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CA-SEMICONSERVATIVE FK-SPACES
CA-HAIIIBKOHCEPBATUBHI FK-ITPOCTOPHU

We study Cx-semiconservative FK-spaces for C'\-methods defined by deleting a set of rows from the Cesaro matrix C
and give some characterizations.

Buueno C'y-namniBkoncepBatusHi FK-npoctopu mist C'y-MeTOAIB, 1110 BU3HAYAIOTHCS BUAAJICHHIM IPYIH PSIKIB i3 MaTPHIL
Yezapo C'1, i HaBeNIEHO NEsKi XapaKTEPUCTHKH.

1. Introduction and notation. The definition of semiconservative FK-space and some properties
of this space was given by Snyder and Wilansky in [14]. Ince, in [8], continued to work on Cesaro
semiconservative FK-space and to give some characterizations. In Section 2, for an FK-space X,
the concepts of C\-semiconservative FK-space have been defined. Their relationship to Cesaro semi-
conservative space and C'y-semiconservative have also been examined. However, we study the C-
semiconservative of the absolute summability domain /4, and show that if [ 4 is C\-semiconservative,
then A cannot be [-replaceable. In Section 3 we study the subspaces C\F' ", C\F, C\B and C, B
of an FK-space X. In Section 4 we solve the problem of characterizing matrices A such that Y, is
C\-semiconservative space for given Y.

Let F' be an infinite subset of N and F' as the range of a strictly increasing sequence of positive
integers, say ' = {\(n)},~; . The Cesaro submethod C' is defined as

>
~

n)
1
O\x), = —— Tp, n=12,...,

b
Il

where {xj} is a sequence of a real or complex numbers. Therefore, the C'y-method yields a subse-
quence of the Cesaro method C', and hence it is regular for any A. C'y is obtained by deleting a set
of rows from Cesaro matrix. The basic properties of C'y-method can be found in [1] and [10].

Let s denote the space of all real or complex-valued sequences. It can be topologized with the
seminorms p,(z) = |x,|, n = 1,2,..., and any vector subspace of s is called a sequence space.
A sequence space X, with a vector space topology 7, is a K-space provided that the inclusion
mapping i: (X,7) — s, i(x) = x is continuous. If, in addition, 7 is complete, metrizable and locally
convex then (X, 7) is called an FK-space. So an FK-space is a complete, metrizable locally convex
topological vector space of sequences for which the coordinate functionals are continuous. The basic
properties of such spaces may be found in [1-13, 15].

By cp, I°° we denote the spaces of all number sequences that converge to zero and bounded
sequences, respectively. These are FK-spaces under ||z|| = sup,, |z, |-
o . . oo
As usual, |} = {x € s: anl |z, | < oo} is denoted simply by [. cs = {x € s: anl T

exists}, the space of all summable sequences; and bs is as the following:

k
D | < oo} .
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bs = {x € s: sup
n=1
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C,-SEMICONSERVATIVE FK-SPACES 909

The sequence spaces

1 Aln) &k
os(\) =(qx€s: h ) Zm exists p ,
k=1 j=1
1 An) &
ob(\) =z € s: sup)\— ij < 00
k=1 j=1
and
x: Z)\(j){Aij‘ <oo and z €1 ), qo(A) :=q(\) Neg
j=1
is FK-space with the norms [2, 3, 5-7]
A(n) k

||$|‘Ub(A) = Sl}lp Z ij )

1llg00 = Z M) [A%5] + sup ;]

where
— . 2. _ . .
Axj =xj — Tj41 and AN x; = Axj — Azjqr.

Throughout the paper e denotes the sequences of ones, (1,1,...,1,...); 6/, 5 = 1,2,..., the
sequence (0,0,...,0,1,0,...) with the one in the jth position; ¢ the linear span of the 67 ’s. The
topological dual of X is denoted by X’. The space X is said to have AD if ¢ is dense in X. A
sequence z in a locally convex sequence space X is said the property AK (respectively oK ()\))

) . 1 A(n) .
if 2\ — <respect1vely ) E V" = x ) in X where x (x1,29,...,2p,0,...)

