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Cλ-SEMICONSERVATIVE FK-SPACES

Cλ-НАПIВКОНСЕРВАТИВНI FK-ПРОСТОРИ

We study Cλ-semiconservative FK-spaces for Cλ-methods defined by deleting a set of rows from the Cesáro matrix C1

and give some characterizations.

Вивчено Cλ-напiвконсервативнi FK-простори для Cλ-методiв, що визначаються видаленням групи рядкiв iз матрицi
Чезаро C1, i наведено деякi характеристики.

1. Introduction and notation. The definition of semiconservative FK-space and some properties
of this space was given by Snyder and Wilansky in [14]. Ince, in [8], continued to work on Cesáro
semiconservative FK-space and to give some characterizations. In Section 2, for an FK-space X,
the concepts of Cλ-semiconservative FK-space have been defined. Their relationship to Cesáro semi-
conservative space and Cλ-semiconservative have also been examined. However, we study the Cλ-
semiconservative of the absolute summability domain lA, and show that if lA is Cλ-semiconservative,
then A cannot be l-replaceable. In Section 3 we study the subspaces CλF+, CλF, CλB and CλB+

of an FK-space X. In Section 4 we solve the problem of characterizing matrices A such that YA is
Cλ-semiconservative space for given Y.

Let F be an infinite subset of N and F as the range of a strictly increasing sequence of positive
integers, say F = {λ(n)}∞n=1 . The Cesáro submethod Cλ is defined as

(Cλx)n =
1

λ(n)

λ(n)∑
k=1

xk, n = 1, 2, . . . ,

where {xk} is a sequence of a real or complex numbers. Therefore, the Cλ-method yields a subse-
quence of the Cesáro method C1, and hence it is regular for any λ. Cλ is obtained by deleting a set
of rows from Cesáro matrix. The basic properties of Cλ-method can be found in [1] and [10].

Let s denote the space of all real or complex-valued sequences. It can be topologized with the
seminorms pn(x) = |xn| , n = 1, 2, . . . , and any vector subspace of s is called a sequence space.
A sequence space X, with a vector space topology τ, is a K-space provided that the inclusion
mapping i : (X, τ)→ s, i(x) = x is continuous. If, in addition, τ is complete, metrizable and locally
convex then (X, τ) is called an FK-space. So an FK-space is a complete, metrizable locally convex
topological vector space of sequences for which the coordinate functionals are continuous. The basic
properties of such spaces may be found in [1 – 13, 15].

By c0, l
∞ we denote the spaces of all number sequences that converge to zero and bounded

sequences, respectively. These are FK-spaces under ‖x‖ = supn |xn| .
As usual, l1 =

{
x ∈ s :

∑∞

n=1
|xn| <∞

}
is denoted simply by l. cs =

{
x ∈ s :

∑∞

n=1
xn

exists
}
, the space of all summable sequences; and bs is as the following:

bs =

{
x ∈ s : sup

k

∣∣∣∣∣
k∑

n=1

xn

∣∣∣∣∣ <∞
}
.
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The sequence spaces

σs(λ) =

x ∈ s : lim
n

1

λ(n)

λ(n)∑
k=1

k∑
j=1

xj exists

 ,

σb(λ) =

x ∈ s : sup
n

∣∣∣∣∣∣ 1

λ(n)

λ(n)∑
k=1

k∑
j=1

xj

∣∣∣∣∣∣ <∞


and

q(λ) :=

x :
∞∑
j=1

λ(j)
∣∣42xj

∣∣ <∞ and x ∈ l∞
 , q0(λ) := q(λ) ∩ c0

is FK-space with the norms [2, 3, 5 – 7]

‖x‖σb(λ) = sup
n

∣∣∣∣∣∣ 1

λ(n)

λ(n)∑
k=1

k∑
j=1

xj

∣∣∣∣∣∣ ,
‖x‖q(λ) =

∞∑
j=1

λ(j)
∣∣42xj

∣∣+ sup
n
|xj | ,

where

4xj = xj − xj+1 and 42xj = 4xj −4xj+1.

