S. Kuzhel’* (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv),
L. Vavrykovych (Nizhin State Univ.)

ON INFINITE-RANK SINGULAR PERTURBATIONS OF THE SCHRÖDINGER OPERATOR
 ПРО СИНГУЛЯРНІ ЗБУРЕННЯ ОПЕРАТОРА ШРЕДІНГЕРА НЕСКІНЧЕННОГО РАНГУ

Schrödinger operators with infinite-rank singular potentials $V=\sum_{i, j=1}^{\infty} b_{i j}\left\langle\psi_{j}, \cdot\right\rangle \psi_{i}$ are studied under the condition that singular elements ψ_{j} are $\xi_{j}(t)$-invariant with respect to scaling transformations in \mathbb{R}^{3}.

Вивчається оператор Шредінгера з сингулярними потенціалами нескінченного рангу $V=$ $=\sum_{i, j=1}^{\infty} b_{i j}\left\langle\psi_{j}, \cdot\right\rangle \psi_{i}$ за умови, що сингулярні елементи $\psi_{j} \in \xi_{j}(t)$-інваріантними відносно масштабних перетворень в \mathbb{R}^{3}.

1. Introduction. Let $-\Delta, \mathcal{D}(\Delta)=W_{2}^{2}\left(\mathbb{R}^{3}\right)$ be the Schrödinger operator in $L_{2}\left(\mathbb{R}^{3}\right)$ and let $\mathfrak{U}=\left\{U_{t}\right\}_{t \in(0, \infty)}$ be the collection of unitary operators $\left.U_{t} f(x)=t^{3 / 2} f(t x)\right)$ in $L_{2}\left(\mathbb{R}^{3}\right)$ (so-called scaling transformations).

It is well known $[1,2]$ that $-\Delta$ is t^{-2}-homogeneous with respect to \mathfrak{U} in the sense that

$$
\begin{equation*}
U_{t} \Delta u=t^{-2} \Delta U_{t} u \quad \forall t>0, \quad u \in W_{2}^{2}\left(\mathbb{R}^{3}\right) . \tag{1.1}
\end{equation*}
$$

In other words, the set \mathfrak{U} determines the structure of a symmetry and the property of $-\Delta$ to be t^{-2}-homogeneous with respect to \mathfrak{U} means that $-\Delta$ possesses a symmetry with respect to \mathfrak{U}.

Consider the heuristic expression

$$
\begin{equation*}
-\Delta+\sum_{i, j=1}^{\infty} b_{i j}\left\langle\psi_{j}, \cdot\right\rangle \psi_{i}, \quad \psi_{j} \in W_{2}^{-2}\left(\mathbb{R}^{3}\right), \quad b_{i j}=\overline{b_{j i}} \in \mathbb{C} . \tag{1.2}
\end{equation*}
$$

We will say that $\psi \in W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ is $\xi(t)$-invariant with respect to \mathfrak{U} if there exists a real function $\xi(t)$ such that

$$
\begin{equation*}
\mathbb{U}_{t} \psi=\xi(t) \psi \quad \forall t>0 \tag{1.3}
\end{equation*}
$$

where \mathbb{U}_{t} is the continuation of U_{t} onto $W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ (see Section 2 for details).
The aim of the paper is to study self-adjoint operator realizations of (1.2) assuming that all ψ_{j} are $\xi_{j}(t)$-invariant with respect to the set of scaling transformations \mathfrak{U}.

It is well known, see e.g. [1-4] that the Schrödinger operators perturbed by potentials homogeneous with respect to a certain set of unitary operators play an important role in applications to quantum mechanics. To a certain extent this generates a steady interests to the study of self-adjoint extensions with various properties of symmetry [5-11]. In particular, an abstract framework to study finite rank singular perturbations with symmetries for an arbitrary nonnegative operator was developed in [6].

[^0]In the present paper we generalize some results of [6] to the case of infinite rank perturbations of the Schrödinger operator in $L_{2}\left(\mathbb{R}^{3}\right)$. In particular, the description of all t^{-2}-homogeneous extensions of the symmetric operator $-\Delta_{\text {sym }}$ is obtained. Another interesting property studied here is the possibility to get the Friedrichs and the Kreinvon Neumann extension of $-\Delta_{\text {sym }}$ as solutions of a system of equations involving the functions t^{-2} and $\xi(t)$.

Throughout the paper $\mathcal{D}(A), \mathcal{R}(A)$, and $\operatorname{ker} A$ denote the domain, the range, and the null-space of a linear operator A, respectively, while $A \upharpoonright \mathcal{D}$ stands for the restriction of A to the set \mathcal{D}.
2. Auxiliary results. 2.1. Preliminaries. Since the Sobolev space $W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ coincides with the completion of $L_{2}\left(\mathbb{R}^{3}\right)$ with respect to the norm

$$
\begin{equation*}
\|f\|_{W_{2}^{-2}\left(\mathbb{R}^{3}\right)}=\left\|(-\Delta+I)^{-1} f\right\| \quad \forall f \in L_{2}\left(\mathbb{R}^{3}\right), \tag{2.1}
\end{equation*}
$$

the resolvent operator $(-\Delta+I)^{-1}$ can be continuously extended to an isometric mapping $(-\Delta+I)^{-1}$ from $W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ onto $L_{2}\left(\mathbb{R}^{3}\right)$ (we preserve the same notation for the extension). Hence, the relation

$$
\begin{equation*}
\langle\psi, u\rangle=\left((-\Delta+I) u,(-\Delta+I)^{-1} \psi\right), \quad u \in W_{2}^{-2}\left(\mathbb{R}^{3}\right) \tag{2.2}
\end{equation*}
$$

enables one to identify the elements $\psi \in W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ as linear functionals on $W_{2}^{2}\left(\mathbb{R}^{3}\right)$.
It follows from (1.1), (2.1) that the operators $U_{t} \in \mathfrak{U}$ can be continuously extended to bounded operators \mathbb{U}_{t} in $W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ and for any $\psi \in W_{2}^{-2}\left(\mathbb{R}^{3}\right)$

$$
\begin{equation*}
\left\langle\mathbb{U}_{t} \psi, u\right\rangle=\left\langle\psi, U_{t}^{*} u\right\rangle=\left\langle\psi, U_{1 / t} u\right\rangle . \tag{2.3}
\end{equation*}
$$