k=1
= Z:_l 2,,0%. An FK-space X is called Cesaro semiconservative space if X/ C os where os :=
= {:U € s: lim, - Zkil Zj:l xj ex1sts} (see [8]). Every AK space is a 0 K (\). We recall (see
[5, 6, 13, 14]) that the f, 5, o, ob, o(\) and ob())-dual of a subset X of s is defined to be

xf={{r@"}: fex'},

o0
XP = {mes: kayk exists for all yeX} =
k=1
={zx €s:ay= (zryr) €cs forall yec X},
- DR .
X°=dJdx€s: hm—Zijyj exists forall y € X » =

non

k=1 j=1
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910 L. DAGADUR

={res:zycosforal ye X},
Xt ={zes: supl Zn:zk:y»<oo forall ye X » =
: - j

" k=1 j=1

={zxes:zycobforal ye X},

An) &k
1
x°N = res: hﬁn W ; j;xjyj exists forall y € X » =

={zes:azyecos(A) foral ye X},

A(n)
yj| <oo forall ye X » =

k
=1

1
Xab(/\) ={xreEs: s%p T

n) k=17

={xes:zyeob) forall ye X},

where zy = (z,y,). Let E, E; be sets of sequences. Then for k = (3, o, ob, o(\) and ob(A)

(a) E C EM,

(c) if E C Ej then E C E¥
holds. Also, if ¢ C E C Ey then B c Ef.

We shall be concerned with matrix transformations y = Az, where z,y € s, A = {ank}f;’k:l is
an infinite matrix with complex coefficients, and

oo
yn:Zankmk, n=1,2,....
k=1

The sequence {an}r is called the nth row of A and is denoted by ™, n = 1,2,...; similarly,
o0

the k th column of the matrix A, {an},. is denoted by a* k =1,2,.... For an FK-space Y, we
consider the summability domain Y4 defined by

Yi={x€s: Az existsand Az €Y}.

Then Y, is an FK-space under the seminorms p,,(x) = |z,|, n =1,2,...;

m
Z UnkTE
k=1

2. Cx-semiconservative FK-spaces. In this section, the concept of C\-semiconservative an

hn(z) = sup , n=1,2..., and (goA)(x)=q(Azx) (see[l3]).

FK-space X containing ¢ is defined, and several theorems on this subject are given.
Definition 2.1. An FK-space X is called C)-semiconservative space if

X7 cos(N).
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C,-SEMICONSERVATIVE FK-SPACES 911

1 A(n
This means that ¢ C X and {)\(n) Zk(:1)

For example, ¢ is a C'y-semiconservative FK-space. Every semiconservative FK-space is a C-

e(k)} is convergent for each f € X'.

semiconservative FK-space. But every C\-semiconservative FK-space is not a semiconservative FK-
space. An example of FK-space which is C)-semiconservative but not semiconservative is given in
[8] in case A(n) = n.

The theorem below gives us the equivalence of Cesaro semiconservative and C'y-semiconservative
of an FK-space X.

Theorem 2.1. Let X be an FK-space with ¢ C X and X/ C bs. Let \ := {\(n)} be an
A(n+1)

A(n)

infinite subset of N such that lim sup,, = 1. Then X is Ci-semiconservative if and only if

it is C'y-semiconservative.
Proof. Necessity is trivial.
Sufficiency. Let X be C)\-semiconservative. Then for each f € X', we have
Aln) k

hm — Z Z f 63 exists.

kljl

Let tg, (f) := ijl £ (67). So, (tx (f)) is Cx-summable. Since X/ C bs, forall f € X', (t,(f)) €
A(n+1)
A(n)

C1-semiconservative space.

€ [*°. Since lim sup,, = 1, by Theorem 2.1 of [10], it is Cj-summable. Therefore, X is a

Using the same technique one can get the following theorem.

Theorem 2.2. Let X be an FK-space with ¢ C X, X/ C bs and X := {\(n)}, p := {pu(n)}
infinite subsets of N. If lim,, M = 1, then X is Cy-semiconservative if and only if it is C-

A(n)
semiconservative.
To see that lim,, ';\LETZ; = 1 is not a necessary condition in Theorem 2.2, simply consider the
n
A 1 1
sequences A(n) = n? and p(n) = n>. Then lim, (;(+) ) = lim, por o) (n(—i—) ) = 1, and hence,
n win
by Theorem 2.1, X is C\-semiconservative if and only if it is C'-semiconservative and X is C-
3
semiconservative if and only if it is C';-semiconservative. However, lim,, 'l;\ En; = % #1
n n
A 1 A 1
In Theorem 2.1, with lim sup,, M = 1 replaced by lim, M = 1, the following
A(n) A(n)
result is easily obtained by Theorem 2.2.
A(n+1)