Throughout the paper e denotes the sequences of ones, (1, 1, . . . , 1, . . .); δj , j = 1, 2, . . . , the
sequence (0, 0, . . . , 0, 1, 0, . . .) with the one in the j th position; φ the linear span of the δj’s. The
topological dual of X is denoted by X ′. The space X is said to have AD if φ is dense in X. A
sequence x in a locally convex sequence space X is said the property AK (respectively σK(λ))

if x(n) → x
(
respectively

1

λ(n)

∑λ(n)

k=1
x(k) → x

)
in X where x(n) = (x1, x2, . . . , xn, 0, . . .) =

=
∑n

k=1
xkδ

k. An FK-space X is called Cesáro semiconservative space if Xf ⊂ σs where σs :=

:=

{
x ∈ s : limn

1

n

∑n

k=1

∑k

j=1
xj exists

}
(see [8]). Every AK space is a σK(λ). We recall (see

[5, 6, 13, 14]) that the f, β, σ, σb, σ(λ) and σb(λ)-dual of a subset X of s is defined to be

Xf =
{{
f(δk)

}
: f ∈ X ′

}
,

Xβ =

{
x ∈ s :

∞∑
k=1

xkyk exists for all y ∈ X

}
=

= {x ∈ s : xy = (xkyk) ∈ cs for all y ∈ X} ,

Xσ =

x ∈ s : lim
n

1

n

n∑
k=1

k∑
j=1

xjyj exists for all y ∈ X

 =
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910 I. DAĞADUR

= {x ∈ s : xy ∈ σs for all y ∈ X} ,

Xσb =

x ∈ s : sup
n

1

n

∣∣∣∣∣∣
n∑
k=1

k∑
j=1

yj

∣∣∣∣∣∣ <∞ for all y ∈ X

 =

= {x ∈ s : xy ∈ σb for all y ∈ X} ,

Xσ(λ) =

x ∈ s : lim
n

1

λ(n)

λ(n)∑
k=1

k∑
j=1

xjyj exists for all y ∈ X

 =

= {x ∈ s : xy ∈ σs(λ) for all y ∈ X} ,

Xσb(λ) =

x ∈ s : sup
n

1

λ(n)

∣∣∣∣∣∣
λ(n)∑
k=1

k∑
j=1

yj

∣∣∣∣∣∣ <∞ for all y ∈ X

 =

= {x ∈ s : xy ∈ σb(λ) for all y ∈ X} ,

where xy = (xnyn). Let E, E1 be sets of sequences. Then for k = β, σ, σb, σ(λ) and σb(λ)

(a) E ⊂ Ekk,
(b) Ekkk = Ek,

(c) if E ⊂ E1 then Ek1 ⊂ Ek

holds. Also, if φ ⊂ E ⊂ E1 then Ef1 ⊂ Ef .
We shall be concerned with matrix transformations y = Ax, where x, y ∈ s, A = {ank}∞n,k=1 is

an infinite matrix with complex coefficients, and

yn =

∞∑
k=1

ankxk, n = 1, 2, . . . .

The sequence {ank}∞k=1 is called the n th row of A and is denoted by an, n = 1, 2, . . . ; similarly,
the k th column of the matrix A, {ank}∞n=1 is denoted by ak, k = 1, 2, . . . . For an FK-space Y, we
consider the summability domain YA defined by

YA = {x ∈ s : Ax exists and Ax ∈ Y } .

Then YA is an FK-space under the seminorms pn(x) = |xn|, n = 1, 2, . . . ;

hn(x) = sup
m

∣∣∣∣∣
m∑
k=1

ankxk

∣∣∣∣∣ , n = 1, 2, . . . , and (q ◦A)(x) = q(Ax) (see[13]).