Since the elements U_{t} of \mathfrak{U} have the additional multiplicative property $U_{t_{1}} U_{t_{2}}=$ $=U_{t_{2}} U_{t_{1}}=U_{t_{1} t_{2}}$, relation (2.3) means that this relation holds for \mathbb{U}_{t} also. But then, equality (1.3) gives $\xi\left(t_{1}\right) \xi\left(t_{2}\right)=\xi\left(t_{1} t_{2}\right)\left(t_{i}>0\right)$ that is possible only if $\xi(t)=0$ or $\xi(t)=t^{-\alpha}(\alpha \in \mathbb{R})$ [12] (Chap. IV). Hence, if an element $\psi \in W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ is $\xi(t)$ invariant with respect to \mathfrak{U}, then $\xi(t)=t^{-\alpha}(\alpha \in \mathbb{R})$ (the case $\xi(t)=0$ is impossible because \mathbb{U}_{t} has inverse).
2.2. Operator realizations of $(\mathbf{2 . 1})$ in $L_{2}\left(\mathbb{R}^{3}\right)$. Let us consider (1.2) assuming that all elements ψ_{j} are $t^{-\alpha}$-invariant with respect to \mathfrak{U}. This means that all elements of the linear span \mathcal{X} of $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ also satisfy (1.3) with $\xi(t)=t^{-\alpha}$. Obviously, the same is true for the closure $\overline{\mathcal{X}}$ of \mathcal{X} in $W_{2}^{-2}\left(\mathbb{R}^{3}\right)$. Hence, if $\psi \in \overline{\mathcal{X}}$, then $\mathbb{U}_{t} \psi=t^{-\alpha} \psi$. This implies $\psi \in W_{2}^{-2}\left(\mathbb{R}^{3}\right) \backslash L_{2}\left(\mathbb{R}^{3}\right)$ (since the operator $U_{t}=\mathbb{U}_{t} \upharpoonright L_{2}\left(\mathbb{R}^{3}\right)$ is unitary in $L_{2}\left(\mathbb{R}^{3}\right)$. Thus $\mathcal{X} \cap L_{2}\left(\mathbb{R}^{3}\right)=\{0\}$.

In that case, the perturbation $V=\sum_{i, j=1}^{n} b_{i j}\left\langle\psi_{j}, \cdot\right\rangle \psi_{i}$ turns out to be singular and the formula

$$
\begin{gather*}
-\Delta_{\text {sym }}=-\Delta \upharpoonright \mathcal{D}\left(-\Delta_{\text {sym }}\right), \\
\mathcal{D}\left(-\Delta_{\text {sym }}\right)=\left\{u \in W_{2}^{-2}\left(\mathbb{R}^{3}\right):\left\langle\psi_{j}, u\right\rangle=0, \quad j \in \mathbb{N}\right\} \tag{2.4}
\end{gather*}
$$

determines a closed densely defined symmetric operator in $L_{2}\left(\mathbb{R}^{3}\right)$.
Following [1] a self-adjoint operator realization $-\widetilde{\Delta}$ of (1.2) in $L_{2}\left(\mathbb{R}^{3}\right)$ are defined by

$$
\begin{equation*}
-\widetilde{\Delta}=-\Delta_{R} \upharpoonright \mathcal{D}(-\widetilde{\Delta}), \quad \mathcal{D}(-\widetilde{\Delta})=\left\{f \in \mathcal{D}\left(-\Delta_{\mathrm{sym}}^{*}\right):-\Delta_{R} f \in L_{2}\left(\mathbb{R}^{3}\right)\right\} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
-\Delta_{R}=-\Delta+\sum_{i, j=1}^{\infty} b_{i j}\left\langle\psi_{j}^{\mathrm{ex}}, \cdot\right\rangle \psi_{i} \tag{2.6}
\end{equation*}
$$

is seen as a regularization of (1.2) defined on $\mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right)$. Here $\left\langle\psi_{j}^{\mathrm{ex}}, \cdot\right\rangle$ denote extensions of linear functionals $\left\langle\psi_{j}, \cdot\right\rangle$ onto $\mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right)$.

In what follows, the elements $\left\{\psi_{j}\right\}_{j=1}^{\infty}$ in (1.2) are supposed to be a Riesz basis of the subspace $\overline{\mathcal{X}} \subset W_{2}^{-2}\left(\mathbb{R}^{3}\right)$. Then the vectors $h_{j}=(-\Delta+I)^{-1} \psi_{j}, j \in \mathbb{N}$, form a Riesz basis of the defect subspace $\mathcal{H}=\operatorname{ker}\left(-\Delta_{\text {sym }}^{*}+I\right) \subset L_{2}\left(\mathbb{R}^{3}\right)$ of the symmetric operator $-\Delta_{\text {sym }}$ (see (2.2) and (2.4)).

Let $\left\{e_{j}\right\}_{1}^{\infty}$ be the canonical basis of the Hilbert space l^{2} (i.e., $e_{j}=(\ldots, 0,1,0, \ldots)$, where 1 occurs on the j th place only). Putting $\Psi e_{j}:=\psi_{j}, j \in \mathbb{N}$, we define an injective linear mapping $\Psi: l^{2} \rightarrow W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ such that $\mathcal{R}(\Psi)=\mathcal{X}$.

