UDC 517.95

I. Dağadur (Mersin Univ., Turkey)

C_{λ} -SEMICONSERVATIVE FK-SPACES

С_λ-НАПІВКОНСЕРВАТИВНІ FK-ПРОСТОРИ

We study C_{λ} -semiconservative FK-spaces for C_{λ} -methods defined by deleting a set of rows from the Cesáro matrix C_1 and give some characterizations.

Вивчено C_{λ} -напівконсервативні FK-простори для C_{λ} -методів, що визначаються видаленням групи рядків із матриці Чезаро C_1 , і наведено деякі характеристики.

1. Introduction and notation. The definition of semiconservative FK-space and some properties of this space was given by Snyder and Wilansky in [14]. Ince, in [8], continued to work on Cesáro semiconservative FK-space and to give some characterizations. In Section 2, for an FK-space X, the concepts of C_{λ} -semiconservative FK-space have been defined. Their relationship to Cesáro semiconservative space and C_{λ} -semiconservative have also been examined. However, we study the C_{λ} semiconservative of the absolute summability domain l_A , and show that if l_A is C_{λ} -semiconservative, then A cannot be l-replaceable. In Section 3 we study the subspaces $C_{\lambda}F^+$, $C_{\lambda}F$, $C_{\lambda}B$ and $C_{\lambda}B^+$ of an FK-space X. In Section 4 we solve the problem of characterizing matrices A such that Y_A is C_{λ} -semiconservative space for given Y.

Let F be an infinite subset of \mathbb{N} and F as the range of a strictly increasing sequence of positive integers, say $F = \{\lambda(n)\}_{n=1}^{\infty}$. The Cesáro submethod C_{λ} is defined as

$$(C_{\lambda}x)_n = \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x_k, \quad n = 1, 2, \dots,$$

where $\{x_k\}$ is a sequence of a real or complex numbers. Therefore, the C_{λ} -method yields a subsequence of the Cesáro method C_1 , and hence it is regular for any λ . C_{λ} is obtained by deleting a set of rows from Cesáro matrix. The basic properties of C_{λ} -method can be found in [1] and [10].

Let s denote the space of all real or complex-valued sequences. It can be topologized with the seminorms $p_n(x) = |x_n|$, n = 1, 2, ..., and any vector subspace of s is called a sequence space. A sequence space X, with a vector space topology τ , is a K-space provided that the inclusion mapping $i: (X, \tau) \to s$, i(x) = x is continuous. If, in addition, τ is complete, metrizable and locally convex then (X, τ) is called an FK-space. So an FK-space is a complete, metrizable locally convex topological vector space of sequences for which the coordinate functionals are continuous. The basic properties of such spaces may be found in [1–13, 15].

By c_0 , l^{∞} we denote the spaces of all number sequences that converge to zero and bounded sequences, respectively. These are FK-spaces under $||x|| = \sup_n |x_n|$.

As usual, $l_1 = \left\{x \in s \colon \sum_{n=1}^{\infty} |x_n| < \infty\right\}$ is denoted simply by $l. cs = \left\{x \in s \colon \sum_{n=1}^{\infty} x_n \in s\right\}$, the space of all summable sequences; and bs is as the following:

$$bs = \left\{ x \in s \colon \sup_{k} \left| \sum_{n=1}^{k} x_n \right| < \infty \right\}.$$

© I. DAĞADUR, 2012 908 The sequence spaces

$$\sigma s(\lambda) = \left\{ x \in s \colon \lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} x_j \text{ exists} \right\},\$$
$$\sigma b(\lambda) = \left\{ x \in s \colon \sup_{n} \left| \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} x_j \right| < \infty \right\}$$

and

$$q(\lambda) := \left\{ x \colon \sum_{j=1}^{\infty} \lambda(j) \left| \triangle^2 x_j \right| < \infty \text{ and } x \in l^{\infty} \right\}, \qquad q_0(\lambda) := q(\lambda) \cap c_0$$

is FK-space with the norms [2, 3, 5-7]

$$\|x\|_{\sigma b(\lambda)} = \sup_{n} \left| \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} x_{j} \right|,$$
$$\|x\|_{q(\lambda)} = \sum_{j=1}^{\infty} \lambda(j) \left| \triangle^{2} x_{j} \right| + \sup_{n} |x_{j}|,$$

where

$$\triangle x_j = x_j - x_{j+1}$$
 and $\triangle^2 x_j = \triangle x_j - \triangle x_{j+1}$.