2. Cλ-semiconservative FK-spaces. In this section, the concept of Cλ-semiconservative an
FK-space X containing φ is defined, and several theorems on this subject are given.

Definition 2.1. An FK-space X is called Cλ-semiconservative space if

Xf ⊂ σs(λ).
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This means that φ ⊂ X and

{
1

λ(n)

∑λ(n)

k=1
e(k)
}

is convergent for each f ∈ X ′.

For example, c0 is a Cλ-semiconservative FK-space. Every semiconservative FK-space is a Cλ-
semiconservative FK-space. But every Cλ-semiconservative FK-space is not a semiconservative FK-
space. An example of FK-space which is Cλ-semiconservative but not semiconservative is given in
[8] in case λ(n) = n.

The theorem below gives us the equivalence of Cesáro semiconservative and Cλ-semiconservative
of an FK-space X.

Theorem 2.1. Let X be an FK-space with φ ⊂ X and Xf ⊂ bs. Let λ := {λ(n)} be an

infinite subset of N such that lim supn
λ(n+ 1)

λ(n)
= 1. Then X is C1-semiconservative if and only if

it is Cλ-semiconservative.

Proof. Necessity is trivial.
Sufficiency. Let X be Cλ-semiconservative. Then for each f ∈ X ′, we have

lim
n

1

λ(n)

λ(n)∑
k=1

k∑
j=1

f
(
δj
)

exists.

Let tk (f) :=
∑k

j=1
f
(
δj
)
. So, (tk (f)) is Cλ-summable. Since Xf ⊂ bs, for all f ∈ X ′, (tk(f)) ∈

∈ l∞. Since lim supn
λ(n+ 1)

λ(n)
= 1, by Theorem 2.1 of [10], it is C1-summable. Therefore, X is a

C1-semiconservative space.
Using the same technique one can get the following theorem.
Theorem 2.2. Let X be an FK-space with φ ⊂ X, Xf ⊂ bs and λ := {λ(n)} , µ := {µ(n)}

infinite subsets of N. If limn
µ(n)

λ(n)
= 1, then X is Cλ-semiconservative if and only if it is Cµ-

semiconservative.

To see that limn
µ(n)

λ(n)
= 1 is not a necessary condition in Theorem 2.2, simply consider the

sequences λ(n) = n2 and µ(n) = n3. Then limn
λ(n+ 1)

λ(n)
= limn

µ(n+ 1)

µ(n)
= 1, and hence,

by Theorem 2.1, X is Cλ-semiconservative if and only if it is C1-semiconservative and X is Cµ-

semiconservative if and only if it is C1-semiconservative. However, limn
µ(n)

λ(n)
=
n3

n2
6= 1.

In Theorem 2.1, with lim supn
λ(n+ 1)

λ(n)
= 1 replaced by limn

λ(n+ 1)

λ(n)
= 1, the following

result is easily obtained by Theorem 2.2.

Corollary 2.1. Let limn
λ(n+ 1)

λ(n)
= 1. Then X is C1-semiconservative if and only if it is

Cλ-semiconservative.

The definition of a Cλ-conull FK-space X with φ ⊂ X, can be given by using Cλ-semi-
conservativity. A Cλ-semiconservative space X is called Cλ-conull, if

f (e) = lim
n

1

λ(n)

λ(n)∑
k=1

k∑
j=1

f
(
δj
)
,

for all f ∈ X ′. A Cλ-semiconservative space need not contain e but Cλ-conull must contain e.

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7



912 I. DAĞADUR

Theorem 2.3. If XA is a Cλ-conull FK-space, then it is a Cλ-semiconservative space.

Proof. Suppose that XA is Cλ-conull FK-space. Then

f (e) = lim
n

1

λ(n)

λ(n)∑
k=1

k∑
j=1

f
(
δj
)
,

for all f ∈ X ′A. Hence Xf
A ⊂ σs(λ).