Let $\Psi^{*}: W_{2}^{2}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{C}^{n}$ be the adjoint operator of Ψ (i.e., $\langle u, \Psi d\rangle=\left(\Psi^{*} u, d\right)_{l^{2}}$ $\left.\forall u \in W_{2}^{2}\left(\mathbb{R}^{3}\right) \forall d \in l^{2}\right)$. It is easy to see that

$$
\begin{equation*}
\Psi^{*} u=\left(\left\langle\psi_{1}, u\right\rangle, \ldots,\left\langle\psi_{j}, u\right\rangle, \ldots\right) \quad \forall u \in W_{2}^{2}\left(\mathbb{R}^{3}\right) \tag{2.7}
\end{equation*}
$$

It follows from (2.7) that the extended functionals $\left\langle\psi_{j}^{\mathrm{ex}}, \cdot\right\rangle$ in (2.6) are completely defined by an extension Ψ_{R}^{*} of Ψ^{*} onto $\mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right)$, i.e.,

$$
\begin{equation*}
\Psi_{R}^{*} f=\left(\left\langle\psi_{1}^{\mathrm{ex}}, f\right\rangle, \ldots,\left\langle\psi_{j}^{\mathrm{ex}}, f\right\rangle, \ldots\right) \quad \forall f \in \mathcal{D}\left(-\Delta_{\mathrm{sym}}^{*}\right) \tag{2.8}
\end{equation*}
$$

Since $\mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right)=W_{2}^{2}\left(\mathbb{R}^{3}\right) \dot{+} \mathcal{H}$, where $\mathcal{H}=\operatorname{ker}\left(-\Delta_{\text {sym }}^{*}+I\right)$ the formula (2.8) can be rewritten as

$$
\begin{equation*}
\Psi_{R}^{*} f=\Psi_{R}^{*}\left(u+\sum_{k=1}^{\infty} d_{k} h_{k}\right)=\Psi^{*} u+R d \quad \forall f \in \mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right) \tag{2.9}
\end{equation*}
$$

where $u \in W_{2}^{2}\left(\mathbb{R}^{3}\right), d=\left(d_{1}, d_{2}, \ldots\right) \in l_{2}$, and R is an arbitrary bounded operator acting in l^{2}.

Using the definition of Ψ and Ψ_{R}^{*}, the regularization (2.6) takes the form

$$
\begin{equation*}
-\Delta_{R}=-\Delta+\Psi B \Psi_{R}^{*} \tag{2.10}
\end{equation*}
$$

where the self-adjoint operator B is defined in l^{2} by the infinite-dimensional Hermitian matrix $\mathbf{B}=\left\|b_{i j}\right\|_{i, j=1}^{\infty}$.
2.3. Description in terms of boundary triplets. The formulas (2.5) and (2.10) do not provide an explicit description of operator realizations $-\widetilde{\Delta}$ of (1.2) through the parameters $b_{i j}$ of the singular perturbation V. To get the required description the method of boundary triplets is now incorporated.

Definition 2.1 [13]. Let $A_{\text {sym }}$ be a closed densely defined symmetric operator in a Hilbert space \mathfrak{H}. A triplet $\left(N, \Gamma_{0}, \Gamma_{1}\right)$, where N is an auxiliary Hilbert space and Γ_{0}, Γ_{1} are linear mappings of $\mathcal{D}\left(A_{\mathrm{sym}}^{*}\right)$ into N, is called a boundary triplet of A_{sym}^{*} if $\left(A_{\mathrm{sym}}^{*} f, g\right)-\left(f, A_{\mathrm{sym}}^{*} g\right)=\left(\Gamma_{1} f, \Gamma_{0} g\right)_{N}-\left(\Gamma_{0} f, \Gamma_{1} g\right)_{N}$ for all $f, g \in \mathcal{D}\left(A_{\mathrm{sym}}^{*}\right)$ and the mapping $\left(\Gamma_{0}, \Gamma_{1}\right): \mathcal{D}\left(A_{\mathrm{sym}}^{*}\right) \rightarrow N \oplus N$ is surjective.

The next two results (Lemma 2.1 and Theorem 2.3) are some 'folk-lore' of the extension theory (see, e.g., [14-16]). Basically their proofs are the same as in [14], where the case of finite defect numbers has been considered.

Lemma 2.1. Let R in (2.9) be a bounded self-adjoint operator in l^{2}. Then the triplet $\left(l^{2}, \Gamma_{0}, \Gamma_{1}\right)$, where the linear operators $\Gamma_{i}: \mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right) \rightarrow l^{2}$ are defined by the formulas

$$
\begin{equation*}
\Gamma_{0} f=\Psi_{R}^{*} f, \quad \Gamma_{1} f=-\Psi^{-1}(-\Delta+I) h \tag{2.11}
\end{equation*}
$$

(where $f=u+h, u \in W_{2}^{2}\left(\mathbb{R}^{3}\right), h \in \mathcal{H}$) is a boundary triplet of $-\Delta_{\text {sym }}^{*}$.
Theorem 2.1. The operator realization $-\widetilde{\Delta}$ of (1.2) defined by (2.5) and (2.10) is a self-adjoint extension of $-\Delta_{\text {sym }}$ which coincides with the operator

$$
\begin{equation*}
-\Delta_{B}=-\Delta_{\text {sym }}^{*} \upharpoonright \mathcal{D}\left(\Delta_{B}\right), \quad \mathcal{D}\left(\Delta_{B}\right)=\left\{f \in \mathcal{D}\left(\Delta_{\text {sym }}^{*}\right): B \Gamma_{0} f=\Gamma_{1} f\right\} \tag{2.12}
\end{equation*}
$$

where Γ_{i} are defined by (2.11) and a self-adjoint operator B is defined in l^{2} by the Hermitian matrix $\mathbf{B}=\left\|b_{i j}\right\|_{i, j=1}^{\infty}$.
3. t^{α}-Invariant singular perturbations of $-\Delta$. 3.1. Description of all t^{α} invariant elements. An additional study of \mathbb{U}_{t} allows one to restrict the variation of the parameter α for $t^{-\alpha}$-invariant elements.

Theorem 3.1 [6]. $t^{-\alpha}$-Invariant elements $\psi \in W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ with respect to scaling transformations exist if and only if $0<\alpha<2$.