Throughout the paper e denotes the sequences of ones, $(1, 1, \ldots, 1, \ldots)$; δ^j , $j = 1, 2, \ldots$, the sequence $(0, 0, \ldots, 0, 1, 0, \ldots)$ with the one in the j th position; ϕ the linear span of the δ^j 's. The topological dual of X is denoted by X'. The space X is said to have AD if ϕ is dense in X. A sequence x in a locally convex sequence space X is said the property AK (respectively $\sigma K(\lambda)$) if $x^{(n)} \to x$ (respectively $\frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x^{(k)} \to x$) in X where $x^{(n)} = (x_1, x_2, \ldots, x_n, 0, \ldots) = \sum_{k=1}^n x_k \delta^k$. An FK-space X is called Cesáro semiconservative space if $X^f \subset \sigma s$ where $\sigma s := \left\{x \in s : \lim_n \frac{1}{n} \sum_{k=1}^n \sum_{j=1}^k x_j \text{ exists}\right\}$ (see [8]). Every AK space is a $\sigma K(\lambda)$. We recall (see [5, 6, 13, 14]) that the f, β , σ , σb , $\sigma(\lambda)$ and $\sigma b(\lambda)$ -dual of a subset X of s is defined to be

$$X^{f} = \left\{ \left\{ f(\delta^{k}) \right\} : \ f \in X' \right\},$$
$$X^{\beta} = \left\{ x \in s : \sum_{k=1}^{\infty} x_{k} y_{k} \text{ exists for all } y \in X \right\} =$$
$$= \left\{ x \in s : xy = (x_{k} y_{k}) \in cs \text{ for all } y \in X \right\},$$
$$X^{\sigma} = \left\{ x \in s : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} y_{j} \text{ exists for all } y \in X \right\} =$$

$$X^{\sigma b} = \left\{ x \in s \colon \sup_{n} \frac{1}{n} \left| \sum_{k=1}^{n} \sum_{j=1}^{k} y_{j} \right| < \infty \text{ for all } y \in X \right\} =$$

 $= \{x \in s : xy \in \sigma s \text{ for all } y \in X\},\$

 $=\left\{ x\in s\colon xy\in \sigma b \text{ for all } y\in X\right\},$

$$X^{\sigma(\lambda)} = \left\{ x \in s \colon \lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} x_j y_j \text{ exists for all } y \in X \right\} =$$

$$= \{x \in s \colon xy \in \sigma s(\lambda) \text{ for all } y \in X\},\$$

$$X^{\sigma b(\lambda)} = \left\{ x \in s \colon \sup_{n} \frac{1}{\lambda(n)} \left| \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} y_j \right| < \infty \text{ for all } y \in X \right\} = \left\{ x \in s \colon xy \in \sigma b(\lambda) \text{ for all } y \in X \right\},$$

where $xy = (x_n y_n)$. Let E, E_1 be sets of sequences. Then for $k = \beta$, σ , σb , $\sigma(\lambda)$ and $\sigma b(\lambda)$

- (a) $E \subset E^{kk}$,
- (b) $E^{kkk} = E^k$,

(c) if $E \subset E_1$ then $E_1^k \subset E^k$

holds. Also, if $\phi \subset E \subset E_1$ then $E_1^f \subset E^f$.

We shall be concerned with matrix transformations y = Ax, where $x, y \in s$, $A = \{a_{nk}\}_{n,k=1}^{\infty}$ is an infinite matrix with complex coefficients, and

$$y_n = \sum_{k=1}^{\infty} a_{nk} x_k, \quad n = 1, 2, \dots$$

The sequence $\{a_{nk}\}_{k=1}^{\infty}$ is called the *n*th row of *A* and is denoted by a^n , n = 1, 2, ...; similarly, the *k*th column of the matrix *A*, $\{a_{nk}\}_{n=1}^{\infty}$ is denoted by a^k , k = 1, 2, ... For an FK-space *Y*, we consider the summability domain Y_A defined by

$$Y_A = \{x \in s : Ax \text{ exists and } Ax \in Y\}.$$

Then Y_A is an FK-space under the seminorms $p_n(x) = |x_n|, n = 1, 2, ...;$

$$h_n(x) = \sup_m \left| \sum_{k=1}^m a_{nk} x_k \right|, \quad n = 1, 2, \dots, \text{ and } (q \circ A)(x) = q(Ax) \text{ (see[13])}.$$

2. C_{λ} -semiconservative FK-spaces. In this section, the concept of C_{λ} -semiconservative an FK-space X containing ϕ is defined, and several theorems on this subject are given.

Definition 2.1. An FK-space X is called C_{λ} -semiconservative space if

$$X^f \subset \sigma s(\lambda).$$

$\mathbf{C}_{\lambda}\text{-}\mathsf{SEMICONSERVATIVE}\ \mathsf{FK}\text{-}\mathsf{SPACES}$

This means that $\phi \subset X$ and $\left\{\frac{1}{\lambda(n)}\sum_{k=1}^{\lambda(n)} e^{(k)}\right\}$ is convergent for each $f \in X'$.

For example, c_0 is a C_{λ} -semiconservative FK-space. Every semiconservative FK-space is a C_{λ} -semiconservative FK-space. But every C_{λ} -semiconservative FK-space is not a semiconservative FK-space. An example of FK-space which is C_{λ} -semiconservative but not semiconservative is given in [8] in case $\lambda(n) = n$.

The theorem below gives us the equivalence of Cesáro semiconservative and C_{λ} -semiconservative of an FK-space X.