We recall that, in [9] it is defined that a matrix A is l-replaceable if there is a matrix B = (bnk)

with lA = lB and
∑∞

n=1
bnk = 1 for all k ∈ N.

Theorem 2.4. If a matrix A is l-replaceable, then lA is not a Cλ-semiconservative FK-space.

Proof. If A is l-replaceable, then there is f ∈ l′A such that f
(
δj
)

= 1 for all j ∈ N in [9]. Hence

limn
1

λ(n)

∑λ(n)

k=1

∑k

j=1
f
(
δj
)

does not exist since

1

λ(n)

λ(n)∑
k=1

k∑
j=1

f
(
δj
)

=
λ(n) + 1

2
,

so lA is not Cλ-semiconservative space.
Theorem 2.5. (i) An FK-space that contains a Cλ-semiconservative FK-space must be a Cλ-

semiconservative FK-space.

(ii) A closed subspace, containing φ, of a Cλ-semiconservative FK-space is a Cλ-semiconservative
FK-space.

(iii) A countable intersection of Cλ-semiconservative FK-spaces is a Cλ-semiconservative FK-
spaces.

The proof is easily obtained from elementary properties of FK-spaces (see [13]).
Theorem 2.6. Let X be an FK-space containing φ. Then

(i) Xβ ⊂ Xσ(λ) ⊂ Xσb(λ) ⊂ Xf ,

(ii) if X is a σK(λ)-space, then Xf = Xσ(λ),

(iii) if X is an AD-space, then Xσ(λ) = Xσb(λ).

Proof. (ii) Let v ∈ Xσ(λ) and define f(x) = lim
n

1

λ(n)

∑λ(n)

k=1

∑k

j=1
vjxj for x ∈ X. Then

f ∈ X ′ by the Banach – Steinhaus theorem of [13]. Also

f (δq) = lim
n

1

λ(n)
(λ(n)− (q − 1))vq = vq, q < λ(n),

so v ∈ Xf . Thus Xσ(λ) ⊂ Xf .

Now we show that Xf ⊂ Xσ(λ). Let v ∈ Xf . Since X is a σK(λ)-space

f(x) = lim
n

1

λ(n)

λ(n)∑
k=1

k∑
j=1

xjf
(
δj
)

= lim
n

1

λ(n)

λ(n)∑
k=1

k∑
j=1

vjxj

for x ∈ X, then v ∈ Xσ(λ). This completes the proof of (ii).

(iii) Let v ∈ Xσb(λ) and define fn(x) =
1

λ(n)

∑λ(n)

k=1

∑k

j=1
vjxj for x ∈ X. Then {fn} is

pointwise bounded, hence equicontinuous by [13]. Since
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lim
n
fn (δq) = vq, q < λ(n),

then φ ⊂ {x : limn fn(x) exists}. Hence {x : limn fn(x) exists} is closed subspace of X by the
Convergence lemma [13]. Since X is an AD space, then X = {x : limn fn(x) exists} = φ and then
limn fn(x) exists for all x ∈ X. Thus v ∈ Xσ(λ). The opposite inclusion is trivial.

(i) φ ⊂ X by hypothesis. Since φ is AD-space, then

Xσb(λ) ⊂
(
φ
)σb(λ)

=
(
φ
)σ(λ) ⊂ (φ )f = Xf

by (iii) and [13].
Theorem 2.7. zσ(λ) is a Cλ-semiconservative space if and only if z ∈ σs(λ).

Proof. Let zσ(λ) be a Cλ-semiconservative space. Then
(
zσ(λ)

)f ⊂ σs(λ). Since zσ(λ) is a

σK(λ)-space by [4], we have
(
zσ(λ)

)f
=
(
zσ(λ)

)σ(λ)
by Theorem 2.6 (ii). So since

{z} ∈
(
zσ(λ)

)σ(λ) ⊂ σs(λ),

we get z ∈ σs(λ).