Proof. For the convenience of the reader we briefly outline the principal stages of the proof. Consider a family of self-adjoint operators on $L_{2}\left(\mathbb{R}^{3}\right)$

$$
\begin{equation*}
G_{t}=\left(-t^{-2} \Delta+I\right)(-\Delta+I)^{-1}, \quad t>0 \tag{3.1}
\end{equation*}
$$

It follows from (1.1), (2.2), and (2.3) that for all $u \in W_{2}^{2}\left(\mathbb{R}^{3}\right)$

$$
\begin{gather*}
\left\langle\mathbb{U}_{t} \psi, u\right\rangle=\left((-\Delta+I) U_{1 / t} u, h\right)=\left(U_{1 / t}\left(-t^{-2} \Delta+I\right) u, h\right)= \\
=\left(\left(-t^{-2} \Delta+I\right) u, U_{t} h\right)=\left(G_{t}(-\Delta+I) u, U_{t} h\right)=\left((-\Delta+I) u, G_{t} U_{t} h\right) \tag{3.2}
\end{gather*}
$$

where $h=(-\Delta+I)^{-1} \psi$. On the other hand, if ψ is $t^{-\alpha}$-invariant, then

$$
\left\langle\mathbb{U}_{t} \psi, u\right\rangle=t^{-\alpha}\langle\psi, u\rangle=\left((-\Delta+I) u, t^{-\alpha} h\right) .
$$

Combining the obtained relation with (2.3) one gets that an element ψ is $t^{-\alpha}$-invariant with respect to scaling transformations if and only if

$$
\begin{equation*}
G_{t} U_{t} h=t^{-\alpha} h, \quad t>0, \quad h=\left(\mathbb{A}_{0}+I\right)^{-1} \psi \tag{3.3}
\end{equation*}
$$

The formula for G_{t} in (3.1) with an evident reasoning leads to the estimates

$$
\alpha(t)\|h\|=\alpha(t)\left\|U_{t} h\right\|<\left\|G_{t} U_{t} h\right\|<\beta(t)\left\|U_{t} h\right\|=\beta(t)\|h\|,
$$

where $\alpha(t)=\min \left\{1, t^{-2}\right\}$ and $\beta(t)=\max \left\{1, t^{-2}\right\}$. Therefore $\alpha(t)<t^{-\alpha}<\beta(t)$ for all $t>0$. This estimation can be satisfied for $0<\alpha<2$ only.

To complete the proof it suffices to construct $t^{-\alpha}$-invariant elements ψ for $0<\alpha<2$.

Fix $m(w) \in L_{2}\left(S^{2}\right)$, where $L_{2}\left(S^{2}\right)$ is the Hilbert space of square-integrable functions on the unit sphere S^{2} in \mathbb{R}^{3}, and determine the functional $\psi(m, \alpha) \in W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ by the formula

$$
\begin{equation*}
\langle\psi(m, \alpha), u\rangle=\int_{\mathbb{R}^{3}} \frac{\overline{m(w)}}{|y|^{3 / 2-\alpha}\left(|y|^{2}+1\right)}\left(|y|^{2}+1\right) \widehat{u}(y) d y \quad\left(y=|y| w \in \mathbb{R}^{3}\right) \tag{3.4}
\end{equation*}
$$

where $\widehat{u}(y)=\frac{1}{(2 \pi)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{i x \cdot y} u(x) d x$ is the Fourier transformation of $u(\cdot) \in W_{2}^{2}\left(\mathbb{R}^{3}\right)$.
It is easy to verify that

$$
\begin{equation*}
\left(\widehat{U_{1 / t} u}\right)(y)=\frac{1}{(2 \pi t)^{3 / 2}} \int_{\mathbb{R}^{3}} e^{i y \cdot x} u(x / t) d x=U_{t} \widehat{u}(y)=t^{3 / 2} \widehat{u}(t y) . \tag{3.5}
\end{equation*}
$$

Using (3.4) and (3.5), one obtains $\left\langle\psi(m, \alpha), U_{1 / t} u\right\rangle=t^{-\alpha}\langle\psi(m, \alpha), u\rangle$ for all $u \in$ $\in W_{2}^{2}\left(\mathbb{R}^{3}\right)$. By (1.3) and (2.3) this means that $\psi(m, \alpha)$ is $t^{-\alpha}$-invariant with respect to \mathfrak{U}.

Theorem 3.1 is proved.
The next statement describes all $t^{-\alpha}$-invariant elements for a fixed $\alpha \in(0,2)$.
Proposition 3.1. An element $\psi \in W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ is $t^{-\alpha}$-invariant with respect to scaling transformations if and only if $\psi=\psi(m, \alpha)$ where $\psi(m, \alpha)$ is defined by (3.4).

Proof. Let $\psi \in W_{2}^{-2}\left(\mathbb{R}^{3}\right)$ be $t^{-\alpha}$-invariant with respect to $\mathfrak{U}=\left\{U_{t}\right\}_{t \in(0, \infty)}$. This means that (3.3) holds for $h=\left(\mathbb{A}_{0}+I\right)^{-1} \psi$. Using (3.5) one can rewrite (3.3) as

$$
\begin{equation*}
\frac{t^{-2}|y|^{2}+1}{|y|^{2}+1} t^{-3 / 2} \widehat{h}\left(\frac{y}{t}\right)=t^{-\alpha} \widehat{h}(y), \quad t>0 \tag{3.6}
\end{equation*}
$$

where the equality is understood in the sense of $L_{2}\left(\mathbb{R}^{3}\right)$. Setting $t=|y|,(w=y /|y|)$ one derives that (3.6) holds if and only if

$$
\begin{equation*}
\widehat{h}(y)=\frac{m(w)}{|y|^{3 / 2-\alpha}\left(|y|^{2}+1\right)}, \quad m(w)=2 \widehat{h}(w) \tag{3.7}
\end{equation*}
$$

where $m(w) \in L_{2}\left(S^{2}\right)$ (because $\widehat{h}(w) \in L_{2}\left(\mathbb{R}^{3}\right)$). Combining (3.7) with (2.2) and (3.4) one concludes that $\psi=\psi(m, \alpha)$.