Theorem 2.1. Let X be an FK-space with $\phi \subset X$ and $X^f \subset bs$. Let $\lambda := \{\lambda(n)\}$ be an infinite subset of \mathbb{N} such that $\limsup_n \frac{\lambda(n+1)}{\lambda(n)} = 1$. Then X is C_1 -semiconservative if and only if it is C_{λ} -semiconservative.

Proof. Necessity is trivial.

Sufficiency. Let X be C_{λ} -semiconservative. Then for each $f \in X'$, we have

$$\lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} f\left(\delta^{j}\right) \quad \text{exists.}$$

Let $t_k(f) := \sum_{j=1}^k f(\delta^j)$. So, $(t_k(f))$ is C_{λ} -summable. Since $X^f \subset bs$, for all $f \in X'$, $(t_k(f)) \in e^{1\infty}$. Since $\limsup_n \frac{\lambda(n+1)}{\lambda(n)} = 1$, by Theorem 2.1 of [10], it is C_1 -summable. Therefore, X is a C_1 -semiconservative space.

Using the same technique one can get the following theorem.

Theorem 2.2. Let X be an FK-space with $\phi \subset X$, $X^f \subset bs$ and $\lambda := \{\lambda(n)\}$, $\mu := \{\mu(n)\}$ infinite subsets of \mathbb{N} . If $\lim_n \frac{\mu(n)}{\lambda(n)} = 1$, then X is C_{λ} -semiconservative if and only if it is C_{μ} -semiconservative.

To see that $\lim_{n} \frac{\mu(n)}{\lambda(n)} = 1$ is not a necessary condition in Theorem 2.2, simply consider the sequences $\lambda(n) = n^2$ and $\mu(n) = n^3$. Then $\lim_{n} \frac{\lambda(n+1)}{\lambda(n)} = \lim_{n} \frac{\mu(n+1)}{\mu(n)} = 1$, and hence, by Theorem 2.1, X is C_{λ} -semiconservative if and only if it is C_1 -semiconservative and X is C_{μ} -semiconservative if and only if it is C_1 -semiconservative. However, $\lim_{n} \frac{\mu(n)}{\lambda(n)} = \frac{n^3}{n^2} \neq 1$.

In Theorem 2.1, with $\limsup_n \frac{\lambda(n+1)}{\lambda(n)} = 1$ replaced by $\lim_n \frac{\lambda(n+1)}{\lambda(n)} = 1$, the following result is easily obtained by Theorem 2.2.

Corollary 2.1. Let $\lim_{n} \frac{\lambda(n+1)}{\lambda(n)} = 1$. Then X is C_1 -semiconservative if and only if it is C_{λ} -semiconservative.

The definition of a C_{λ} -conull FK-space X with $\phi \subset X$, can be given by using C_{λ} -semiconservativity. A C_{λ} -semiconservative space X is called C_{λ} -conull, if

$$f(e) = \lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} f\left(\delta^{j}\right),$$

for all $f \in X'$. A C_{λ} -semiconservative space need not contain e but C_{λ} -conull must contain e.

Theorem 2.3. If X_A is a C_{λ} -conull FK-space, then it is a C_{λ} -semiconservative space. **Proof.** Suppose that X_A is C_{λ} -conull FK-space. Then

$$f\left(e\right) = \lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} f\left(\delta^{j}\right),$$

for all $f \in X'_A$. Hence $X^f_A \subset \sigma s(\lambda)$.

We recall that, in [9] it is defined that a matrix A is l-replaceable if there is a matrix $B = (b_{nk})$ with $l_A = l_B$ and $\sum_{n=1}^{\infty} b_{nk} = 1$ for all $k \in \mathbb{N}$.

Theorem 2.4. If a matrix A is l-replaceable, then l_A is not a C_{λ} -semiconservative FK-space. **Proof.** If A is l-replaceable, then there is $f \in l'_A$ such that $f(\delta^j) = 1$ for all $j \in \mathbb{N}$ in [9]. Hence $\lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} f(\delta^{j}) \text{ does not exist since}$

$$\frac{1}{\lambda(n)}\sum_{k=1}^{\lambda(n)}\sum_{j=1}^{k}f\left(\delta^{j}\right) = \frac{\lambda(n)+1}{2},$$

so l_A is not C_{λ} -semiconservative space.

Theorem 2.5. (i) An FK-space that contains a C_{λ} -semiconservative FK-space must be a C_{λ} semiconservative FK-space.

(ii) A closed subspace, containing ϕ , of a C_{λ} -semiconservative FK-space is a C_{λ} -semiconservative FK-space.

(iii) A countable intersection of C_{λ} -semiconservative FK-spaces is a C_{λ} -semiconservative FKspaces.

The proof is easily obtained from elementary properties of FK-spaces (see [13]).

Theorem 2.6. Let X be an FK-space containing ϕ . Then

(i) $X^{\beta} \subset X^{\sigma(\lambda)} \subset X^{\sigma b(\lambda)} \subset X^{f}$,

(ii) if X is a $\sigma K(\lambda)$ -space, then $X^f = X^{\sigma(\lambda)}$,

(iii) if X is an AD-space, then $X^{\sigma(\lambda)} = X^{\sigma b(\lambda)}$.