Corollary 2.1. Let lim, = 1. Then X is Cy-semiconservative if and only if it is

A(n)

The definition of a C-conull FK-space X with ¢ C X, can be given by using C)-semi-

C'\-semiconservative.

conservativity. A C'y-semiconservative space X is called C)-conull, if
An) &k

f(e) =lim s ZZf (6%)

kljl

for all f € X'. A Cy-semiconservative space need not contain e but C'y-conull must contain e.
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912 L. DAGADUR

Theorem 2.3. If X4 is a Cy-conull FK-space, then it is a C)y-semiconservative space.
Proof. Suppose that X 4 is Cy-conull FK-space. Then

. 1 ;
Joy=lms > D (@),
k=1
for all f € X';. Hence X4 C os()).
We recall that, in [9] it is defined that a matrix A is [-replaceable if there is a matrix B = (b,)
with 4 = Ip andz by = 1 for all k € N.

Theorem 2.4. Ifa matrix A is l-replaceable, then [ 5 is not a C-semiconservative FK-space.
Proof If A is l- replaceable then there is f € I/, such that f (67) = 1 for all j € N in [9]. Hence

limn Z Z does not exist since
A(n)
1 , A(n) +1
- 57 = 7
A(n) Pt ; ! ( ) 2

so 14 is not C'y-semiconservative space.

Theorem 2.5. (i) An FK-space that contains a C)-semiconservative FK-space must be a C'-
semiconservative FK-space.

(i1) 4 closed subspace, containing ¢, of a C'\-semiconservative FK-space is a C'\-semiconservative
FK-space.

(iii) A countable intersection of C-semiconservative FK-spaces is a Cy-semiconservative FK-
spaces.

The proof is easily obtained from elementary properties of FK-spaces (see [13]).

Theorem 2.6. Let X be an FK-space containing ¢. Then

(i) X8 c x°W ¢ xo*WN c X/,

(i) if X is a 0 K ()\)-space, then X1 = X,

(i) if X is an AD-space, then X°N) = X6

Proof. (ii) Let v € X°W and define f(z) = h,Iln)\(lm Z:(:nl) ijl vjx; for x € X. Then

f € X' by the Banach - Steinhaus theorem of [13]. Also

f(67) =lim

1
m o5 ) = (= D)o = vy, g <),

sov € X7, Thus X°M c X/,
Now we show that X/ ¢ XM Let v € X7. Since X is a 0K (\)-space

A(n) k An) k

flx )—hm—zz%f = 7rln)\(1n) Zvjxj
k=

1j=1
for z € X, then v € X This completes the proof of (ii).
1 A(n) =k .
ob(N) _ o
(iii) Let v € X and define f,(z) ) Zk:l ijl vjz; for x € X. Then {f,} is

pointwise bounded, hence equicontinuous by [13]. Since
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C-SEMICONSERVATIVE FK-SPACES 913
lim f, (6%) = vg, ¢ < A(n),

then ¢ C {x: lim, f,(z) exists}. Hence {z: lim, f,(z) exists} is closed subspace of X by the
Convergence lemma [13]. Since X is an AD space, then X = {z: lim,, f, () exists} = ¢ and then
lim,, f,,(z) exists for all z € X. Thus v € X 7(M) . The opposite inclusion is trivial.

(i) ¢ C X by hypothesis. Since ¢ is AD-space, then

XN (5)050\) _ (g)ﬂ(k) c (g)f _ x/

by (iii) and [13].
Theorem 2.7. z°W) is a Cy-semiconservative space if and only if z € as(N).
Proof. Let 2°) be a C)-semiconservative space. Then (z“(’\))f C os(\). Since 2™ is a
oK (\)-space by [4], we have (z”o‘))f = (z"(/\))g(/\) by Theorem 2.6 (ii). So since
{z} € (z"()‘))g()‘) C os(A),

we get z € os().
Now let z € os(A). Then (a5 (A\))°™ ¢ 2™ and hence

(ZU(/\))J()‘) c (JS()\»U()\)U()\) =o0s(\) in [5].