Proposition 3.1 is proved.
Remark 3.1. Proposition 3.1 generalizes Proposition 3.1 in [9] where the case $\alpha=3 / 2$ was considered.
3.2. \boldsymbol{t}^{-2}-Homogeneous extensions of $-\Delta_{\text {sym }}$ transversal to $-\Delta$. Denote $-\Delta_{R}=-\Delta_{\text {sym }}^{*} \upharpoonright \operatorname{ker} \Gamma_{0}$, where Γ_{0} is defined by (2.11). Since $\left(l^{2}, \Gamma_{0}, \Gamma_{1}\right)$ is a boundary triplet of $-\Delta_{\text {sym }}^{*}$ and the initial operator $-\Delta$ coincides with $-\Delta_{\text {sym }}^{*} \upharpoonright \operatorname{ker} \Gamma_{1}$, one concludes that $-\Delta_{R}$ and $-\Delta$ are transversal self-adjoint extensions of $-\Delta_{\text {sym }}$, i.e., $\mathcal{D}\left(-\Delta_{R}\right) \cap \mathcal{D}(-\Delta)=\mathcal{D}\left(-\Delta_{\text {sym }}\right)$ and $\mathcal{D}\left(-\Delta_{R}\right)+\mathcal{D}(-\Delta)=\mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right)$ [13].

In view of (1.3) and (2.3) the $t^{-\alpha_{j}}$-invariance of an element ψ_{j} in (1.2) is equivalent to the relation

$$
\begin{equation*}
t^{-\alpha_{j}}\left\langle\psi_{j}, u\right\rangle=\left\langle\psi_{j}, U_{1 / t} u\right\rangle \quad \forall u \in W_{2}^{2}\left(\mathbb{R}^{3}\right), \quad t>0 \tag{3.8}
\end{equation*}
$$

It turns out that the preservation of (3.8) for the extended functionals $\left\langle\psi_{j}^{\mathrm{ex}}, \cdot\right\rangle$ is equivalent to the t^{-2}-homogeneity of $-\Delta_{R}$.

Proposition 3.2. Let ψ_{j}^{ex} be defined by (2.8). Then the relations

$$
\begin{equation*}
t^{-\alpha_{j}}\left\langle\psi_{j}^{\mathrm{ex}}, f\right\rangle=\left\langle\psi_{j}^{\mathrm{ex}}, U_{1 / t} f\right\rangle \quad \forall j \in \mathbb{N} \quad \forall t>0 \tag{3.9}
\end{equation*}
$$

hold for all $f \in \mathcal{D}\left(-\Delta_{\mathrm{sym}}^{*}\right)$ if and only if the operator $-\Delta_{R}$ is t^{-2}-homogeneous with respect to $\mathfrak{U}=\left\{U_{t}\right\}_{t \in(0, \infty)}$.

Proof. It follows from (2.2) and (2.3) that

$$
\left\langle\psi_{j}, U_{t} u\right\rangle=\left\langle\mathbb{U}_{1 / t} \psi_{j}, u\right\rangle=t^{\alpha_{j}}\left\langle\psi_{j}, u\right\rangle=0
$$

for every $u \in \mathcal{D}\left(-\Delta_{\text {sym }}\right)$. Thus $U_{t}: \mathcal{D}\left(-\Delta_{\text {sym }}\right) \rightarrow \mathcal{D}\left(-\Delta_{\text {sym }}\right)$ and, by (1.1) and (2.4), the symmetric operator $-\Delta_{\text {sym }}$ is t^{-2}-homogeneous: $U_{t} \Delta_{\text {sym }}=t^{-2} \Delta_{\text {sym }} U_{t}$. But then the adjoint $-\Delta_{\text {sym }}^{*}$ of $-\Delta_{\text {sym }}$ is also t^{-2}-homogeneous. This means that a self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{\text {sym }}$ is t^{-2}-homogeneous with respect to $\mathfrak{U}=\left\{U_{t}\right\}_{t \in(0, \infty)}$ if and only if $U_{t} \mathcal{D}(-\widetilde{\Delta})=\mathcal{D}(-\widetilde{\Delta})$ for all $t>0$. Since $U_{t} U_{1 / t}=I$ the last equality is equivalent to the inclusion

$$
\begin{equation*}
U_{t} \mathcal{D}(-\widetilde{\Delta}) \subset \mathcal{D}(-\widetilde{\Delta}) \quad \forall t>0 \tag{3.10}
\end{equation*}
$$

Using (2.8) one can rewrite relations (3.9) as follows:

$$
\begin{equation*}
\Xi(t) \Psi_{R}^{*} f=\Psi_{R}^{*} U_{1 / t} f \quad \forall f \in \mathcal{D}\left(-\Delta_{\mathrm{sym}}^{*}\right) \quad \forall t>0 \tag{3.11}
\end{equation*}
$$

where a bounded invertible operator $\Xi(t)$ in l^{2} is defined by the formulas

$$
\begin{equation*}
\Xi(t) e_{j}=t^{-\alpha_{j}} e_{j}, \quad j \in \mathbb{N} \tag{3.12}
\end{equation*}
$$

Since $\mathcal{D}\left(-\Delta_{0}\right)=\operatorname{ker} \Gamma_{0}=\operatorname{ker} \Psi_{R}^{*}$, (3.11) implies that $\mathcal{D}\left(-\Delta_{R}\right)$ satisfies (3.10). Thus $-\Delta_{R}$ is t^{-2}-homogeneous with respect to \mathfrak{U}.

Conversely, assume that $-\Delta_{R}$ is t^{-2}-homogeneous. According to (2.9) and (3.10) this is equivalent to the relation

$$
\begin{equation*}
\Psi_{R}^{*} U_{1 / t} f=0 \quad \forall f=u+\sum_{j=1}^{\infty} d_{j} h_{j} \in \mathcal{D}\left(-\Delta_{R}\right) \quad \forall t>0 \tag{3.13}
\end{equation*}
$$