Proof. (ii) Let $v \in X^{\sigma(\lambda)}$ and define $f(x) = \lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} v_j x_j$ for $x \in X$. Then $f \in X'$ by the Banach–Steinhaus theorem of [13]. Also

$$f(\delta^q) = \lim_n \frac{1}{\lambda(n)} (\lambda(n) - (q-1))v_q = v_q, \quad q < \lambda(n),$$

so $v \in X^f$. Thus $X^{\sigma(\lambda)} \subset X^f$.

Now we show that $X^f \subset X^{\sigma(\lambda)}$. Let $v \in X^f$. Since X is a $\sigma K(\lambda)$ -space

$$f(x) = \lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} x_j f(\delta^j) = \lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} v_j x_j$$

for $x \in X$, then $v \in X^{\sigma(\lambda)}$. This completes the proof of (ii). (iii) Let $v \in X^{\sigma b(\lambda)}$ and define $f_n(x) = \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^k v_j x_j$ for $x \in X$. Then $\{f_n\}$ is pointwise bounded, hence equicontinuous by [13]. Since

$$\lim_{n \to \infty} f_n\left(\delta^q\right) = v_q, \quad q < \lambda(n),$$

then $\phi \subset \{x: \lim_n f_n(x) \text{ exists}\}$. Hence $\{x: \lim_n f_n(x) \text{ exists}\}$ is closed subspace of X by the Convergence lemma [13]. Since X is an AD space, then $X = \{x: \lim_n f_n(x) \text{ exists}\} = \overline{\phi}$ and then $\lim_n f_n(x)$ exists for all $x \in X$. Thus $v \in X^{\sigma(\lambda)}$. The opposite inclusion is trivial.

(i) $\overline{\phi} \subset X$ by hypothesis. Since $\overline{\phi}$ is AD-space, then

$$X^{\sigma b(\lambda)} \subset \left(\overline{\phi}\right)^{\sigma b(\lambda)} = \left(\overline{\phi}\right)^{\sigma(\lambda)} \subset \left(\overline{\phi}\right)^{f} = X^{f}$$

by (iii) and [13].

Theorem 2.7. $z^{\sigma(\lambda)}$ is a C_{λ} -semiconservative space if and only if $z \in \sigma s(\lambda)$.

Proof. Let $z^{\sigma(\lambda)}$ be a C_{λ} -semiconservative space. Then $(z^{\sigma(\lambda)})^{f} \subset \sigma s(\lambda)$. Since $z^{\sigma(\lambda)}$ is a $\sigma K(\lambda)$ -space by [4], we have $(z^{\sigma(\lambda)})^{f} = (z^{\sigma(\lambda)})^{\sigma(\lambda)}$ by Theorem 2.6 (ii). So since

$$\{z\} \in (z^{\sigma(\lambda)})^{\sigma(\lambda)} \subset \sigma s(\lambda),$$

we get $z \in \sigma s(\lambda)$.

Now let $z \in \sigma s(\lambda)$. Then $(\sigma s(\lambda))^{\sigma(\lambda)} \subset z^{\sigma(\lambda)}$ and hence

$$(z^{\sigma(\lambda)})^{\sigma(\lambda)} \subset (\sigma s(\lambda))^{\sigma(\lambda)\sigma(\lambda)} = \sigma s(\lambda)$$
 in [5].

Since $z^{\sigma(\lambda)}$ is a $\sigma K(\lambda)$ -space, then $(z^{\sigma(\lambda)})^f = (z^{\sigma(\lambda)})^{\sigma(\lambda)} \subset \sigma s(\lambda)$.

It is clear that $\sigma s(\lambda)$ is not a C_{λ} -semiconservative space. Because $\sigma s(\lambda) = e^{\sigma(\lambda)}$ and $e \notin \sigma s(\lambda)$. Now we get following theorem.

Theorem 2.8. The intersection of all C_{λ} -semiconservative FK-spaces is q_0 .

Proof. Let the set of all $(C_1$ -semiconservative) C_{λ} -semiconservative spaces be $(\Gamma(C_1))$ $\Gamma(C_{\lambda})$. Since every C_1 -semiconservative FK-space is C_{λ} -semiconservative space we get $\Gamma(C_1) \subset \Gamma(C_{\lambda})$. Also

$$\cap \{X \colon X \in \Gamma(C_1)\} \subset \cap \{X \colon X \in \Gamma(C_\lambda)\}.$$

On the other hand Theorem 6 of [8] the intersection of all C_1 -semiconservative spaces is q_0 . Hence $q_0 \subset \cap \{X \colon X \in \Gamma(C_\lambda)\}$. Therefore, by Theorem 5 of [8] we have

$$q_0 \subset \cap \{X \colon X \in \Gamma(C_\lambda)\} \subset \cap \{z^\sigma \colon z \in \sigma s\} = \sigma s^\sigma = q_\lambda$$

Also $\cap \{X \colon X \in \Gamma(C_{\lambda})\} \subset c_0$, since c_0 is a C_{λ} -semiconservative space so

$$\cap \{X \colon X \in \Gamma(C_{\lambda})\} \subset q \cap c_0 = q_0,$$

where

$$q := \left\{ x \colon \sum_{j=1}^{\infty} j \left| \triangle^2 x_j \right| < \infty \text{ and } x \in l^{\infty} \right\} \text{ and } q_0 = q \cap c_0.$$

Theorem 2.8 is proved.