Now let z ∈ σs(λ). Then (σs (λ))σ(λ) ⊂ zσ(λ) and hence(
zσ(λ)

)σ(λ) ⊂ (σs(λ))σ(λ)σ(λ) = σs (λ) in [5].

Since zσ(λ) is a σK (λ)-space, then
(
zσ(λ)

)f
=
(
zσ(λ)

)σ(λ) ⊂ σs(λ).

It is clear that σs(λ) is not a Cλ-semiconservative space. Because σs (λ) = eσ(λ) and e /∈ σs(λ).

Now we get following theorem.
Theorem 2.8. The intersection of all Cλ-semiconservative FK-spaces is q0.

Proof. Let the set of all (C1-semiconservative) Cλ-semiconservative spaces be (Γ(C1)) Γ(Cλ).

Since every C1-semiconservative FK-space is Cλ-semiconservative space we get Γ(C1) ⊂ Γ(Cλ).

Also

∩{X : X ∈ Γ(C1)} ⊂ ∩{X : X ∈ Γ(Cλ)} .

On the other hand Theorem 6 of [8] the intersection of all C1-semiconservative spaces is q0. Hence
q0 ⊂ ∩{X : X ∈ Γ(Cλ)} . Therefore, by Theorem 5 of [8] we have

q0 ⊂ ∩{X : X ∈ Γ(Cλ)} ⊂ ∩{zσ : z ∈ σs} = σsσ = q.

Also ∩{X : X ∈ Γ(Cλ)} ⊂ c0, since c0 is a Cλ-semiconservative space so

∩{X : X ∈ Γ(Cλ)} ⊂ q ∩ c0 = q0,

where

q :=

x :

∞∑
j=1

j
∣∣42xj

∣∣ <∞ and x ∈ l∞
 and q0 = q ∩ c0.

Theorem 2.8 is proved.
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914 I. DAĞADUR

3. A relationship between the distinguished subsets and Cλ-semiconservative FK-spaces. In
this section we shall now study the subspaces CλF, CλF+, CλB and CλB+ of an FK-space X.

Let X be an FK-space with φ ⊂ X. Then

CλW := CλW (X) =

x ∈ X :
1

λ(n)

λ(n)∑
k=1

x(k) → x (weakly) in X

 =

=

x ∈ X : f(x) =
1

λ(n)

λ(n)∑
k=1

k∑
j=1

xjf
(
δj
)

for all f ∈ X ′
 ,

CλS := CλS(X) =

x ∈ X :
1

λ(n)

λ(n)∑
k=1

x(k) → x

 =

= {x ∈ X : x has σK(λ) in X} ,

CλF
+ := CλF

+(X) =

x : lim
n

1

λ(n)

λ(n)∑
k=1

k∑
j=1

xjf
(
δj
)

exists for all f ∈ X ′
 =

=
{
x : {xnf(δn)} ∈ σs(λ) for all f ∈ X ′

}
,

CλB
+ := CλB

+(X) =

x :

 1

λ(n)

λ(n)∑
k=1

x(k)

 is bounded in X

 =

=
{
x : {xnf(δn)} ∈ σb(λ) for all f ∈ X ′

}
.

Also CλF = CλF
+ ∩X and CλB = CλB

+ ∩X.
We note that subspaces CλW and CλS are closely related to Cλ-conullity of the FK-space X

(see [4]).

The theorems below gives us some characterizations which are analogous to those given in [13]
(Chapter 10).

Theorem 3.1. Let X be an FK-space with φ ⊂ X, z ∈ s. Then z ∈ CλF
+ if and only

if z−1X = {x : zx ∈ X} is a Cλ-semiconservative FK-space, where zx = {xnzn}, in particular
e ∈ CλF+ if and only if X is Cλ-semiconservative FK-space.

Proof. Let f ∈
(
z−1X

)′
. Then f(x) = αx+ g (zx), α ∈ φ, g ∈ Y ′, by [13] and

f(δn) = αn + g (zδn) = αn + g (znδ
n) = αn + zng (δn).