Since 27 is a ¢ K (\)-space, then (ZU()‘))f = (z"(’\))o()‘) C os(N).

It is clear that os()\) is not @ C-semiconservative space. Because os (\) = e and e ¢ as(\).

Now we get following theorem.

Theorem 2.8. The intersection of all C\-semiconservative FK-spaces is qq.

Proof. Let the set of all (C-semiconservative) C\-semiconservative spaces be (I'(C1)) I'(C)).
Since every C'-semiconservative FK-space is C)\-semiconservative space we get ['(C1) C I'(Cl)).
Also

N{X: X el(C)}cn{X: X eT(C))}.

On the other hand Theorem 6 of [8] the intersection of all C-semiconservative spaces is gg. Hence
g CN{X: X € I'(Cy)} . Therefore, by Theorem 5 of [8] we have

o CN{X: Xel(Cy)}Ccn{z?:z€0s} =057 =q.
Also N{X: X € I'(C\)} C cp, since ¢ is a Cy-semiconservative space so
N{X: X eT'(C\)} CqgnNcy=qo,

where

o0
qg:=< x: Zj‘Aij‘<oo and x € [*° and ¢go = ¢gNco.
j=1

Theorem 2.8 is proved.
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914 L. DAGADUR

3. A relationship between the distinguished subsets and C)-semiconservative FK-spaces. In
this section we shall now study the subspaces CyF, Cy F'*, C\B and C\B™* of an FK-space X.
Let X be an F'K-space with ¢ C X. Then

A(n)
1 . .
W :=C,W(X)=_zeX: mE 2™ = 2 (weakly)in X p =

AMn) &k
1
=<zxeX: f(z /\— Zx]f (67) forall fe X'},
:1]21
1 A(n)
C\S :=C\S(X) = X: ) a®
k=1
={r e X:x has cK()\) in X},
An) &
+ . + _ . j ; 3
C\FT = C\FT(X) = { x: hglA( );;x]f(éf) exists forall fe X'y =

= {: {2 f(8")} € os()) forall fe X'},

C\B' :=C\BT(X) = x: )\(1) Zx(k) isboundedin X } =
n

={z: {2,f(6™)} € ob(\) forall fe X'}.

Also CyF = C\F™NX and C\B = C, BTN X.

We note that subspaces C'\W and C\S are closely related to C)-conullity of the FK-space X
(see [4]).

The theorems below gives us some characterizations which are analogous to those given in [13]
(Chapter 10).

Theorem 3.1. Let X be an FK-space with ¢ C X, z € s. Then z € C\F™T if and only
if 27X = {x: 2z € X} is a Cx-semiconservative FK-space, where zx = {x,z,}, in particular
e € O\F™" if and only if X is Cy-semiconservative FK-space.

Proof. Let f € (z_lX)/. Then f(z) = azx + g (22), a € ¢, g € Y', by [13] and

f(6") = an+g(20") = an + g (2,0") = an + 2,9 (6").

Thus, since @ € ¢ C os(A) then {f(6"™)} € os()) ifand only if {2, (6™)} € os(N), i.e., 2 € CAFT.
An FK-space is called bounded convex C'y-semiconservative space if it is a C'y-semiconservative
space and includes g(\).
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C,-SEMICONSERVATIVE FK-SPACES 915

Theorem 3.2. Let X be an FK-space with ¢ C X, z € 5. Then z € C\F if and only if 27X is
bounded convex Cy-semiconservative FK-space, in particular e € C\F if and only if X is bounded
convex Cy-semiconservative FK-space.

Proof. Let z € C\F. Then z € X so e € 2 'X and since z € C\F*, 271X is a C)-
semiconservative FK-space by Theorem 3.1. Thus 2~ !X is a bounded convex Cy-semiconservative
FK-space.

Let z~' X be a bounded convex C)-semiconservative FK-space. Then z~'X is C-semiconser-
vative FK-space and e € 271X so z € X. Thus since z € Cy\F* by Theorem 3.1 and z € X, then
z € C\F.

Theorem 3.3. Let X be an FK-space with ¢ C X, z € s. Then z € C\B™ if and only if
qo(N\) C 271X, in particular e € C\B™ if and only if qo(\) C X.