3. A relationship between the distinguished subsets and C_{λ} -semiconservative FK-spaces. In this section we shall now study the subspaces $C_{\lambda}F$, $C_{\lambda}F^+$, $C_{\lambda}B$ and $C_{\lambda}B^+$ of an FK-space X.

Let X be an FK-space with $\phi \subset X$. Then

$$C_{\lambda}W := C_{\lambda}W(X) = \left\{ x \in X \colon \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x^{(k)} \to x \text{ (weakly) in } X \right\} =$$
$$= \left\{ x \in X \colon f(x) = \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} x_j f\left(\delta^j\right) \text{ for all } f \in X' \right\},$$
$$C_{\lambda}S := C_{\lambda}S(X) = \left\{ x \in X \colon \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x^{(k)} \to x \right\} =$$

 $= \left\{ x \in X \colon x \text{ has } \sigma K(\lambda) \text{ in } X \right\},$

$$C_{\lambda}F^{+} := C_{\lambda}F^{+}(X) = \left\{ x \colon \lim_{n} \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} \sum_{j=1}^{k} x_{j}f\left(\delta^{j}\right) \text{ exists for all } f \in X' \right\} = \left\{ x \colon \left\{ x_{n}f(\delta^{n}) \right\} \in \sigma s(\lambda) \text{ for all } f \in X' \right\},$$
$$C_{\lambda}B^{+} := C_{\lambda}B^{+}(X) = \left\{ x \colon \left\{ \frac{1}{\lambda(n)} \sum_{k=1}^{\lambda(n)} x^{(k)} \right\} \text{ is bounded in } X \right\} = \left\{ x \colon \left\{ x_{n}f(\delta^{n}) \right\} \in \sigma b(\lambda) \text{ for all } f \in X' \right\}.$$

Also $C_{\lambda}F = C_{\lambda}F^+ \cap X$ and $C_{\lambda}B = C_{\lambda}B^+ \cap X$.

We note that subspaces $C_{\lambda}W$ and $C_{\lambda}S$ are closely related to C_{λ} -conullity of the FK-space X (see [4]).

The theorems below gives us some characterizations which are analogous to those given in [13] (Chapter 10).

Theorem 3.1. Let X be an FK-space with $\phi \subset X$, $z \in s$. Then $z \in C_{\lambda}F^+$ if and only if $z^{-1}X = \{x: zx \in X\}$ is a C_{λ} -semiconservative FK-space, where $zx = \{x_n z_n\}$, in particular $e \in C_{\lambda}F^+$ if and only if X is C_{λ} -semiconservative FK-space.

Proof. Let $f \in (z^{-1}X)'$. Then $f(x) = \alpha x + g(zx), \alpha \in \phi, g \in Y'$, by [13] and

$$f(\delta^n) = \alpha_n + g(z\delta^n) = \alpha_n + g(z_n\delta^n) = \alpha_n + z_ng(\delta^n).$$

Thus, since $\alpha \in \phi \subset \sigma s(\lambda)$ then $\{f(\delta^n)\} \in \sigma s(\lambda)$ if and only if $\{z_n g(\delta^n)\} \in \sigma s(\lambda)$, i.e., $z \in C_{\lambda} F^+$.

An FK-space is called bounded convex C_{λ} -semiconservative space if it is a C_{λ} -semiconservative space and includes $q(\lambda)$.

\mathbf{C}_{λ} -SEMICONSERVATIVE FK-SPACES

Theorem 3.2. Let X be an FK-space with $\phi \subset X$, $z \in s$. Then $z \in C_{\lambda}F$ if and only if $z^{-1}X$ is bounded convex C_{λ} -semiconservative FK-space, in particular $e \in C_{\lambda}F$ if and only if X is bounded convex C_{λ} -semiconservative FK-space.

Proof. Let $z \in C_{\lambda}F$. Then $z \in X$ so $e \in z^{-1}X$ and since $z \in C_{\lambda}F^+$, $z^{-1}X$ is a C_{λ} -semiconservative FK-space by Theorem 3.1. Thus $z^{-1}X$ is a bounded convex C_{λ} -semiconservative FK-space.

Let $z^{-1}X$ be a bounded convex C_{λ} -semiconservative FK-space. Then $z^{-1}X$ is C_{λ} -semiconservative FK-space and $e \in z^{-1}X$ so $z \in X$. Thus since $z \in C_{\lambda}F^+$ by Theorem 3.1 and $z \in X$, then $z \in C_{\lambda}F$.

Theorem 3.3. Let X be an FK-space with $\phi \subset X$, $z \in s$. Then $z \in C_{\lambda}B^+$ if and only if $q_0(\lambda) \subset z^{-1}X$, in particular $e \in C_{\lambda}B^+$ if and only if $q_0(\lambda) \subset X$.

