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A LOCALLY COMPACT QUANTUM GROUP
OF TRIANGULAR MATRICES

JIOKAJIbBHO KOMITAKTHA KBAHTOBA I'PYIIA
TPUKYTHUX MATPUIb

We construct a one parameter deformation of the group of 2 x 2 upper triangular matrices with determinant
1 using the twisting construction. An interesting feature of this new example of a locally compact quantum
group is that the Haar measure is deformed in a non-trivial way. Also, we give a complete description of
the dual C*-algebra and the dual comultiplication.

TToOynoBano omHOmapaMeTpuuHy AedopMmaliifo Tpymu BEpXHIX TPHKYTHHX MAaTpPHUIb po3Mipy 2 X 2 i3
JeTepMiHaHTOM | 3 BHKOPHCTAHHSM KOHCTPYKLil cKpyTy. LlikaBol0 pHCOI0 LbOrO HOBOTO MPUKIATLY
JIOKQJIBHO KOMITAKTHOI KBAaHTOBOI TPYIH € HeTpuBiambHa nedopmaris mipu Xaapa. HaeneHo Takoxk
MOBHUH onuc AyanbHoi C™-anreOpu Ta JyaabHOI KOMYIBTUIITIKALLT.

1. Introduction. In [1, 2], M. Enock and the second author proposed a systematic
approach to the construction of non-trivial Kac algebras by twisting. To illustrate it,
consider a cocommutative Kac algebra structure on the group von Neumann algebra
M = L(G) of a non commutative locally compact (l.c.) group G with comultiplication
A(Ng) = Ag® Ay (here )y is the left translation by g € G). Let us define on M another,
“twisted”, comultiplication Aq(-) = QA(-)Q*, where 2 is a unitary from M @ M
verifying certain 2-cocycle condition, and construct in this way new, non cocommutative,
Kac algebra structure on M. In order to find such an €2, let us, following to M. Rieffel
[3] and M. Landstad [4], take an inclusion «: L“(K ) — M, where K is the dual to
some abelian subgroup K of G such that 6| = 1, where §(+) is the module of G. Then,
one lifts a usual 2-cocycle U of K: Q = (a ® ). The main result of [1, 2] is that the
integral by the Haar measure of GG gives also the Haar measure of the deformed object.
Recently P. Kasprzak studied the deformation of l.c. groups by twisting in [5], and also
in this case the Haar measure was not deformed.

In [6], the authors extended the twisting construction in order to cover the case of
non-trivial deformation of the Haar measure. The aim of the present paper is to illustrate
this construction on a concrete example and to compute explicitly all the ingredients of
the twisted quantum group including the dual C*-algebra and the dual comultiplication.
We twist the group von Neumann algebra £(G) of the group G of 2 x 2 upper triangular
matrices with determinant 1 using the abelian subgroup K = C* of diagonal matrices
of G and a one parameter family of bicharacters on K. In this case, the subgroup K is
not included in the kernel of the modular function of G, this is why the Haar measure
is deformed. We compute the new Haar measure and show that the dual C*-algebra is
generated by 2 normal operators & and B such that

af=pa, Gt =qpa,
where ¢ > 0. Moreover, the comultiplication Ais given by
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A@)=aoa, Af)=avptsoal,

where + means the closure of the sum of two operators.

This paper in organized as follows. In Section 2 we recall some basic definitions
and results. In Section 3 we present in detail our example computing all the ingredients
associated. This example is inspired by [5], but an important difference is that in the
present example the Haar measure is deformed in a non trivial way. Finally, we collect
some useful results in the Appendix.

2. Preliminaries. 2.1. Notations. Let B(H) be the algebra of all bounded linear
operators on a Hilbert space H, ® the tensor product of Hilbert spaces, von Neumann
algebras or minimal tensor product of C*-algebras, and X (resp., o) the flip map on it.
If H, K and L are Hilbert spaces and X € B(H ® L) (resp., X € B(H® K),X €
€ B(K ® L)), we denote by X135 (resp., X12, X23) the operator (1@X*)(X®1)(1®X)
(resp., X ® 1, 1 ® X) defined on H ® K ® L. For any subset X of a Banach space
E, we denote by (X) the vector space generated by X and [X] the closed vector space
generated by X. All l.c. groups considered in this paper are supposed to be second
countable, all Hilbert spaces are separable and all von Neumann algebras have separable
preduals.