Let us study (3.13) more detail. Using (3.1) and (3.3) it is seen that

$$
\begin{gathered}
U_{1 / t} h_{j}=t^{-2} G_{1 / t} U_{1 / t} h_{j}+\left(I-t^{-2} G_{1 / t}\right) U_{1 / t} h_{j}= \\
=\frac{t^{-2}}{t^{-\alpha_{j}}} h_{j}+\left(1-t^{-2}\right)(-\Delta+I)^{-1} U_{1 / t} h_{j}
\end{gathered}
$$

where $h_{j}=(-\Delta+I)^{-1} \psi_{j}$. Therefore,

$$
\begin{equation*}
U_{1 / t} f=v+\sum_{j=1}^{\infty} t^{\alpha_{j}-2} d_{j} h_{j} \tag{3.14}
\end{equation*}
$$

where the element $v=U_{1 / t} u+\left(1-t^{-2}\right)(-\Delta+I)^{-1} U_{1 / t} \sum_{i=1}^{\infty} d_{j} h_{j}$ belongs to $\mathcal{D}(-\Delta)$. Substituting the obtained expression for $U_{1 / t} f$ into (3.13) and using (2.9) one gets

$$
\begin{equation*}
\Psi^{*} U_{1 / t} u+\left(1-t^{-2}\right) \Psi^{*}(-\Delta+I)^{-1} U_{1 / t} \sum_{j=1}^{\infty} d_{j} h_{j}+t^{-2} R \Xi^{-1}(t) d=0 \tag{3.15}
\end{equation*}
$$

Here $\Psi^{*} U_{1 / t} u=\Xi(t) \Psi^{*} u$ by (2.3) and (2.7). Moreover $\Psi^{*} u=-R d$ since the vector $f=u+\sum_{j=1}^{\infty} d_{j} h_{j}$ belongs to $\mathcal{D}\left(-\Delta_{R}\right)=\operatorname{ker} \Psi_{R}^{*}$. Thus $\Psi^{*} U_{1 / t} u=-\Xi(t) R d$.

On the other hand, employing (2.2) and (2.7), one gets

$$
\Psi^{*}(-\Delta+I)^{-1} U_{1 / t} \sum_{j=1}^{\infty} d_{j} h_{j}=K_{t} d
$$

where K_{t} is a bounded operator in l^{2} that is defined by the infinite-dimensional matrix $\mathbf{K}=\left\|k_{i j}\right\|_{i, j=1}^{\infty}, k_{i j}=\left(h_{j}, U_{t} h_{i}\right)$ with respect to the canonical basis $\left\{e_{j}\right\}_{1}^{\infty}$ (see Subsection 2.2). The obtained relations allow one to rewrite (3.15) as follows:

$$
\left[-\Xi(t) R+t^{-2} R \Xi^{-1}(t)+\left(1-t^{-2}\right) K_{t}\right] d=0 \quad \forall t>0
$$

where d is an arbitrary element from l^{2} (it follows from the presentation $f \in \mathcal{D}\left(-\Delta_{R}\right)$ in (3.13) and the transversality $-\Delta$ and $-\Delta_{R}$ with respect to $-\Delta_{\text {sym }}$). Therefore, the t^{-2}-homogeneity of $-\Delta_{R}$ is equivalent to the operator equality in l^{2} :

$$
\begin{equation*}
\Xi(t) R-t^{-2} R \Xi^{-1}(t)=\left(1-t^{-2}\right) K_{t} \quad \forall t>0 . \tag{3.16}
\end{equation*}
$$

Finally, employing (2.9) and (3.15) it is easy to see that equality (3.16) is equivalent to (3.11). Therefore, the extended functionals $\left\langle\psi_{j}^{\mathrm{ex}}, \cdot\right\rangle$ satisfy (3.9).

Proposition 3.2 is proved.
Remark 3.2. The result similar to Proposition 3.2 was proved in [6] for the case of finite rank perturbations of a self-adjoint operator acting in an abstract Hilbert space \mathfrak{H}.

Theorem 3.2. Let $\alpha_{j} \in(1,2)$ for any $t^{-\alpha_{j}}$-invariant element ψ_{j} in the definition (2.4) of $-\Delta_{\text {sym }}$. Then there exists a unique t^{-2}-homogeneous self-adjoint extension of $-\Delta_{\text {sym }}$ transversal to $-\Delta$.

Proof. It follows from the general theory of boundary triplets [13, 17] that an arbitrary self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{\text {sym }}$ transversal to $-\Delta$ coincides with $-\Delta_{R}$ for a certain choice of a bounded self-adjoint operator R in l^{2}. As was shown in the proof of Proposition 3.2, $-\Delta_{R}$ is t^{-2}-homogeneous with respect to scaling transformations if and only if the operator R is a solution of (3.16) that does not depend on $t>0$. Using (3.12) and the definition of K_{t} one can rewrite (3.16) componentwise as follows:

$$
\begin{equation*}
\left(t^{-\alpha_{i}}-t^{\alpha_{j}-2}\right) r_{i j}=\left(1-t^{-2}\right)\left(h_{j}, U_{t} h_{i}\right), \quad \mathbf{R}=\left\|r_{i j}\right\|_{i, j=1}^{\infty} \tag{3.17}
\end{equation*}
$$

where the infinite-dimensional matrix \mathbf{R} is the matrix presentation of R with respect to the canonical basis $\left\{e_{j}\right\}_{1}^{\infty}$.

Let us calculate $\left(h_{j}, U_{t} h_{i}\right)$ in (3.17). According to Proposition 3.1, $t^{-\alpha_{j}}$-invariant elements ψ_{j} in (1.2) have the form $\psi_{j}=\psi\left(m_{j}, \alpha_{j}\right)$, where $m_{j}(\cdot) \in L_{2}\left(S^{2}\right)$ and elements $h_{j}=(-\Delta+I)^{-1} \psi\left(m_{j}, \alpha_{j}\right)$ are defined by (3.7).

It follows from (3.5) that

$$
\widehat{U_{t} h_{i}}(y)=t^{-3 / 2} \widehat{h}\left(\frac{y}{t}\right)=t^{2-\alpha_{i}} \frac{m_{i}(w)}{|y|^{3 / 2-\alpha_{i}}\left(|y|^{2}+t^{2}\right)} .
$$