Thus, since α ∈ φ ⊂ σs(λ) then {f(δn)} ∈ σs(λ) if and only if {zng (δn)} ∈ σs(λ), i.e., z ∈ CλF+.

An FK-space is called bounded convex Cλ-semiconservative space if it is a Cλ-semiconservative
space and includes q(λ).
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Theorem 3.2. Let X be an FK-space with φ ⊂ X, z ∈ s. Then z ∈ CλF if and only if z−1X is
bounded convex Cλ-semiconservative FK-space, in particular e ∈ CλF if and only if X is bounded
convex Cλ-semiconservative FK-space.

Proof. Let z ∈ CλF. Then z ∈ X so e ∈ z−1X and since z ∈ CλF
+, z−1X is a Cλ-

semiconservative FK-space by Theorem 3.1. Thus z−1X is a bounded convex Cλ-semiconservative
FK-space.

Let z−1X be a bounded convex Cλ-semiconservative FK-space. Then z−1X is Cλ-semiconser-
vative FK-space and e ∈ z−1X so z ∈ X. Thus since z ∈ CλF+ by Theorem 3.1 and z ∈ X, then
z ∈ CλF.

Theorem 3.3. Let X be an FK-space with φ ⊂ X, z ∈ s. Then z ∈ CλB
+ if and only if

q0(λ) ⊂ z−1X, in particular e ∈ CλB+ if and only if q0(λ) ⊂ X.
Proof. Let f ∈

(
z−1X

)′
. Then f(δn) = αn + zng (δn) by [13]. Hence, since α ∈ φ ⊂ σs(λ),

then z ∈ CλB+ if and only if {zng (δn)} ∈ σb(λ), i.e., z ∈ CλB+.

Theorem 3.4. Let X be an FK-space with φ ⊂ X, z ∈ s. Then z ∈ CλB if and only if
q(λ) ⊂ z−1X, in particular e ∈ CλB if and only if q(λ) ⊂ X.

Proof. Let z ∈ CλB. Then z ∈ X so e ∈ z−1X and z ∈ CλB
+. Thus z−1X ⊃ q(λ) by

Theorem 3.3.

Let z−1X ⊃ q(λ), then z−1X ⊃ q0(λ) and e ∈ z−1X. Thus, since z ∈ CλB+ by Theorem 3.3
and z ∈ X, then z ∈ CλB.

4. Matrix domains. In this section we give simple conditions for the subspaces CλB and CλF
in the FK-space YA, which is depend on the choice of the FK-space Y and the matrix A. Also,
we solve the problem of characterizing matrices A such that YA is Cλ-semiconservative space for
given Y.

The theorems below gives us some results which are analogous to those given in [13] (Chapters 9
and 12).

Theorem 4.1. Let Y be an FK-space and A be a matrix. Then YA is a Cλ-semiconservative
space if and only if the columns of A are in Y and

{
g(ak)

}
∈ σs(λ) for each g ∈ Y ′, where ak is

the k th column of A, akn = ank.

Proof. Necessity. The columns of A are inY since YA ⊃ φ by definition of Cλ -semiconservative
space. Given g ∈ Y ′, let f(x) = g(Ax) for x ∈ YA, so f ∈ Y ′A by [13] (Theorem 4.4.2). Then
f(δk) = g(ak) and the result follows since Y f

A ⊂ σs(λ).

Sufficiency. We first note that each row of A belongs to σs(λ) since in the hypothesis we may
take g = Pn, where Pn(x) = xn. This yields{

g(ak)
}

=
{
Pn(akn)

}
= {ank} ∈ σs(λ), k = 1, 2, 3, . . . .

Hence sA ⊃ (σs(λ))β .