Given a normal semi-finite faithful (n.s.f.) weight 6 on a von Neumann algebra M
(see [7]), we denote MJ = {z € MT | 0(z) < +oo}, Ng = {z € M | 2"z € M},
and My = (MJ).

When A and B are C*-algebras, we denote by M(A) the algebra of the multipliers
of A and by Mor(A, B) the set of the morphisms from A to B.

2.2. G-Products and their deformation. For the notions of an action of a l.c. group
G on a C*-algebra A, a C* dynamical system (A, G, «), a crossed product G, X A of
A by G see [8]. The crossed product has the following universal property:

For any C*-covariant representation (7, u, B) of (A, G, «) (here B is a C*-algebra,
7: A — B a morphism, u is a group morphism from G to the unitaries of M (B),
continuous for the strict topology), there is a unique morphism p € Mor(G ,, x A, B)
such that

p(Ae) = ug, p(ma(z)) =7n(z) VteG, zeA.

Definition 1. Let G be a l.c. abelian group, B a C*-algebra, A\ a morphism from
G to the unitary group of M(B), continuous in the strict topology of M(B), and 6 a
continuous action of G on B. The triplet (B, \,0) is called a G-product if 0,(\,) =
= (7,9)Ag for all v € G, geq.

The unitary representation \: G — M(DB) generates a morphism

A € Mor(C*(G), B).

Identifying C*(G) with Cy(G), one gets a morphism A € Mor(Co(G), B) which is
defined in a unique way by its values on the characters

ug= (v~ (7,9) € Co(G): Mug) =N, forall geG.

One can check that X is injective.
The action § is done by: 6., (A(uy)) = 04(Ag) = (7, 9)Ag = A(ug(. —)). Since the

ugy generate Cy,(G), one deduces that
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O, (A(f) = A(f(. =) forall feCy(G).

The following definition is equivalent to the original definition by Landstad [4]
(see [5]):

Definition 2. Let (B, \,0) be a G-poduct and x € M(B). One says that x verifies
the Landstad conditions if

(i) Oy(x)==z forany ~¢€ G,

(ii)  the application g+ Az} is continuous, e

(iii) A(f)zA(g) € B forany f, g€ Co(G).

The set A € M(B) verifying these conditions is a C*-algebra called the Landstad
algebra of the G-product (B, A, 6)). Definition 2 implies that if a € A, then \ja\; € A
and the map g — Aga\j is continuous. One gets then an action of G on A.

One can show that the inclusion A — M(B) is a morphism of C*-algebras, so M(A)
can be also included into M(B). If € M(B), then « € M(A) if and only if

(i) 6,(x)=x forall ~veG,
2

(ii) forall a€ A theapplication g+ A\,zA7a is continuous.

Let us note that two first conditions of (1) imply (2).

The notions of G-product and crossed product are closely related. Indeed, if (4, G, «)
is a C*-dynamical system with GG abelian, let B = G, x A be the crossed product and A
the canonical morphism from G into the unitary group of M(B), continuous in the strict
topology, and m € Mor(A, B) the canonical morphism of C*-algebras. For f € K(G, A)
and v € G, one defines (6., f)(t) = (7,t)f(t). One shows that ., can be extended to
the automorphisms of B in such a way that (B, G, §) would be a C*-dynamical system.
Moreover, (B, )\, 0) is a G-product and the associated Landstad algebra is 7(A). 0 is
called the dual action. Conversely, if (B, A, 0) is a G-product, then one shows that there
exists a C*-dynamical system (A, G, «) such that B = G, x A. It is unique (up to a
covariant isomorphism), A is the Landstad algebra of (B, A, ) and « is the action of G
on A given by ay(z) = Mz A}

Lemma 1 [5]. Let (B, \,0) be a G-product and V- C A be a vector subspace of
the Landstad algebra such that:

AgVA, CV forany g € G,

MCo(G))VACo(R)) is dense in B.
Then V is dense in A.

Let (B, A, 0) be a G-product, A its Landstad algebra, and ¥ a continuous bicharacter
on G. For v € @, the function on G defined by ¥, (w) = ¥(w, ) generates a family of
unitaries A(¥.) € M(B). The bicharacter condition implies

ev(Uvz) = )‘(\I’vz(- - ’Yl)) = ‘I’(Vh’h)Uwz Y1, 12 € G.

One gets then a new action 8% of G on B:
93’(1‘) = U,0(x)UJ.