Proof. Let f € (z_lX),. Then f(0") = a + 2n9 (6™) by [13]. Hence, since o € ¢ C as(A),
then z € C BT if and only if {z,g (6™)} € ob(\), i.e., z € CB™T.

Theorem 3.4. Let X be an FK-space with ¢ C X, z € s. Then z € C\B if and only if
q(\) C 271X, in particular e € C\B if and only if q(\) C X.

Proof. Let z € C\B. Then z € X soe € z7'X and 2 € C,BT. Thus 27'X D ¢(\) by
Theorem 3.3.

Let 271X D q()\), then 271X D go(\) and e € 271 X. Thus, since z € C\B* by Theorem 3.3
and z € X, then z € C)\B.

4. Matrix domains. In this section we give simple conditions for the subspaces C)B and C\F'
in the F'K-space Y4, which is depend on the choice of the F'K-space Y and the matrix A. Also,
we solve the problem of characterizing matrices A such that Y, is C-semiconservative space for
given Y.

The theorems below gives us some results which are analogous to those given in [13] (Chapters 9
and 12).

Theorem 4.1. LetY be an FK-space and A be a matrix. Then Y4 is a Cy-semiconservative
space if and only if the columns of A are in Y and {g(ak)} € os(\) for each g € Y', where a is
the kth column of A, afL = ank.

Proof. Necessity. The columns of A are inY since Y4 D ¢ by definition of C'\ -semiconservative
space. Given g € Y/, let f(z) = g(Ax) for x € Yy, so f € Y by [13] (Theorem 4.4.2). Then
f(6%) = g(a”) and the result follows since Yj; C os(N).

Sufficiency. We first note that each row of A belongs to os(\) since in the hypothesis we may
take g = P,,, where P,,(z) = x,. This yields

{96} = {Puah)} = o} €0s(V), k=1,23,....

Hence s4 D (os(\))”.
Now let f € Y. Then by Theorem 4.4.2 of [13],

f(z) = Zakxk + g(Ax) with geY’,
k=1
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916 L. DAGADUR

o€ Si = {x: anyn convergent for all y € SA} C (o5(N)P = os(N), in[5].

n=1

Thus
£(6%) = oy + g(a");

by the hypotesis and the fact that o € o's (\) we have { f(6%)} € o's (X). Thus Yj; C os(A) and Yy
is C'y-semiconservative space.

Theorem 4.2. IfY, is Cy-semiconservative space then AT € (Y/B, as()\)), where AT denotes
transpose of matrix A.

Proof. Since Y4 D qo by Theorem 2.8 then A € (qo, Y'). Hence

n

k
1
()= (). = 55
e (Y”, q Y”,ob), where ob T Eew s%pnzz% < 0
k=1 j=1
by [13] (Theorem 8.3.8]. Let z € Y and define g € Y’ by g(y) = 2y using the Banach — Steinhaus
oo
theorem [13], where zy = Z}gﬂ zkyk- Let f(z) = g(Ax) so that f € Y} by [13] (Theorem 4.4.2).

Hence {f(6%)} € os(A). But

0o
f(6%) = Z Znlnk = (ATZ)k
n=1

so (ATz) € as(N).

Theorem 4.3. LetY be an F'K-space with AK. Then Y4 is Cy-semiconservative space if and
only if the columns of A belong to' Y and AT ¢ (YB, as(N)).

Proof. Necessity is trivial by Theorem 4.2.

Sufficiency. Let g € Y', z, = g(0"). Then z € Y/ = Y” by [13] (Theorem 7.2.7), so
(ATz) € os()). But

(ATZ)k = Z Znlnk = g ( anké”) = g(ak)

n=1 n=1

since Y has AK. Hence we getg(a®) € os(\). Then Yy is Cy-semiconservative space by Theo-
rem 4.1.

Definition 4.1. A matrix A is called C-semiconservative if ca is C-semiconservative space.

This definition is given because summability theory deals with spaces of the form c4 and with
F K-spaces whose properties generalize those of such spaces. It would be nice if we can extend
theorems about conservative spaces to C'y-semiconservative spaces.

Theorem 4.4. A is C)-semiconservative if and only if

(1) a has convergent columns, i.e., cx D ¢,

(ii) a € os(N), where a = {ay}, ai, = limy, an,

(i) AT € (I,05(N)).