Proof. Let $f \in (z^{-1}X)'$. Then $f(\delta^n) = \alpha_n + z_n g(\delta^n)$ by [13]. Hence, since $\alpha \in \phi \subset \sigma s(\lambda)$, then $z \in C_{\lambda}B^+$ if and only if $\{z_n g(\delta^n)\} \in \sigma b(\lambda)$, i.e., $z \in C_{\lambda}B^+$.

Theorem 3.4. Let X be an FK-space with $\phi \subset X$, $z \in s$. Then $z \in C_{\lambda}B$ if and only if $q(\lambda) \subset z^{-1}X$, in particular $e \in C_{\lambda}B$ if and only if $q(\lambda) \subset X$.

Proof. Let $z \in C_{\lambda}B$. Then $z \in X$ so $e \in z^{-1}X$ and $z \in C_{\lambda}B^+$. Thus $z^{-1}X \supset q(\lambda)$ by Theorem 3.3.

Let $z^{-1}X \supset q(\lambda)$, then $z^{-1}X \supset q_0(\lambda)$ and $e \in z^{-1}X$. Thus, since $z \in C_{\lambda}B^+$ by Theorem 3.3 and $z \in X$, then $z \in C_{\lambda}B$.

4. Matrix domains. In this section we give simple conditions for the subspaces $C_{\lambda}B$ and $C_{\lambda}F$ in the *FK*-space Y_A , which is depend on the choice of the *FK*-space Y and the matrix A. Also, we solve the problem of characterizing matrices A such that Y_A is C_{λ} -semiconservative space for given Y.

The theorems below gives us some results which are analogous to those given in [13] (Chapters 9 and 12).

Theorem 4.1. Let Y be an FK-space and A be a matrix. Then Y_A is a C_{λ} -semiconservative space if and only if the columns of A are in Y and $\{g(a^k)\} \in \sigma s(\lambda)$ for each $g \in Y'$, where a^k is the kth column of A, $a_n^k = a_{nk}$.

Proof. Necessity. The columns of A are in Y since $Y_A \supset \phi$ by definition of C_{λ} -semiconservative space. Given $g \in Y'$, let f(x) = g(Ax) for $x \in Y_A$, so $f \in Y'_A$ by [13] (Theorem 4.4.2). Then $f(\delta^k) = g(a^k)$ and the result follows since $Y^f_A \subset \sigma s(\lambda)$.

Sufficiency. We first note that each row of A belongs to $\sigma s(\lambda)$ since in the hypothesis we may take $g = P_n$, where $P_n(x) = x_n$. This yields

$$\left\{g(a^k)\right\} = \left\{P_n(a_n^k)\right\} = \{a_{nk}\} \in \sigma s(\lambda), \quad k = 1, 2, 3, \dots$$

Hence $s_A \supset (\sigma s(\lambda))^{\beta}$.

Now let $f \in Y'_A$. Then by Theorem 4.4.2 of [13],

$$f(x) = \sum_{k=1}^{\infty} \alpha_k x_k + g(Ax) \qquad \text{with} \quad g \in Y',$$

I. DAĞADUR

$$\alpha \in s_A^\beta = \left\{ x \colon \sum_{n=1}^\infty x_n y_n \text{ convergent for all } y \in s_A \right\} \subset (\sigma s(\lambda))^{\beta\beta} = \sigma s(\lambda), \text{ in [5]}.$$

Thus

$$f(\delta^k) = \alpha_k + g(a^k);$$

by the hypotesis and the fact that $\alpha \in \sigma s(\lambda)$ we have $\{f(\delta^k)\} \in \sigma s(\lambda)$. Thus $Y_A^f \subset \sigma s(\lambda)$ and Y_A is C_{λ} -semiconservative space.

Theorem 4.2. If Y_A is C_{λ} -semiconservative space then $A^T \in (Y^{\beta}, \sigma s(\lambda))$, where A^T denotes transpose of matrix A.

Proof. Since $Y_A \supset q_0$ by Theorem 2.8 then $A \in (q_0, Y)$. Hence

$$A^{T} \in \left(Y^{\beta}, q_{0}^{f}\right) = \left(Y^{\beta}, \sigma b\right), \quad \text{where} \quad \sigma b = \left\{x \in w \colon \sup_{n} \left|\frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j}\right| < \infty\right\}$$

by [13] (Theorem 8.3.8]. Let $z \in Y^{\beta}$ and define $g \in Y'$ by g(y) = zy using the Banach–Steinhaus theorem [13], where $zy = \sum_{k=1}^{\infty} z_k y_k$. Let f(x) = g(Ax) so that $f \in Y'_A$ by [13] (Theorem 4.4.2). Hence $\{f(\delta^k)\} \in \sigma s(\lambda)$. But

$$f(\delta^k) = \sum_{n=1}^{\infty} z_n a_{nk} = \left(A^T z\right)_k$$

so $(A^T z) \in \sigma s(\lambda)$.