Note that, by commutativity of GG, one has
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07 (Ag) = U0(A)UZ = (v, 90Ny V7 EG, g€G.

The triplet (B, \,0%) is then a G-product, called a deformed G-product.

2.3. Locally compact quantum groups [9, 10]. A pair (M, A) is called a (von
Neumann algebraic) l.c. quantum group when

M is a von Neumann algebra and A: M — M ® M is a normal and unital
x-homomorphism which is coassociative: (A ® id)A = (id ® A)A (i.e, (M,A) is a
Hopf-von Neumann algebra).

There exist n.s.f. weights ¢ and 1 on M such that

¢ is left invariant in the sense that ¢ ((w ® id)A(z)) = @(z)w(1) for all z € M}
and w € M,

v is right invariant in the sense that ¢ ((id ® w)A(z)) = ¢(z)w(1) for all z € MI
and w € M.
Left and right invariant weights are unique up to a positive scalar.

Let us represent M on the GNS Hilbert space of ¢ and define a unitary W on H @ H
by

W*(Ala) @ A(b)) = (A@ A)(A(b)(a® 1)) forall a,be Ny.

Here, A denotes the canonical GNS-map for ¢, A ® A the similar map for ¢ ® ¢. One
proves that W satisfies the pentagonal equation: W1oW13Wa3 = Wo3Wio, and we say
that W is a multiplicative unitary. The von Neumann algebra M and the comultiplication
on it can be given in terms of W respectively as

—o —strong*

M={(dow)(W)|we B(H),}

and A(x) = W*(1 ® )W, for all x € M. Next, the l.c. quantum group (M,A)
has an antipode S, which is the unique o-strongly* closed linear map from M to M
satisfying (id @ w)(W) € D(S) forallw € B(H), and S(id®@w)(W) = (id@ w)(W*)
and such that the elements (id ® w)(W) form a o-strong* core for S. S has a polar
decomposition S = R7_;/5, where R (the unitary antipode) is an anti-automorphism of
M and 7y (the scaling group of (M, A)) is a strongly continuous one-parameter group
of automorphisms of M. We have c(R® R)A = AR, so @R is a right invariant weight
on (M, A) and we take ¢ := pR.

Let 0, be the modular automorphism group of ¢. There exist a number v > 0, called
the scaling constant, such that ¢ o; = v =t for all ¢t € R. Hence (see [11]), there is a
unique positive, self-adjoint operator 0, affiliated to M, such that o4 (dpr) = vt 8y for
all t € R and ¢ = ;,,. It is called the modular element of (M, A). If 65y = 1 we call
(M, A) unimodular. The scaling constant can be characterized as well by the relative
invariance ¢ 7y = vt .

For the dual l.c. quantum group (M, A) we have

M = {(w®@id)(W) | w € B(H),}~0sone

and A(z) = SW(z ® 1)W*X for all z € M. A left invariant n.s.f. weight ¢ on M can

be constructed explicitly and the associated multiplicative unitary is W = SW*3.
Since (M , A) is again a l.c. quantum group, let us denote its antipode by S, its

unitary antipode by R and its scaling group by 7:. Then we can construct the dual of
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(M, A), starting from the left invariant weight (. The bidual l.c. quantum group (M, A)
is isomorphic to (M, A).
M is commutative if and only if (M, A) is generated by a usual l.c. group G: M =

— L(6).(Aaf)(g: ) = Flgh), (Saf)(a) = £a™). valf) = [Flo)dg, where
f € L*(G), g,h € G and we integrate with respect to the left Haar measure dg on

G. Then v is given by ¥ (f) = / f(g~1)dg and 6 by the strictly positive function

g—da(g)t.

L>(G) acts on H = L*(G) by multiplication and (Wg€)(g, k) = £(g,g~th), for
all ¢ € H® H = L*(G x G). Then M = L(G) is the group von Neumann algebra
generated by the left translations (\;),eq of G and Ag()\,) = A\, ® ). Clearly, A% :=
=00 AG = Ag, ) AG is cocommutative.

(M, A) is a Kac algebra (see [12]) if 7, = id, for all ¢, and §, is affiliated with the
center of M. In particular, this is the case when M = L*°(G) or M = L(G).

We can also define the C*-algebra of continuous functions vanishing at infinity on
(M, A) by

A=[(idow)(W)|we B(H).]
and the reduced C*-algebra (or dual C*-algebra) of (M, A) by
A=[weid) (W) |w e B(H).].