ISSN 1027-3190. Vkp. mam. scypn., 2012, m. 64, Ne 7



C,-SEMICONSERVATIVE FK-SPACES 917

Proof. Necessity. (i) is by Definition 4.1; to prove (ii) apply Theorem 4.1 with g := lim; (iii) is
by Theorem 4.2.
Sufficiency. Let g € ¢/. Then g(y) = xlimy + ZZO_I tnYn, t € 1 by [13]. If we take y = Ax;
= 6% in here we obtained g (ak) = xlimay,, + (tA),, where (tA), = Zzo_l tnank. Since
g (ak) € os(\) from (ii) and (iii) then by Theorem 4.1. the result is obtained.
Theorem 4.5. The following are equialent for an FK-space X.
(1) If A e (X, X) then X 4 is C\-semiconservative space.
(i) X is Cy-semiconservative space.
Proof. (i) implies (ii): Take A = 1.
(i) implies (i): If A € (X, X) then X C X4, hence X4 is C)-semiconservative space by
Theorem 2.5.
Theorem 4.6. Let z € s, Y be an FK-space, and A be a matrix such that ¢ C Yy i.e., the
columns of A belong to Y. Then the following propositions are equivalent in Y4 :
(i) z€ C\B™,

. 1 A7)
_ Az@ inY
(i) {/\(7") Zp:l z } is bounded in Y,
(iii) Ya, D qo()\) where the matrix Az is (ank2k) »

(iv) {zkg } € ab(\) for each g € Y', where a* is kth column of A.

Proof. (i) < (iii): z € C,B™ if and only if 27'Y4 D qo(\), where
WYy = {x: 2w €Yy}, zx =A{xnzn} < Ya, D qo(N)

by 27'Y4 = Y4, and Theorem 3.3.
(iii) < (iv): Since go(A) is AD space and by hypothesis then
Y. € (q(N)

by [13] (Theorem 8.6.1). Hence f(0%) = ay + g(akzy) for each f € Y}, with a € siz, g €Y' by
[13] (Theorem 4.4.2). Since

acsh, CYD Cab())

then { f(6%)} € ob(\) < {zg9(a*)} € ob () for each g € Y.
(i) < (iv): (iv) is true if and only if

1 A(r) .
_ AP
A(r) E )

is bounded for each g € Y’ by [13] (Theorem 8.0.2), where

A(r) Alr) p A7)

1 1 1 P
g WZAZ@) =g )\(T)Zzankzk =30 > zglal,

p=1 p=1 k=1 p=1k=1

Theorem 4.7. Assume that z € s, (Y, q ) is an FK-space, and A is a matrix such that ¢ C Y4
i.e., the columns of A belong to Y. Then the following propositions are equivalent in Yy :
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918 L. DAGADUR

(i) z € C\FT,

(ii) {)\(lr) ;(:1) AZ(P)} is weakly Cauchy in'Y, i.e., {g ()\(1” Z:(:? AZ(P)> } is convergent
for each g €Y',

(iii) Ya, is Cy-semiconservative space,

(iv) {zkg(ak)} € os(A) for each g € Y'.

Proof. (i) & (ii): z € O\FT < z71Y, is C)-semiconservative space if and only if Yy is
C)\-semiconservative space by Theorem 3.1.

(iii) < (ii): Since the kth column of Az is z,a* and by Theorem 4.1, this equivalent is trivial.

(iii) < (iv): By Theorem 4.1, since the % th column of Az is zaF.

Theorem 4.8. LetY be an F K-space such that weakly convergent sequences are convergent
in the F K-topology, let A be a row finite matrix with ¢ C Y. Then CyS = C\W = C\F = C\F'"
inYy.

1 A
Proof. If z € C\FT, ) S Az} is weakly Cauchy in Y by Theorem 4.7, hence Cauchy
r p=1

1 A(r) 1 A(r)
I 0. % y—g Az®) — y. Howev —g AzP)
[13] (Theorem 12.0.2), hence convergent sa M) 2t 2 y. However NoPE z

— z in sy since this is a oK (\) space because of sy is an AK space [13]. Thus

1 Alr 1 A(r

( )Az(p) — Az in s. But ")

)\(1") p=1 )\(’r) p=1
y= Azso z € C)\S by [4].

AzP) y in s since Y is an FK-space hence
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