Theorem 4.3. Let Y be an FK-space with AK. Then Y_A is C_{λ} -semiconservative space if and only if the columns of A belong to Y and $A^T \in (Y^{\beta}, \sigma s(\lambda))$.

Proof. Necessity is trivial by Theorem 4.2.

Sufficiency. Let $g \in Y'$, $z_n = g(\delta^n)$. Then $z \in Y^f = Y^\beta$ by [13] (Theorem 7.2.7), so $(A^T z) \in \sigma s(\lambda)$. But

$$(A^T z)_k = \sum_{n=1}^{\infty} z_n a_{nk} = g\left(\sum_{n=1}^{\infty} a_{nk} \delta^n\right) = g(a^k)$$

since Y has AK. Hence we $getg(a^k) \in \sigma s(\lambda)$. Then Y_A is C_{λ} -semiconservative space by Theorem 4.1.

Definition 4.1. A matrix A is called C_{λ} -semiconservative if c_A is C_{λ} -semiconservative space.

This definition is given because summability theory deals with spaces of the form c_A and with FK-spaces whose properties generalize those of such spaces. It would be nice if we can extend theorems about conservative spaces to C_{λ} -semiconservative spaces.

Theorem 4.4. A is C_{λ} -semiconservative if and only if

- (i) a has convergent columns, i.e., $c_A \supset \phi$,
- (ii) $a \in \sigma s(\lambda)$, where $a = \{a_k\}, a_k = \lim_n a_{nk}$,
- (iii) $A^T \in (l, \sigma s(\lambda))$.

ISSN 1027-3190. Укр. мат. журн., 2012, т. 64, № 7

916

Proof. Necessity. (i) is by Definition 4.1; to prove (ii) apply Theorem 4.1 with $g := \lim$; (iii) is by Theorem 4.2.

Sufficiency. Let $g \in c'$. Then $g(y) = \chi \lim y + \sum_{n=1}^{\infty} t_n y_n$, $t \in l$ by [13]. If we take y = Ax; $x = \delta^k$ in here we obtained $g(a^k) = \chi \lim a_{nk} + (tA)_k$, where $(tA)_k = \sum_{n=1}^{\infty} t_n a_{nk}$. Since $g(a^k) \in \sigma s(\lambda)$ from (ii) and (iii) then by Theorem 4.1. the result is obtained.

Theorem 4.5. *The following are equialent for an FK-space X.*

(i) If $A \in (X, X)$ then X_A is C_{λ} -semiconservative space.

(ii) X is C_{λ} -semiconservative space.

Proof. (i) implies (ii): Take A = I.

(ii) implies (i): If $A \in (X, X)$ then $X \subset X_A$, hence X_A is C_{λ} -semiconservative space by Theorem 2.5.

Theorem 4.6. Let $z \in s$, Y be an FK-space, and A be a matrix such that $\phi \subset Y_A$ i.e., the columns of A belong to Y. Then the following propositions are equivalent in Y_A :

(i)
$$z \in C_{\lambda}B^+$$
,
(ii) $\left\{\frac{1}{\lambda(r)}\sum_{p=1}^{\lambda(r)}Az^{(p)}\right\}$ is bounded in Y.

(iii) $Y_{Az} \supset q_0(\lambda)$ where the matrix Az is $(a_{nk}z_k)$,

(iv) $\{z_k g(a^k)\} \in \sigma b(\lambda)$ for each $g \in Y'$, where a^k is kth column of A.

Proof. (i) \Leftrightarrow (iii): $z \in C_{\lambda}B^+$ if and only if $z^{-1}Y_A \supset q_0(\lambda)$, where

$$z^{-1}Y_A = \{x \colon zx \in Y_A\}, \qquad zx = \{x_n z_n\} \Leftrightarrow Y_{Az} \supset q_0(\lambda)$$

by $z^{-1}Y_A = Y_{Az}$ and Theorem 3.3.

(iii) \Leftrightarrow (iv): Since $q_0(\lambda)$ is AD space and by hypothesis then

$$Y_{Az}^f \subset (q_0(\lambda))^f$$

by [13] (Theorem 8.6.1). Hence $f(\delta^k) = \alpha_k + g(a_n^k z_k)$ for each $f \in Y'_{Az}$ with $\alpha \in s_{Az}^\beta$, $g \in Y'$ by [13] (Theorem 4.4.2). Since

$$\alpha \in s_{Az}^{\beta} \subset Y_{Az}^{\beta} \subset \sigma b\left(\lambda\right)$$

then $\{f(\delta^k)\} \in \sigma b(\lambda) \Leftrightarrow \{z_k g(a^k)\} \in \sigma b(\lambda)$ for each $g \in Y'$.