In the group case we have A = Cy(G) and A = C,.(G). Moreover, we have A €
€ Mor(A,A® A) and A € Mor(A, A® A).

A lc. quantum group is called compact if p(157) < oo and discrete if its dual is
compact.

2.4. Twisting of locally compact quantum groups [6]. Let (M, A) be a locally
compact quantum group and (2 a unitary in M ® M. We say that 2 is a 2-cocycle on
(M, A) if

(Q®1)(A®id)(Q) = (1 Q)(id® A)(Q).

As an example we can consider M = L*°(G), where G is a lLc. group, with Ag as
above, and 2 = U(-,-) € L*°(G x G) a usual 2-cocycle on G, i.e., a mesurable function
with values in the unit circle T C C verifying

U(s1,52)U(s182,53) = U(sa,s3)U(s1,8253) for almost all  s1, $2,83 € G.

This is the case for any measurable bicharacter on G.

When 2 is a 2-cocycle on (M, A), one can check that Aq(-) = QA(-)Q* is a new
coassociative comultiplication on M. If (M, A) is discrete and € is any 2-cocycle on
it, then (M, Agq) is again a l.c. quantum group (see [13], finite-dimensional case was
treated in [2]). In the general case, one can proceed as follows. Let a: (L°(G), Ag) —
— (M, A) be an inclusion of Hopf—von Neumann algebras, i.e., a faithful unital normal
*-homomorphism such that (¢ ® a) o Ag = Aoa. Such an inclusion allows to construct
a 2-cocycle of (M, A) by lifting a usual 2-cocycle of G: Q = (a ® a)¥. It is shown
in [1] that if the image of « is included into the centralizer of the left invariant weight
, then ¢ is also left invariant for the new comultiplication Ag,.
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In particular, let G be a non commutative l.c. group and K a closed abelian subgroup
of G. By Theorem 6 of [14], there exists a faithful unital normal *-homomorphism
G&: L(K) — L(G) such that

aAKy=2x, forall ge K, and Aocd=(a®a)oAg,

where A% and )\ are the left regular representation of K and G respectively, and Ak
and A are the comultiplications on £(K') and L(G) repectively. The composition of &

with the canonical isomorphism L>°(K) ~ L(K) given by the Fourier tranformation,

is a faithful unital normal *-homomorphism «: L>®(K) — L(G) such that A o« =

= (a®a)o Ay, where A is the comultiplication on L>°(K). The left invariant weight
on £(G) is the Plancherel weight for which

or(x) = 0gwd;" forall x € L(G),
where 0 is the modular function of G. Thus, o4 ()\,) = 6&(g)A, or

0t © a(uq) = a(ug(' - 'Yt))’

where ugy(v) = (7,9), 9 € G,y € G, 7 is the character K defined by (v, g) = 55" ().
By linearity and density we obtain

oroa(F)=a(F(-—)) forall F e L>*(K).

This is why we do the following assumptions. Let (M, A) be a l.c. quantum group, G an
abelian L.c. group and a; (L (G), Ag) — (M, A) an inclusion of Hopf-von Neumann
algebras. Let ¢ be the left invariant weight, o, its modular group, S the antipode, R the
unitary antipode, 7; the scaling group. Let ) = ¢ o R be the right invariant weight and
o, its modular group. Also we denote by § the modular element of (M, A). Suppose
that there exists a continuous group homomorphism ¢ — ~; from R to G such that

groa(F) = a(F(-—y)) forall Fe L®(G).

Let ¥ be a continuous bicharacter on G. Notice that (¢, s) — U(7;,,) is a continuous
bicharacter on R, so there exists A > 0 such that (v;,7s) = A*!. We define

.42 212
u=AZ7a(P(,—y)) and v = X7 a(TU(—y,.)).

The 2-cocycle equation implies that u; is a o4-cocyle and v, is a O’;—COCYCIG. The Connes’
Theorem gives two n.s.f. weights on M, pq and ¥q, such that

us = [Dyq : Dyt and vy = [Dyq + Dl;.