Hence,

$$
\begin{gathered}
\left(h_{j}, U_{t} h_{i}\right)=t^{2-\alpha_{i}} \int_{\mathbb{R}^{3}} \frac{m_{j}(w) \overline{m_{i}(w)}}{|y|^{3-\left(\alpha_{j}+\alpha_{i}\right)}\left(|y|^{2}+t^{2}\right)\left(|y|^{2}+1\right)} d y= \\
=\left(m_{j}, m_{i}\right)_{L_{2}} \int_{0}^{\infty} \frac{t^{2-\alpha_{i}}}{|y|^{1-\left(\alpha_{i}+\alpha_{j}\right)}\left(|y|^{2}+t^{2}\right)\left(|y|^{2}+1\right)} d|y|= \\
=c_{i j} \frac{t^{\alpha_{j}}-t^{2-\alpha_{i}}}{t^{2}-1}\left(m_{j}, m_{i}\right)_{L_{2}},
\end{gathered}
$$

where $c_{i j}=\int_{0}^{\infty} \frac{|y|^{3-\left(\alpha_{i}+\alpha_{j}\right)}}{|y|^{2}+1} d|y|$ and $\left(m_{i}, m_{j}\right)_{L_{2}}=\int_{S^{2}} m_{i}(w) \overline{m_{j}(w)} d w$ is the scalar product in $L_{2}\left(S^{2}\right)$. Substituting the obtained expression for $\left(h_{j}, U_{t} h_{i}\right)$ into (3.17) one finds $r_{i j}=-c_{i j}\left(m_{j}, m_{i}\right)_{L_{2}}$. The matrix $\mathbf{R}=\left\|r_{i j}\right\|_{i, j=1}^{\infty}$ determined in such a way is the matrix representation of a unique solution R of (3.16) that does not depend on $t>0$.

Theorem 3.2 is proved.
3.3. The Friedrichs and Krein-von Neumann extensions. As was shown in the proof of Proposition 3.2, the symmetric operator $-\Delta_{\text {sym }}$ is t^{-2}-homogeneous with respect to scaling transformations. According to general results obtained in [6, 10], the Friedrichs $-\Delta_{F}$ and the Krein - von Neumann $-\Delta_{N}$ extensions of $-\Delta_{\text {sym }}$ are also t^{-2}-homogeneous.

Theorem 3.3. Let $\alpha_{j} \in(1,2)$ for any $t^{-\alpha_{j}}$-invariant element ψ_{j} in the definition (2.4) of $-\Delta_{\text {sym }}$ and let the spectrum of $-\Delta_{R}$, where R is a unique solution of (3.16) does not cover real line \mathbb{R}. Then the Krein-von Neumann extension $-\Delta_{N}$ coincides with $-\Delta_{R}$ and the Friedrichs extension $-\Delta_{F}$ coincides with the initial operator $-\Delta$.

Proof. A simple analysis of (3.7) shows that $h_{j} \in L_{2}\left(\mathbb{R}^{3}\right) \backslash W_{2}^{1}\left(\mathbb{R}^{3}\right)$ for $1 \leq \alpha<2$, i.e., singular elements ψ_{j} in (2.4) form a $W_{2}^{-1}\left(\mathbb{R}^{3}\right)$-independent system. This means that the initial operator $-\Delta$ coincides with the Friedrichs extension $-\Delta_{F}$.

Since $-\Delta_{R}$ is t^{-2}-homogeneous and $\sigma\left(-\Delta_{R}\right) \neq \mathbb{R}$, the equality

$$
U_{t}\left(-\Delta_{R}-\lambda I\right)=t^{-2}\left(-\Delta_{R}-t^{2} \lambda I\right) U_{t}, \quad t>0
$$

means that the spectrum of $-\Delta_{R}$ is nonnegative. Therefore, $-\Delta_{R}$ is a nonnegative extension of $-\Delta_{\text {sym }}$ transversal to the Friedrichs extension $-\Delta$. But then the Krein - von Neumann extension $-\Delta_{N}$ is also transversal to $-\Delta$. Since $-\Delta_{N}$ is t^{-2}-homogeneous, Theorem 3.2 gives $-\Delta_{N}=-\Delta_{R}$ that completes the proof.
3.4. \boldsymbol{t}^{-2}-Homogeneous extensions of $-\Delta_{\mathrm{sym}}$. Let us consider the heuristic expression (1.2), where all elements ψ_{j} are assumed to be $t^{-\alpha}$-invariant with respect to scaling transformations, i.e., $\psi_{j}=\psi\left(m_{j}, \alpha\right)$, where $\alpha \in(1,2)$ is fixed.

It follows from (1.3) and (2.3) that the singular potential $V=\sum_{i, j=1}^{\infty} b_{i j}\left\langle\psi_{j}, \cdot\right\rangle \psi_{i}$ in (1.2) is $t^{-2 \alpha}$-homogeneous in the sense that

$$
\mathbb{U}_{t} V u=t^{-2 \alpha} V U_{t} u \quad \forall u \in W_{2}^{2}\left(\mathbb{R}^{3}\right)
$$

Hence, the initial operator $-\Delta$ and its singular perturbation V possess the homogeneity property with different index of homogeneity: t^{-2} and $t^{-2 \alpha}$, respectively. In view of this, it is natural to expect that any self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{\text {sym }}$ having the t^{-2}-homogeneity property (as well as $-\Delta$ and $-\Delta_{R}$) is closely related to $-\Delta$ and $-\Delta_{R}$.

Let $\left(l^{2}, \Gamma_{0}, \Gamma_{1}\right)$ be a boundary triplet of $-\Delta_{\text {sym }}^{*}$ defined by (2.11), where R is a unique solution of (3.16).

Theorem 3.4. Let all elements ψ_{j} be $t^{-\alpha}$-invariant with respect to scaling transformations, where $\alpha \in(1,2)$ is fixed. Then an arbitrary t^{-2}-homogeneous self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{\mathrm{sym}}$ coincides with the restriction of $-\Delta_{\mathrm{sym}}^{*}$ onto the domain

$$
\begin{equation*}
\mathcal{D}(-\widetilde{\Delta})=\left\{f \in \mathcal{D}\left(-\Delta_{\mathrm{sym}}^{*}\right):(I-V) \Gamma_{0} f=i(I+V) \Gamma_{1} f\right\} \tag{3.18}
\end{equation*}
$$

where V is taken from the set of unitary and self-adjoint operators in l^{2}.
Proof. If Γ_{0} is a boundary operator defined by (2.11), where R is a unique solution of (3.16), then formulas (3.11) and (3.12) give

$$
\begin{equation*}
\Gamma_{0} U_{1 / t} f=t^{-\alpha} \Gamma_{0} f \quad \forall f \in \mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right) \quad \forall t>0 \tag{3.19}
\end{equation*}
$$