Now let f ∈ Y ′A. Then by Theorem 4.4.2 of [13],

f(x) =

∞∑
k=1

αkxk + g(Ax) with g ∈ Y ′,
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916 I. DAĞADUR

α ∈ sβA =

{
x :

∞∑
n=1

xnyn convergent for all y ∈ sA

}
⊂ (σs(λ))ββ = σs(λ), in [5].

Thus

f(δk) = αk + g(ak);

by the hypotesis and the fact that α ∈ σs (λ) we have
{
f(δk)

}
∈ σs (λ). Thus Y f

A ⊂ σs(λ) and YA
is Cλ-semiconservative space.

Theorem 4.2. If YA is Cλ-semiconservative space then AT ∈
(
Y β, σs(λ)

)
, where AT denotes

transpose of matrix A.

Proof. Since YA ⊃ q0 by Theorem 2.8 then A ∈ (q0, Y ) . Hence

AT ∈
(
Y β, qf0

)
=
(
Y β, σb

)
, where σb =

x ∈ w : sup
n

∣∣∣∣∣∣ 1n
n∑
k=1

k∑
j=1

xj

∣∣∣∣∣∣ <∞


by [13] (Theorem 8.3.8]. Let z ∈ Y β and define g ∈ Y ′ by g(y) = zy using the Banach – Steinhaus
theorem [13], where zy =

∑∞

k=1
zkyk. Let f(x) = g(Ax) so that f ∈ Y ′A by [13] (Theorem 4.4.2).

Hence
{
f(δk)

}
∈ σs(λ). But

f(δk) =
∞∑
n=1

znank =
(
AT z

)
k

so
(
AT z

)
∈ σs(λ).

Theorem 4.3. Let Y be an FK-space with AK. Then YA is Cλ-semiconservative space if and
only if the columns of A belong to Y and AT ∈

(
Y β, σs(λ)

)
.

Proof. Necessity is trivial by Theorem 4.2.

Sufficiency. Let g ∈ Y ′, zn = g (δn) . Then z ∈ Y f = Y β by [13] (Theorem 7.2.7), so(
AT z

)
∈ σs(λ). But

(
AT z

)
k

=
∞∑
n=1

znank = g

( ∞∑
n=1

ankδ
n

)
= g(ak)

since Y has AK. Hence we getg(ak) ∈ σs(λ). Then YA is Cλ-semiconservative space by Theo-
rem 4.1.

Definition 4.1. A matrix A is called Cλ-semiconservative if cA is Cλ-semiconservative space.

This definition is given because summability theory deals with spaces of the form cA and with
FK-spaces whose properties generalize those of such spaces. It would be nice if we can extend
theorems about conservative spaces to Cλ-semiconservative spaces.

Theorem 4.4. A is Cλ-semiconservative if and only if

(i) a has convergent columns, i.e., cA ⊃ φ,
(ii) a ∈ σs(λ), where a = {ak}, ak = limn ank,

(iii) AT ∈ (l, σs(λ)) .
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Proof. Necessity. (i) is by Definition 4.1; to prove (ii) apply Theorem 4.1 with g := lim; (iii) is
by Theorem 4.2.

Sufficiency. Let g ∈ c′. Then g(y) = χ lim y +
∑∞

n=1
tnyn, t ∈ l by [13]. If we take y = Ax;

x = δk in here we obtained g
(
ak
)

= χ lim ank + (tA)k , where (tA)k =
∑∞

n=1
tnank. Since

g
(
ak
)
∈ σs(λ) from (ii) and (iii) then by Theorem 4.1. the result is obtained.

Theorem 4.5. The following are equialent for an FK-space X.

(i) If A ∈ (X, X) then XA is Cλ-semiconservative space.

(ii) X is Cλ-semiconservative space.

Proof. (i) implies (ii): Take A = I.

(ii) implies (i): If A ∈ (X, X) then X ⊂ XA, hence XA is Cλ-semiconservative space by
Theorem 2.5.