The main result of [6] is as follows:

Theorem 1. (M, Aq) is a l.c. quantum group with left and right invariant weight
pq and g respectively. Moreover, denoting by a subscript or a superscript §) the
objects associated with (M, Aq) one has:

=1,

vo =vand §g = A1 B,

D(Sq) = D(S) and, for all x € D(S), Sa(x) =uS(x)u*.
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Remark that, because ¥ is a bicharacter on G, t — a(¥(.,—:)) is a representation
of R in the unitary group of M and there exists a positive self-adjoint operator A
affiliated with M such that

a(U(.,—vy)) = A" forall tecR.
We can also define a positive self-adjoint operator B affiliated with M such that
a(¥(—, ) = B,
We obtain
2 42
Ut = )\ZTA”, Ve = )\ZTB“S.

Thus, we have po = ¢4 and ¥q = ¥ p, where 4 and ¢ p are the weights defined by
S. Vaes in [11].
One can also compute the dual C*-algebra and the dual comultiplication. We put

L,=a(u,), R,=JL,J forall yed.

From the representation y +— L., we get the unital x-homomorphism Az, : L>*(G) — M
and from the representation vy — R, we get the unital normal *-homomorphism Ag :
L>®(G) — M. Let A be the reduced C*-algebra of (M, A). We can define an action
of G2 on A by

Oy, ~y (@) = Ly Ry,xRY L

Y2t

Let us consider the crossed product C*-algebra B = G2, x A. We will denote by A
the canonical morphism from G2 to the unitary group of M (B) continuous in the strict
topology on M(B), = € Mor(A, B) the canonical morphism and 6 the dual action of
G? on B. Recall that the triplet (G2, A, 8) is a G2-product. Let us denote by (G2, X, 87)
the G2 -product obtained by deformation of the G2 -product (Gz, A, 0) by the bicharacter
w(g, h,s,t) = W(g,s)V(h,t) on G2
The dual deformed action 6¥ is done by
921;1792)(:5) = Uy, Vgy0(g, .9 (@)U, V. forany g1, go€ G, x€ B,

g1 g2

where Uy = AL(V}), Vy = Ar(Yy), Yy(h) = ¥(h,g).

Considering ¥, as an element of G, we get a morphism from G to G, also noted W,
such that W(g) = W,. With these notations, one has Uy = u(w(—g),0) and Vy = (o, w(q))-
Then the action §¥ on 7(A) is done by

921;1’92)(7T(.%’)) = W(a(‘l’(*gl),q’(%))(‘r))' 3)

Let us consider the Landstad algebra AY associated with this GQ-product. By
definition of o and the universality of the crossed product we get a morphism

p € Mor(B,K(H)), P(A ) = Ly Ry, et p(m(z)) = 2. “4)

It is shown in [6] that p(AY) = Agq and that p is injective on A¥. This gives a canonical
isomorphism AY ~ Aq. In the sequel we identify AY with Ag. The comultiplication
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can be described in the following way. First, one can show that, using universality of
the crossed product, there exists a unique morphism I' € Mor(B, B ® B) such that

For=(r®@m)oA and LAy 92) = Ay1.0 @ Ao s

Then we introduce the unitary T = (Ag ® Az)(¥) € M(B ® B), where ¥(g,h) =
= (g, gh). This allows us to define the *-morphism I'q(z) = YT'(z)Y* from B to
M(B® B). One can show that I'g € Mor(AY, A¥ ® AY) is the comultiplication on AY.
Note that if M = £(G) and K is an abelian closed subgroup of G, the action « of
K? on Cy(G) is the left-right action.
3. Twisting of the group of 2 X 2 upper triangular matrices with determinant 1.
Consider the following subgroup of SL2(C):

z  w
G = , 2z€C*, weCy.
0 21!

Let K C G be the subgroup of diagonal matrices in G, i.e.., K = C*. The elements of
G will be denoted by (z,w), z € C, w € C*. The modular function of G is

5((2w)) = 2172
Thus, the morphism (¢ — ;) from R to C*is given by
(v, 2) = |2|*"® forall z€C*, teR.
We can identify C* with Z x R’ in the following way:
Z x RY — cr, (1, 9) = Ynp = (rei® s gilnrInpindy

Under this identification, ~; is the element (0, ") of Z x R%.. For all z € R, we define
a bicharacter on Z x R* by

Vo ((n, p). (k,r)) = ek moninn),
We denote by (M, A,) the twisted l.c. quantum group. We have
Vo ((n, ), 1) = €™ = ugiee ((n, p))-
In this way we obtain the operator A, deforming the Plancherel weight
Ait = a(ueimt) = )\(C:;“,T’O).
In the same way we compute the operator B, deforming the Plancherel weight
it _ \G _ p—it
B(L‘ - )\(ef'i"t’t,o) - A.L .
Thus, we obtain for the modular element
(S;t - A;ztB;t — )\(6272“170).