(ii) \Leftrightarrow (iv): (iv) is true if and only if

$$\left\{g\left(\frac{1}{\lambda(r)}\sum_{p=1}^{\lambda(r)}Az^{(p)}\right)\right\}$$

is bounded for each $g \in Y'$ by [13] (Theorem 8.0.2), where

$$g\left(\frac{1}{\lambda(r)}\sum_{p=1}^{\lambda(r)}Az^{(p)}\right) = g\left(\frac{1}{\lambda(r)}\sum_{p=1}^{\lambda(r)}\sum_{k=1}^{p}a_{nk}z_{k}\right) = \frac{1}{\lambda(r)}\sum_{p=1}^{\lambda(r)}\sum_{k=1}^{p}z_{k}g(a_{n}^{k}).$$

Theorem 4.7. Assume that $z \in s$, (Y, q) is an FK-space, and A is a matrix such that $\phi \subset Y_A$ i.e., the columns of A belong to Y. Then the following propositions are equivalent in Y_A :

I. DAĞADUR

(i)
$$z \in C_{\lambda}F^+$$
,
(ii) $\left\{\frac{1}{\lambda(r)}\sum_{p=1}^{\lambda(r)}Az^{(p)}\right\}$ is weakly Cauchy in Y, i.e., $\left\{g\left(\frac{1}{\lambda(r)}\sum_{p=1}^{\lambda(r)}Az^{(p)}\right)\right\}$ is convergent

for each $g \in Y'$,

(iii) Y_{Az} is C_{λ} -semiconservative space,

(iv) $\{z_k g(a^k)\} \in \sigma s(\lambda)$ for each $g \in Y'$.

Proof. (i) \Leftrightarrow (ii): $z \in C_{\lambda}F^+ \Leftrightarrow z^{-1}Y_A$ is C_{λ} -semiconservative space if and only if Y_{Az} is C_{λ} -semiconservative space by Theorem 3.1.

(iii) \Leftrightarrow (ii): Since the k th column of Az is $z_k a^k$ and by Theorem 4.1, this equivalent is trivial.

(iii) \Leftrightarrow (iv): By Theorem 4.1, since the k th column of Az is $z_k a^k$.

Theorem 4.8. Let Y be an FK-space such that weakly convergent sequences are convergent in the FK-topology, let A be a row finite matrix with $\phi \subset Y_A$. Then $C_{\lambda}S = C_{\lambda}W = C_{\lambda}F = C_{\lambda}F^+$ in Y_A .

Proof. If
$$z \in C_{\lambda}F^+$$
, $\left\{\frac{1}{\lambda(r)}\sum_{p=1}^{\lambda(r)}Az^{(p)}\right\}$ is weakly Cauchy in Y by Theorem 4.7, hence Cauchy

[13] (Theorem 12.0.2), hence convergent say $\frac{1}{\lambda(r)} \sum_{p=1}^{\lambda(r)} Az^{(p)} \to y$. However $\frac{1}{\lambda(r)} \sum_{p=1}^{\lambda(r)} Az^{(p)} \to z$ in s_A since this is a $\sigma K(\lambda)$ space because of s_A is an AK space [13]. Thus $\frac{1}{\lambda(r)} \sum_{p=1}^{\lambda(r)} Az^{(p)} \to Az$ in s. But $\frac{1}{\lambda(r)} \sum_{p=1}^{\lambda(r)} Az^{(p)} \to y$ in s since Y is an FK-space hence y = Az so $z \in C_{\lambda}S$ by [4].

- 1. Armitage D. H., Maddox I. J. A new type of Cesáro mean // Analysis. 1989. 9. P. 195-204.
- 2. Bosanquet L. S. Note on convergence and summability factors // J. London Math. Soc. 1945. 20. P. 39-48.
- 3. Buntinas M. Convergent and bounded Cesáro sections in FK-spaces // Math. Z. 1971. 121. S. 191-200.
- 4. Dağadur İ. C_{λ} -conull FK-spaces // Demonstr. math. 2002. 35. P. 835–848.
- Goes G., Goes S. Sequences of bounded variation and sequences of Fourier coefficients, I // Math. Z. 1970. 118.
 S. 93 102.
- Goes G. Sequences of bounded variation and sequences of Fourier coefficients, II // J. Math. Anal. and Appl. 1972.
 39. P. 477–494.
- Goes G. Summan Von FK-Räumen Funktionale Abstchnittskkonvergenz und Umkehrsätz // Tohoku Math. J. 1974.
 26. P. 487–504.
- 8. İnce H. G. Cesáro semiconservative FK-spaces // Math. Communs. 2009. 14. P. 157-165.
- 9. Macphail M. S., Orhan C. Analysis. 1989. 9. P. 317-322.
- 10. Osikiewicz J. A. Equivalance results for Cesáro submethods // Analysis. 2000. 20. P. 35-43.
- 11. Wilansky A. Modern methods in topological vector spaces. New York: McGraw Hill, 1978.
- 12. Wilansky A. Functional analysis. Blaisdell Press, 1964.
- 13. Wilansky A. Summability through functional analysis. North Holland, 1984.
- Snyder A. K., Wilansky A. Inclusion theorems and semiconservative FK-space // Rocky Mountain J. Math. 1972. –
 P. 595–603.
- 15. Zeller K. Theorie der Limitierungsverfahren. Berlin etc., 1958.

Received 06.05.10, after revision - 11.01.12

918