations, where $\alpha \in (1,2)$ is fixed. Then an arbitrary t^{-2} -homogeneous self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{sym}$ coincides with the restriction of $-\Delta_{sym}^*$ onto the domain

$$\mathcal{D}(-\widetilde{\Delta}) = \{ f \in \mathcal{D}(-\Delta_{\text{sym}}^*) \colon (I - V)\Gamma_0 f = i(I + V)\Gamma_1 f \},$$
(3.18)

where V is taken from the set of unitary and self-adjoint operators in l^2 .

Proof. If Γ_0 is a boundary operator defined by (2.11), where R is a unique solution of (3.16), then formulas (3.11) and (3.12) give

$$\Gamma_0 U_{1/t} f = t^{-\alpha} \Gamma_0 f \quad \forall f \in \mathcal{D}(-\Delta_{\text{sym}}^*) \quad \forall t > 0.$$
(3.19)

On the other hand, using (3.14), one derives

$$\Gamma_1 U_{1/t} f = t^{\alpha - 2} \Gamma_1 f \quad \forall f \in \mathcal{D}(-\Delta_{\text{sym}}^*) \quad \forall t > 0.$$
(3.20)

It is known [13] that an arbitrary self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{\text{sym}}$ is the restriction of $-\Delta_{\text{sym}}^*$ onto the domain (3.18) where V is a unitary operator in l^2 . By (3.19), (3.20),

$$U_{1/t}\mathcal{D}(-\widetilde{\Delta}) = \{ f \in \mathcal{D}(-\Delta_{\text{sym}}^*) \colon t^{\alpha}(I-V)\Gamma_0 f = it^{2-\alpha}(I+V)\Gamma_1 f \}.$$
(3.21)

The operator $-\widetilde{\Delta}$ is t^{-2} -homogeneous if and only if its domain $\mathcal{D}(-\widetilde{\Delta})$ satisfies (3.10). Comparing (3.18) and (3.21) and taking into account that $\alpha > 1$, one concludes that (3.10) holds if and only if $\Gamma_0 \mathcal{D}(-\widetilde{\Delta}) = \ker(I - V)$ and $\Gamma_1 \mathcal{D}(-\widetilde{\Delta}) = \ker(I + V)$. These relations give

$$\ker(I-V) \oplus \ker(I+V) = l^2 \tag{3.22}$$

since $-\widetilde{\Delta}$ is a self-adjoint operator and $(l^2, \Gamma_0, \Gamma_1)$ is a boundary triplet of $-\Delta^*_{sym}$. The obtained identity implies that the unitary operator V also is self-adjoint.

Conversely, if V is unitary and self-adjoint, then (3.22) is satisfied. Hence, (3.10) holds and $-\tilde{\Delta}$ is t^{-2} -homogeneous.

Theorem 3.4 is proved.

Corollary 3.1. There are no t^{-2} -homogeneous operators among nontrivial $(\neq -\Delta)$ self-adjoint operator realizations of (1.2).

Proof. According to Theorem 2.1 an operator realization $-\Delta_B$ of (1.2) is defined by (2.12). It follows from (2.12) and (3.18) that $B = -i(I - V)(I + V)^{-1}$. If the operator V has the additional property (3.22) (the condition of t^{-2} -homogeneity of $-\Delta_B$), then B = 0. Hence $-\Delta_B$ is t^{-2} -homogeneous if and only if $-\Delta_B = -\Delta$.

- Albeverio S., Kurasov P. Singular perturbations of differential operators // Solvable Schrödinger Type Operators (London Math. Soc. Lect. Note Ser. 271). – Cambridge: Cambridge Univ. Press, 2000.
- Cycon H. L., Froese R. G., Kirsch W., Simon B. Schrödinger operators with applications to quantum mechanics and global geometry. – Berlin: Springer, 1987.
- Albeverio S., Dabrowski L., Kurasov P. Symmetries of Schrödinger operators with point interactions // Lett. Math. Phys. - 1998. - 45. - P. 33-47.
- Kiselev A. A., Pavlov B. S., Penkina N. N., Suturin M. G. Interaction symmetry in the theory of extensions technique // Teor. i Mat. Phys. – 1992. – 91. – P. 179–191.
- Bekker M. On non-densely defined invariant Hermitian contractions // Meth. Funct. Anal. and Top. - 2007. - 13. - P. 223-235.
- Hassi S., Kuzhel S. On symmetries in the theory of singular perturbations // Working Papers Univ. Vaasa, 2006. – 29 p.; http://lipas.uwasa.fi/julkaisu/sis.html.
- Jørgensen P. Commutators of Hamiltonian operators and nonabelian algebras // J. Math. Anal. and Appl. – 1980. – 73. – P. 115–133.
- Kochubei A. N. About symmetric operators commuting with a family of unitary operators // Funk. Anal. i Pril. – 1979. – 13. – P. 77–78.
- Kuzhel S., Moskalyova Ul. The Lax-Phillips scattering approach and singular perturbations of Schrödinger operator homogeneous with respect to scaling transformations // J. Math. Kyoto Univ. - 2005. - 45. - P. 265-286.
- Makarov K. A., Tsekanovskii E. On μ-scale invariant operators // Meth. Funct. Anal. and Top. 2007. – 13. – P. 181–186.
- Phillips R. S. The extension of dual subspaces invariant under an algebra // Proc. Int. Symp. Linear Spaces (Jerusalem, 1960). – Jerusalem Acad. Press, 1961. – P. 366–398.
- 12. Hille E., Phillips R. S. Functional analysis and semi-groups. Providence: Amer. Math. Soc., 1957.
- 13. Gorbachuk M. L., Gorbachuk V. I. Boundary-value problems for operator-differential equations. Dordrecht: Kluwer, 1991.
- Albeverio S., Kuzhel S., Nizhnik L. Singularly perturbed self-adjoint operators in scales of Hilbert spaces // Ukr. Math. J. – 2007. – 59, № 6. – P. 723 – 744.
- Arlinskii Yu. M., Tsekanovskii E. R. Some remarks of singular perturbations of self-adjoint operators // Meth. Funct. Anal. and Top. – 2003. – 9. – P. 287–308.
- Derkach V., Hassi S., de Snoo H. Singular perturbations of self-adjoint operators // Math. Phys., Anal., Geom. – 2003. – 6. – P. 349–384.
- Derkach V. A., Malamud M. M. Generalized resolvents and the boundary value problems for Hermitian operators with gaps // J. Funct. Anal. – 1991. – 95. – P. 1–95.

Received 26.12.07