The antipode is not deformed. The scaling group is trivial but, if z # 0, (M, A,) is not
a Kac algebra because ¢, is not affiliated with the center of M. Let us look if (M, A,)
can be isomorphic for different values of x. One can remark that, since ¥_, = U2
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is antisymmetric and A is cocommutative, we have A_, = cA,, where o is the flip
on L(G) ® L(G). Thus, (M_,, A_;) ~ (M, A;)°?, where “op” means the opposite
quantum group. So, it suffices to treat only strictly positive values of x. The twisting
deforms only the comultiplication, the weights and the modular element. The simplest
invariant distinguishing the (M,;, A,) is then the specter of the modular element. Using
the Fourier transformation in the first variable, on has immediately Sp(d,) = ¢% U {0},
where ¢, = e”*. Thus, if 2 # y, © > 0,y > 0, one has ¢% # ¢4 and, consequently,
(M, A;) and (M,, A,) are non isomorphic.

We compute now the dual C*-algebra. The action of K2 on Cy(G) can be lifted to
its Lie algebra C2. The lifting does not change the result of the deformation (see [5],
Proposition 3.17) but simplify calculations. The action of C? on Cy(G) will be denoted
by p. One has

P (f)(z0) = f(e 71z, e”B1H2)0), )
The group C is self-dual, the duality is given by
(21, 22) — exp (ilm(z122)) .
The generators u,, z € C, of Cy(C) are given by
uy(w) = exp (iIlm(zw)), 2z, weC.
Let z € R. We will consider the following bicharacter on C:
U, (21,22) = exp (ixlm(zlzg)).

Let B be the crossed product C*-algebra C2 x C(G). We denote by ((z1,22) — A, 2,)
the canonical group homomorphism from G to the unitary group of M(B), continuous
for the strict topology, and = € Mor(Cy(G), B) the canonical homomorphism. Also we
denote by A € Mor(Cy(G?), B) the morphism given by the representation ((21, z2) +
— A z,)- Let 0 be the dual action of C2 on B. We have, for all z,w € C, ¥, (w, z) =
= u,z(w). The deformed dual action is given by

0;?le2 (b) = )‘*151@?2 021722 (b))‘izfl,mfg' (6)
Recall that
0% \() = 0y s N(F) = A(F(— 21, — 22)) VFECH(T). ()

Let A, be the associated Landstad algebra. We identify A, with the reduced C'* -algebra
of (M, A;). We will now construct two normal operators affiliated with A,, which
generate A,. Let a and b be the coordinate functions on G, and o = 7(a), 8 = 7w (b).
Then « and (3 are normal operators, affiliated with B, and one can see, using (5), that
)\z1722 a\® = e Hq, )\21,225)\* _ e_(zl+Z2)ﬁ. (8)

21,22 21,22

We can deduce, using (6), that
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A (o) = " 1t72) oY= (B) = e®(F1-%2) 3. 9)

Z1,22 21,72

Let T; and T'. be the infinitesimal generators of the left and right shift respectively, i.e.,
T; and T, are normal, affiliated with B, and

Azy,zp = exp (1Im(2177)) exp (i Im(22T;)) forall 2, 2o € C.
Thus, we have
Af) = f(T,,T;) forall f e Cy(C?).
Let U = A\(V,), we define the following normal operators affiliated with B':
a=U*al, [=UpU".

Proposition 1. The operators & and B are affiliated with A, and generate A,.
Proof. First let us show that f(&), f(3) € M(A,) for all f € Cy(C). One has,
using (7):
U, _ —
9Z1.722(U) = A(\III( — Z1,. — 2’2)) =
= Uetrim(=22T0) it Ty (21 20) = UN_yzy am, Vi (21, 22).
Now, using (9) and (8), we obtain
0Ye. (&) =a, 02 (B)=73 forall z,z €C.

21,22

Thus, for all f € Co(C), f(&) and f(J3) are fixed points for the action 0¥+ Let
f € Co(C). Using (8) we find

Azlszf(d)Azl,ZQ — U*f(eza*ma)U’
)‘21722f(3))‘:1,Z2 = U*f(ei(ZHFZQ)ﬂ)U-

Because f is continuous and vanish at infinity, the applications

(10)

(Zla 22) = >\217Z2f(d)>\21,@ and (Z17 ZQ) = )‘21,22 f(B))\;,zz

are norm-continuous and f(&), f(8) € M(A,) for all f € Cy(C).