On the other hand, using (3.14), one derives

$$
\begin{equation*}
\Gamma_{1} U_{1 / t} f=t^{\alpha-2} \Gamma_{1} f \quad \forall f \in \mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right) \quad \forall t>0 \tag{3.20}
\end{equation*}
$$

It is known [13] that an arbitrary self-adjoint extension $-\widetilde{\Delta}$ of $-\Delta_{\text {sym }}$ is the restriction of $-\Delta_{\text {sym }}^{*}$ onto the domain (3.18) where V is a unitary operator in l^{2}. By (3.19), (3.20),

$$
\begin{equation*}
U_{1 / t} \mathcal{D}(-\widetilde{\Delta})=\left\{f \in \mathcal{D}\left(-\Delta_{\text {sym }}^{*}\right): t^{\alpha}(I-V) \Gamma_{0} f=i t^{2-\alpha}(I+V) \Gamma_{1} f\right\} . \tag{3.21}
\end{equation*}
$$

The operator $-\widetilde{\Delta}$ is t^{-2}-homogeneous if and only if its domain $\mathcal{D}(-\widetilde{\Delta})$ satisfies (3.10). Comparing (3.18) and (3.21) and taking into account that $\alpha>1$, one concludes that (3.10) holds if and only if $\Gamma_{0} \mathcal{D}(-\widetilde{\Delta})=\operatorname{ker}(I-V)$ and $\Gamma_{1} \mathcal{D}(-\widetilde{\Delta})=\operatorname{ker}(I+V)$. These relations give

$$
\begin{equation*}
\operatorname{ker}(I-V) \oplus \operatorname{ker}(I+V)=l^{2} \tag{3.22}
\end{equation*}
$$

since $-\widetilde{\Delta}$ is a self-adjoint operator and $\left(l^{2}, \Gamma_{0}, \Gamma_{1}\right)$ is a boundary triplet of $-\Delta_{\text {sym }}^{*}$. The obtained identity implies that the unitary operator V also is self-adjoint.

Conversely, if V is unitary and self-adjoint, then (3.22) is satisfied. Hence, (3.10) holds and $-\widetilde{\Delta}$ is t^{-2}-homogeneous.

Theorem 3.4 is proved.
Corollary 3.1. There are no t^{-2}-homogeneous operators among nontrivial $(\neq-\Delta)$ self-adjoint operator realizations of (1.2).

Proof. According to Theorem 2.1 an operator realization $-\Delta_{B}$ of (1.2) is defined by (2.12). It follows from (2.12) and (3.18) that $B=-i(I-V)(I+V)^{-1}$. If the operator V has the additional property (3.22) (the condition of t^{-2}-homogeneity of $-\Delta_{B}$), then $B=0$. Hence $-\Delta_{B}$ is t^{-2}-homogeneous if and only if $-\Delta_{B}=-\Delta$.

1. Albeverio S., Kurasov P. Singular perturbations of differential operators // Solvable Schrödinger Type Operators (London Math. Soc. Lect. Note Ser. 271). - Cambridge: Cambridge Univ. Press, 2000.
2. Cycon H. L., Froese R. G., Kirsch W., Simon B. Schrödinger operators with applications to quantum mechanics and global geometry. - Berlin: Springer, 1987.
3. Albeverio S., Dabrowski L., Kurasov P. Symmetries of Schrödinger operators with point interactions // Lett. Math. Phys. - 1998. - 45. - P. 33-47.
4. Kiselev A. A., Pavlov B. S., Penkina N. N., Suturin M. G. Interaction symmetry in the theory of extensions technique // Teor. i Mat. Phys. - 1992. - 91. - P. 179-191.
5. Bekker M. On non-densely defined invariant Hermitian contractions // Meth. Funct. Anal. and Top. - 2007. - 13. - P. 223-235.
6. Hassi S., Kuzhel S. On symmetries in the theory of singular perturbations // Working Papers Univ. Vaasa, 2006. - 29 p.; http://lipas.uwasa.fi/julkaisu/sis.html.
7. Jørgensen P. Commutators of Hamiltonian operators and nonabelian algebras // J. Math. Anal. and Appl. - 1980. - 73. - P. 115-133.
8. Kochubei A. N. About symmetric operators commuting with a family of unitary operators // Funk. Anal. i Pril. - 1979. - 13. - P. 77-78.
9. Kuzhel S., Moskalyova Ul. The Lax-Phillips scattering approach and singular perturbations of Schrödinger operator homogeneous with respect to scaling transformations // J. Math. Kyoto Univ. - 2005. - 45. - P. 265-286.
10. Makarov K. A., Tsekanovskii E. On μ-scale invariant operators // Meth. Funct. Anal. and Top. 2007. - 13. - P. 181-186.
11. Phillips R. S. The extension of dual subspaces invariant under an algebra // Proc. Int. Symp. Linear Spaces (Jerusalem, 1960). - Jerusalem Acad. Press, 1961. - P. 366-398.
12. Hille E., Phillips R. S. Functional analysis and semi-groups. - Providence: Amer. Math. Soc., 1957.
13. Gorbachuk M. L., Gorbachuk V. I. Boundary-value problems for operator-differential equations. Dordrecht: Kluwer, 1991.
14. Albeverio S., Kuzhel S., Nizhnik L. Singularly perturbed self-adjoint operators in scales of Hilbert spaces // Ukr. Math. J. - 2007. - 59, № 6. - P. 723-744.
15. Arlinskii Yu. M., Tsekanovskii E. R. Some remarks of singular perturbations of self-adjoint operators // Meth. Funct. Anal. and Top. - 2003. - 9. - P. 287-308.
16. Derkach V., Hassi S., de Snoo H. Singular perturbations of self-adjoint operators // Math. Phys., Anal., Geom. - 2003. - 6. - P. 349-384.
17. Derkach V. A., Malamud M. M. Generalized resolvents and the boundary value problems for Hermitian operators with gaps // J. Funct. Anal. - 1991. - 95. - P. 1-95.

[^0]: *Supported by DFFD of Ukraine (project 14.01/003).