Theorem 4.6. Let z ∈ s, Y be an FK-space, and A be a matrix such that φ ⊂ YA i.e., the
columns of A belong to Y. Then the following propositions are equivalent in YA :

(i) z ∈ CλB+,

(ii)

{
1

λ(r)

∑λ(r)

p=1
Az(p)

}
is bounded in Y,

(iii) YAz ⊃ q0(λ) where the matrix Az is (ankzk) ,

(iv)
{
zkg(ak)

}
∈ σb(λ) for each g ∈ Y ′, where ak is kth column of A.

Proof. (i)⇔ (iii): z ∈ CλB+ if and only if z−1YA ⊃ q0(λ), where

z−1YA = {x : zx ∈ YA} , zx = {xnzn} ⇔ YAz ⊃ q0(λ)

by z−1YA = YAz and Theorem 3.3.
(iii)⇔ (iv): Since q0(λ) is AD space and by hypothesis then

Y f
Az ⊂ (q0(λ))f

by [13] (Theorem 8.6.1). Hence f(δk) = αk + g(aknzk) for each f ∈ Y ′Az with α ∈ sβAz, g ∈ Y ′ by
[13] (Theorem 4.4.2). Since

α ∈ sβAz ⊂ Y
β
Az ⊂ σb (λ)

then
{
f(δk)

}
∈ σb(λ)⇔

{
zkg(ak)

}
∈ σb (λ) for each g ∈ Y ′.

(ii)⇔ (iv): (iv) is true if and only ifg
 1

λ(r)

λ(r)∑
p=1

Az(p)


is bounded for each g ∈ Y ′ by [13] (Theorem 8.0.2), where

g

 1

λ(r)

λ(r)∑
p=1

Az(p)

 = g

 1

λ(r)

λ(r)∑
p=1

p∑
k=1

ankzk

 =
1

λ(r)

λ(r)∑
p=1

p∑
k=1

zkg(akn).

Theorem 4.7. Assume that z ∈ s, (Y, q ) is an FK-space, and A is a matrix such that φ ⊂ YA
i.e., the columns of A belong to Y. Then the following propositions are equivalent in YA :
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(i) z ∈ CλF+,

(ii)

{
1

λ(r)

∑λ(r)

p=1
Az(p)

}
is weakly Cauchy in Y, i.e.,

{
g

(
1

λ(r)

∑λ(r)

p=1
Az(p)

)}
is convergent

for each g ∈ Y ′,
(iii) YAz is Cλ-semiconservative space,
(iv)

{
zkg(ak)

}
∈ σs(λ) for each g ∈ Y ′.

Proof. (i) ⇔ (ii): z ∈ CλF
+ ⇔ z−1YA is Cλ-semiconservative space if and only if YAz is

Cλ-semiconservative space by Theorem 3.1.
(iii)⇔ (ii): Since the k th column of Az is zkak and by Theorem 4.1, this equivalent is trivial.
(iii)⇔ (iv): By Theorem 4.1, since the k th column of Az is zkak.
Theorem 4.8. Let Y be an FK-space such that weakly convergent sequences are convergent

in the FK-topology, let A be a row finite matrix with φ ⊂ YA. Then CλS = CλW = CλF = CλF
+

in YA.

Proof. If z ∈ CλF+,

{
1

λ(r)

λ(r)∑
p=1

Az(p)

}
is weakly Cauchy in Y by Theorem 4.7, hence Cauchy

[13] (Theorem 12.0.2), hence convergent say
1

λ(r)

∑λ(r)

p=1
Az(p) → y. However

1

λ(r)

∑λ(r)

p=1
Az(p) →

→ z in sA since this is a σK(λ) space because of sA is an AK space [13]. Thus
1

λ(r)

∑λ(r)

p=1
Az(p) → Az in s. But

1

λ(r)

∑λ(r)

p=1
Az(p) → y in s since Y is an FK-space hence

y = Az so z ∈ CλS by [4].
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