Taking in mind Proposition 4 (see Appendix), in order to show that & is affiliated
with A, it suffices to show that the vector space Z generated by f(d)a, with f € Co(C)
and a € AI, is dense in A,. Using (10), we see that Z is globally invariant under the
action implemented by . Let g(2) = (1 4+ Zzz) 1. As A(Cp(C?))U = A(Cp(C?)), we
can deduce that the closure of \(Co(C?))g(&) A, A(Co(C?)) is equal to

MCO(C)(1+ a”a) U A\ (Co(€2))].

As the set U*flw)\(CO((CQ)) is dense in B and « is affiliated with B, the set
ACo(C?))(1 + a*a) 'U*A,A(Co(C?)) is dense in B. Moreover, it is included in
A(Co(C?))ZA(Co(C?)), so A(Co(C?))ZA(Co(C?)) is dense in B. We conclude, using
Lemma 1, that 7 is dense in /L,; One can show in the same way that B is affiliated
with A,.
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Now, let us show that & and ﬁ generate A,. By Proposition 5, it suffices to show
that

V= (f(@9(B). f. g€ Co(©)

is a dense vector subspace of A,. We have shown above that the elements of V) satisfy
the two first Landstad’s conditions. Let

W = [A(CO(CZ))VA(C()(@))]

We will show that YW = B. This proves that the elements of V satisfy the third Landstad’s
condition, and then V C A,. Then (10) shows that V is globally invariant under the
action implemented by A, so V is dense in A, by Lemma 1. One has:

W = [sU" (@)U%g(D)U"y, f, g € Co(C), w,y € \(Co(C?))].
Because U is unitary, we can substitute  with 2U and y with Uy without changing W :
W= [af(@)U%(B)y, f. g€ Co(C), z, y€NCol(C?)].

Using, for all f € Cy(C), the norm-continuity of the application

(217 Z2) = )‘21,Z2f(a))‘21,22 = 622_21047

one deduces that
[f(a)z, [eCo(C), z€ACo(C)] = [zf(a), feCo(C), z€AC(C?))].
In particular,

W = [f(a)zUg(B)y, f.g € Co(C), z, y e ACo(C?)].

Now we can commute ¢(/3) and y, and we obtain

W = [f(a)zU%yg(8), f, g€ Co(C), z, ye A(Co(C?)].

Substituting x +— zU*, y — U™y, one has

W = [f(a)zyg(B), f, g€ Co(C), =, ye A(Co(C?)].

Commuting back f(a) with = and g(() with y, we obtain

W = [zf(a)g(B)y, f. g€ Co(C), =, yeCo(C?))] =B.

This concludes the proof.

We will now find the commutation relations between & and B .
Proposition 2. One has:

1) aetTy + T strongly commute and & = e
2) BetTy =T} strongly commute andﬁ =TT =T,
Thus, the polar decompositions are given by

z(Tl* +T: ) a;

Ph(é) = efiwlm(TlJrTr)Ph(a)V l&| = et Re(Ti+T;)

al,
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Ph(B) — e—iajlm(Tl—TT)Ph(/B)7 |B| — ewRe(Tl—T,‘)|ﬁ|.

Moreover, we have the following relations:
1) |&| and |B| strongly commute,
2) Ph(4)Ph(#) = Ph(3)Ph(a),
3) Ph(a)|BIPh(a)" = ¢**|3],
4) Pa(B)|aIPR(3)" = ¢**|dl.
Proof. Using (8), we find, for all z € C:

idm(z(T) +T; ))ae—ilm(z(Tl +T)) — /\—E,—EO‘)\* — e—E—i—Ea = a.

-Z,—z

€

Thus, 7 + T and « strongly commute. Moreover, because ™77 = 1 one has

& = e*ixlmTlT: aeizlmTlT: — e*imlmTl (TlJrTT)*aeizlmTl(TH»Tr)*

We can now prove the point 1 using the equality e~ #*mTiwqeizimTiv. — crwq  the
preceding equation and the fact that 7}* 4+ 717" and o strongly commute. The proof of the
second assertion is similar and the polar decompositions follows. From (8) we deduce

67ixlm(TT7Tl)aeimlm(TrfT,) _ 6721’0[

)

eixlm(TI+Tr)ﬂefmzlm(Tl+Tr) _ 672zﬂ7

eWRC(Tr—Tl)ae—l-”ﬂRe(Tr—Tl) — 621.%@7

eizRe(Tl+Tr)ﬂe—ixRe(Tl+T,‘) — 6_2mﬂ.

It is now easy to prove the last relations from the preceding equations and the polar
decompositions.

The proposition is proved.

We can now give a formula for the comultiplication.

Proposition 3. Let A, be the comultiplication on Ay,. One has

Aga)y=a®a, A B)=awptpoa
Proof. Using the Preliminaries, we have that A, = TT'(.)Y*, where

T = eizImTr®Tf

and I is given by

NT) =T, @1, T(T,) =11 Ty;

T restricted to Cp(G) is equal to the comultiplication Ag.
Define R = YT'(U*). One has A, (&) = R(a® a)R*. Thus, it is sufficient to show that
(U ® U)R commute with & ® «.. Indeed, in this case, one has

Ay(6) = R(a®@a)R* = (U* @ U*)(U@U)R(a® )R*(U*@U*)(URU) = 4®d.

Let us show that (U ® U) R commute with & ® cv. From the equality U = e**™ 7T we
deduce that

F(U*) _ efimImTl(X)T:’ UU = eiaslm(TlT:®1+1®TlT:).

Thus, R = e~ @M(T;@Ti+Ti®TT) gpd
b
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(U ® U)R _ emlm(TlT:®1+1®TlT:—T:®TZ—T,®T:)_
Notice that
NIl +1NT -1 T —TieT =il -1T) (Tl -1 T)).

Thus, it suffices to show that T; ® 1 —1 ® T and T ® 1 — 1 ® T strongly commute
with o ® a. This follows from the equations

6¢1mz(T:®1—1®T:)( )e—ilmz(T:®1—1®T:) _

a® o

= (No,—z @ Noz)(@®@a)(No,—z @ Noz) =e fFa®Ra=a®a VzeC

and

6iImZ(Tl®171®Tl)( 7iImz(Tl®171®T1) —

a®ae
= (AZ,O & )\—z70)(01 ® a)(Az,O & >\—270)>’< =
=e *ffaRQa=a®@a VzeC.

Put S = YT'(U). One has

Au(B) = S(a® B+ B®a"1)S" =S(a®p)S*+S(B®at)S*.
As before, we see that it suffices to show that (U ® U*)S commutes with a ® § and
that (U* ® U)S commutes with 3 ® !, and one can check this in the same way.
The proposition is proved.
Let us summarize the preceding results in the following corollary (see [15, 5] for the
definition of commutation relation between unbounded operators):

Corollary 1. Let q = €3*. The C*-algebra Ay is generated by 2 normal operators
& and (3 affiliated with A, such that

af =pa,  ap* =qfa.

Moreover, the comultiplication A, is given by

A(@)=a®da AP =awpfiboa

Remark 1. One can show, using the results of [6], that the application (¢ — W)
which maps the parameter ¢ to the multiplicative unitary of the twisted l.c. quantum
group is continuous in the o-weak topology.

4. Appendix. Let us cite some results on operators affiliated with a C*-algebra.

Proposition 4. Let A C B(H) be a non degenerated C*-subalgebra and T a
normal densely defined closed operator on H. Let T be the vector space generated by
f(T)a, where f € Co(C) and a € A. Then

cf(T) e M(A) forany f€ C’o((C)>

et T isdensein A

(TnA) & (

Proof. If T is affiliated with A, then it is clear that f(T") € M(A) forany f € Cy(C),
and that Z is dense in A (because Z contains (1 + T*T)’%A). To show the converse,
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consider the x-homomorphism 7 : Co(C) — M(A) given by nr(f) = f(T). By
hypothesis, 77 (Co(C)) A is dense in A. So, 77 € Mor(Co(C), A) and T' = 7p(z — z)
is then affiliated with A.

Proposition 5. Let A C B(H) be a non degenerated C*-subalgebra and Ty, T, . ..
..., T'n normal operators affiliated with A. Let us denote by V the vector space generated
by the products of the form f1(T1) f2(T2) ... fn(TN), with f; € Co(C). IfV is a dense
vector subspace of A, then A is generated by T1,Ts,...,Tx.

Proof. This follows from Theorem 3.3 in [16].
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